2015-08-25 01:21:26 +03:00
|
|
|
/* $NetBSD: in_pcb.c,v 1.162 2015/08/24 22:21:26 pooka Exp $ */
|
1999-07-01 12:12:45 +04:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
|
|
|
|
* All rights reserved.
|
2002-06-09 20:33:36 +04:00
|
|
|
*
|
1999-07-01 12:12:45 +04:00
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. Neither the name of the project nor the names of its contributors
|
|
|
|
* may be used to endorse or promote products derived from this software
|
|
|
|
* without specific prior written permission.
|
2002-06-09 20:33:36 +04:00
|
|
|
*
|
1999-07-01 12:12:45 +04:00
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*/
|
1998-12-19 05:46:12 +03:00
|
|
|
|
|
|
|
/*-
|
Reduces the resources demanded by TCP sessions in TIME_WAIT-state using
methods called Vestigial Time-Wait (VTW) and Maximum Segment Lifetime
Truncation (MSLT).
MSLT and VTW were contributed by Coyote Point Systems, Inc.
Even after a TCP session enters the TIME_WAIT state, its corresponding
socket and protocol control blocks (PCBs) stick around until the TCP
Maximum Segment Lifetime (MSL) expires. On a host whose workload
necessarily creates and closes down many TCP sockets, the sockets & PCBs
for TCP sessions in TIME_WAIT state amount to many megabytes of dead
weight in RAM.
Maximum Segment Lifetimes Truncation (MSLT) assigns each TCP session to
a class based on the nearness of the peer. Corresponding to each class
is an MSL, and a session uses the MSL of its class. The classes are
loopback (local host equals remote host), local (local host and remote
host are on the same link/subnet), and remote (local host and remote
host communicate via one or more gateways). Classes corresponding to
nearer peers have lower MSLs by default: 2 seconds for loopback, 10
seconds for local, 60 seconds for remote. Loopback and local sessions
expire more quickly when MSLT is used.
Vestigial Time-Wait (VTW) replaces a TIME_WAIT session's PCB/socket
dead weight with a compact representation of the session, called a
"vestigial PCB". VTW data structures are designed to be very fast and
memory-efficient: for fast insertion and lookup of vestigial PCBs,
the PCBs are stored in a hash table that is designed to minimize the
number of cacheline visits per lookup/insertion. The memory both
for vestigial PCBs and for elements of the PCB hashtable come from
fixed-size pools, and linked data structures exploit this to conserve
memory by representing references with a narrow index/offset from the
start of a pool instead of a pointer. When space for new vestigial PCBs
runs out, VTW makes room by discarding old vestigial PCBs, oldest first.
VTW cooperates with MSLT.
It may help to think of VTW as a "FIN cache" by analogy to the SYN
cache.
A 2.8-GHz Pentium 4 running a test workload that creates TIME_WAIT
sessions as fast as it can is approximately 17% idle when VTW is active
versus 0% idle when VTW is inactive. It has 103 megabytes more free RAM
when VTW is active (approximately 64k vestigial PCBs are created) than
when it is inactive.
2011-05-03 22:28:44 +04:00
|
|
|
* Copyright (c) 1998, 2011 The NetBSD Foundation, Inc.
|
1998-12-19 05:46:12 +03:00
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
Reduces the resources demanded by TCP sessions in TIME_WAIT-state using
methods called Vestigial Time-Wait (VTW) and Maximum Segment Lifetime
Truncation (MSLT).
MSLT and VTW were contributed by Coyote Point Systems, Inc.
Even after a TCP session enters the TIME_WAIT state, its corresponding
socket and protocol control blocks (PCBs) stick around until the TCP
Maximum Segment Lifetime (MSL) expires. On a host whose workload
necessarily creates and closes down many TCP sockets, the sockets & PCBs
for TCP sessions in TIME_WAIT state amount to many megabytes of dead
weight in RAM.
Maximum Segment Lifetimes Truncation (MSLT) assigns each TCP session to
a class based on the nearness of the peer. Corresponding to each class
is an MSL, and a session uses the MSL of its class. The classes are
loopback (local host equals remote host), local (local host and remote
host are on the same link/subnet), and remote (local host and remote
host communicate via one or more gateways). Classes corresponding to
nearer peers have lower MSLs by default: 2 seconds for loopback, 10
seconds for local, 60 seconds for remote. Loopback and local sessions
expire more quickly when MSLT is used.
Vestigial Time-Wait (VTW) replaces a TIME_WAIT session's PCB/socket
dead weight with a compact representation of the session, called a
"vestigial PCB". VTW data structures are designed to be very fast and
memory-efficient: for fast insertion and lookup of vestigial PCBs,
the PCBs are stored in a hash table that is designed to minimize the
number of cacheline visits per lookup/insertion. The memory both
for vestigial PCBs and for elements of the PCB hashtable come from
fixed-size pools, and linked data structures exploit this to conserve
memory by representing references with a narrow index/offset from the
start of a pool instead of a pointer. When space for new vestigial PCBs
runs out, VTW makes room by discarding old vestigial PCBs, oldest first.
VTW cooperates with MSLT.
It may help to think of VTW as a "FIN cache" by analogy to the SYN
cache.
A 2.8-GHz Pentium 4 running a test workload that creates TIME_WAIT
sessions as fast as it can is approximately 17% idle when VTW is active
versus 0% idle when VTW is inactive. It has 103 megabytes more free RAM
when VTW is active (approximately 64k vestigial PCBs are created) than
when it is inactive.
2011-05-03 22:28:44 +04:00
|
|
|
* by Coyote Point Systems, Inc.
|
|
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
1998-12-19 05:46:12 +03:00
|
|
|
* by Public Access Networks Corporation ("Panix"). It was developed under
|
|
|
|
* contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
1994-06-29 10:29:24 +04:00
|
|
|
|
1993-03-21 12:45:37 +03:00
|
|
|
/*
|
1998-01-05 13:31:44 +03:00
|
|
|
* Copyright (c) 1982, 1986, 1991, 1993, 1995
|
1994-05-13 10:02:48 +04:00
|
|
|
* The Regents of the University of California. All rights reserved.
|
1993-03-21 12:45:37 +03:00
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
2003-08-07 20:26:28 +04:00
|
|
|
* 3. Neither the name of the University nor the names of its contributors
|
1993-03-21 12:45:37 +03:00
|
|
|
* may be used to endorse or promote products derived from this software
|
|
|
|
* without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
1998-01-05 13:31:44 +03:00
|
|
|
* @(#)in_pcb.c 8.4 (Berkeley) 5/24/95
|
1993-03-21 12:45:37 +03:00
|
|
|
*/
|
|
|
|
|
2001-11-13 03:32:34 +03:00
|
|
|
#include <sys/cdefs.h>
|
2015-08-25 01:21:26 +03:00
|
|
|
__KERNEL_RCSID(0, "$NetBSD: in_pcb.c,v 1.162 2015/08/24 22:21:26 pooka Exp $");
|
2001-11-13 03:32:34 +03:00
|
|
|
|
2015-08-25 01:21:26 +03:00
|
|
|
#ifdef _KERNEL_OPT
|
2003-09-04 13:16:57 +04:00
|
|
|
#include "opt_inet.h"
|
1999-07-10 02:57:15 +04:00
|
|
|
#include "opt_ipsec.h"
|
2015-08-25 01:21:26 +03:00
|
|
|
#endif
|
1999-07-10 02:57:15 +04:00
|
|
|
|
1993-12-18 03:40:47 +03:00
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/systm.h>
|
|
|
|
#include <sys/mbuf.h>
|
|
|
|
#include <sys/protosw.h>
|
|
|
|
#include <sys/socket.h>
|
|
|
|
#include <sys/socketvar.h>
|
|
|
|
#include <sys/ioctl.h>
|
1994-05-13 10:02:48 +04:00
|
|
|
#include <sys/errno.h>
|
|
|
|
#include <sys/time.h>
|
2008-10-03 20:22:33 +04:00
|
|
|
#include <sys/once.h>
|
1998-08-02 04:35:31 +04:00
|
|
|
#include <sys/pool.h>
|
1994-05-13 10:02:48 +04:00
|
|
|
#include <sys/proc.h>
|
2006-05-15 01:19:33 +04:00
|
|
|
#include <sys/kauth.h>
|
2008-10-11 17:40:57 +04:00
|
|
|
#include <sys/uidinfo.h>
|
2009-04-23 20:42:56 +04:00
|
|
|
#include <sys/domain.h>
|
1993-03-21 12:45:37 +03:00
|
|
|
|
1993-12-18 03:40:47 +03:00
|
|
|
#include <net/if.h>
|
|
|
|
#include <net/route.h>
|
1993-03-21 12:45:37 +03:00
|
|
|
|
1993-12-18 03:40:47 +03:00
|
|
|
#include <netinet/in.h>
|
|
|
|
#include <netinet/in_systm.h>
|
|
|
|
#include <netinet/ip.h>
|
|
|
|
#include <netinet/in_pcb.h>
|
|
|
|
#include <netinet/in_var.h>
|
|
|
|
#include <netinet/ip_var.h>
|
2012-06-25 19:28:38 +04:00
|
|
|
#include <netinet/portalgo.h>
|
1993-03-21 12:45:37 +03:00
|
|
|
|
2003-09-04 13:16:57 +04:00
|
|
|
#ifdef INET6
|
|
|
|
#include <netinet/ip6.h>
|
|
|
|
#include <netinet6/ip6_var.h>
|
|
|
|
#include <netinet6/in6_pcb.h>
|
|
|
|
#endif
|
|
|
|
|
2013-06-05 23:01:26 +04:00
|
|
|
#ifdef IPSEC
|
2003-08-15 07:42:00 +04:00
|
|
|
#include <netipsec/ipsec.h>
|
|
|
|
#include <netipsec/key.h>
|
1999-07-01 12:12:45 +04:00
|
|
|
#endif /* IPSEC */
|
|
|
|
|
Reduces the resources demanded by TCP sessions in TIME_WAIT-state using
methods called Vestigial Time-Wait (VTW) and Maximum Segment Lifetime
Truncation (MSLT).
MSLT and VTW were contributed by Coyote Point Systems, Inc.
Even after a TCP session enters the TIME_WAIT state, its corresponding
socket and protocol control blocks (PCBs) stick around until the TCP
Maximum Segment Lifetime (MSL) expires. On a host whose workload
necessarily creates and closes down many TCP sockets, the sockets & PCBs
for TCP sessions in TIME_WAIT state amount to many megabytes of dead
weight in RAM.
Maximum Segment Lifetimes Truncation (MSLT) assigns each TCP session to
a class based on the nearness of the peer. Corresponding to each class
is an MSL, and a session uses the MSL of its class. The classes are
loopback (local host equals remote host), local (local host and remote
host are on the same link/subnet), and remote (local host and remote
host communicate via one or more gateways). Classes corresponding to
nearer peers have lower MSLs by default: 2 seconds for loopback, 10
seconds for local, 60 seconds for remote. Loopback and local sessions
expire more quickly when MSLT is used.
Vestigial Time-Wait (VTW) replaces a TIME_WAIT session's PCB/socket
dead weight with a compact representation of the session, called a
"vestigial PCB". VTW data structures are designed to be very fast and
memory-efficient: for fast insertion and lookup of vestigial PCBs,
the PCBs are stored in a hash table that is designed to minimize the
number of cacheline visits per lookup/insertion. The memory both
for vestigial PCBs and for elements of the PCB hashtable come from
fixed-size pools, and linked data structures exploit this to conserve
memory by representing references with a narrow index/offset from the
start of a pool instead of a pointer. When space for new vestigial PCBs
runs out, VTW makes room by discarding old vestigial PCBs, oldest first.
VTW cooperates with MSLT.
It may help to think of VTW as a "FIN cache" by analogy to the SYN
cache.
A 2.8-GHz Pentium 4 running a test workload that creates TIME_WAIT
sessions as fast as it can is approximately 17% idle when VTW is active
versus 0% idle when VTW is inactive. It has 103 megabytes more free RAM
when VTW is active (approximately 64k vestigial PCBs are created) than
when it is inactive.
2011-05-03 22:28:44 +04:00
|
|
|
#include <netinet/tcp_vtw.h>
|
|
|
|
|
1993-03-21 12:45:37 +03:00
|
|
|
struct in_addr zeroin_addr;
|
|
|
|
|
2003-10-28 20:18:37 +03:00
|
|
|
#define INPCBHASH_PORT(table, lport) \
|
2004-01-02 18:51:45 +03:00
|
|
|
&(table)->inpt_porthashtbl[ntohs(lport) & (table)->inpt_porthash]
|
1996-09-15 22:11:06 +04:00
|
|
|
#define INPCBHASH_BIND(table, laddr, lport) \
|
|
|
|
&(table)->inpt_bindhashtbl[ \
|
|
|
|
((ntohl((laddr).s_addr) + ntohs(lport))) & (table)->inpt_bindhash]
|
|
|
|
#define INPCBHASH_CONNECT(table, faddr, fport, laddr, lport) \
|
|
|
|
&(table)->inpt_connecthashtbl[ \
|
|
|
|
((ntohl((faddr).s_addr) + ntohs(fport)) + \
|
|
|
|
(ntohl((laddr).s_addr) + ntohs(lport))) & (table)->inpt_connecthash]
|
|
|
|
|
1998-01-05 12:52:02 +03:00
|
|
|
int anonportmin = IPPORT_ANONMIN;
|
|
|
|
int anonportmax = IPPORT_ANONMAX;
|
2000-08-25 17:35:05 +04:00
|
|
|
int lowportmin = IPPORT_RESERVEDMIN;
|
|
|
|
int lowportmax = IPPORT_RESERVEDMAX;
|
1998-01-05 12:52:02 +03:00
|
|
|
|
2008-10-03 20:22:33 +04:00
|
|
|
static struct pool inpcb_pool;
|
|
|
|
|
|
|
|
static int
|
|
|
|
inpcb_poolinit(void)
|
|
|
|
{
|
|
|
|
|
|
|
|
pool_init(&inpcb_pool, sizeof(struct inpcb), 0, 0, 0, "inpcbpl", NULL,
|
|
|
|
IPL_NET);
|
|
|
|
return 0;
|
|
|
|
}
|
1998-08-02 04:35:31 +04:00
|
|
|
|
1995-06-12 04:46:47 +04:00
|
|
|
void
|
2005-02-03 06:49:01 +03:00
|
|
|
in_pcbinit(struct inpcbtable *table, int bindhashsize, int connecthashsize)
|
1995-06-12 04:46:47 +04:00
|
|
|
{
|
2008-10-03 20:22:33 +04:00
|
|
|
static ONCE_DECL(control);
|
1995-06-12 04:46:47 +04:00
|
|
|
|
2013-11-23 18:20:21 +04:00
|
|
|
TAILQ_INIT(&table->inpt_queue);
|
2008-05-05 21:11:16 +04:00
|
|
|
table->inpt_porthashtbl = hashinit(bindhashsize, HASH_LIST, true,
|
|
|
|
&table->inpt_porthash);
|
|
|
|
table->inpt_bindhashtbl = hashinit(bindhashsize, HASH_LIST, true,
|
|
|
|
&table->inpt_bindhash);
|
|
|
|
table->inpt_connecthashtbl = hashinit(connecthashsize, HASH_LIST, true,
|
|
|
|
&table->inpt_connecthash);
|
1998-01-08 14:56:50 +03:00
|
|
|
table->inpt_lastlow = IPPORT_RESERVEDMAX;
|
|
|
|
table->inpt_lastport = (u_int16_t)anonportmax;
|
2008-10-03 20:22:33 +04:00
|
|
|
|
|
|
|
RUN_ONCE(&control, inpcb_poolinit);
|
1995-06-12 04:46:47 +04:00
|
|
|
}
|
|
|
|
|
1994-05-13 10:02:48 +04:00
|
|
|
int
|
2005-02-03 06:49:01 +03:00
|
|
|
in_pcballoc(struct socket *so, void *v)
|
1993-03-21 12:45:37 +03:00
|
|
|
{
|
1996-02-14 02:40:59 +03:00
|
|
|
struct inpcbtable *table = v;
|
2000-03-30 16:51:13 +04:00
|
|
|
struct inpcb *inp;
|
1996-01-31 06:49:23 +03:00
|
|
|
int s;
|
1993-03-21 12:45:37 +03:00
|
|
|
|
2006-10-05 21:35:19 +04:00
|
|
|
s = splnet();
|
1998-08-02 04:35:31 +04:00
|
|
|
inp = pool_get(&inpcb_pool, PR_NOWAIT);
|
2006-10-05 21:35:19 +04:00
|
|
|
splx(s);
|
1994-05-13 10:02:48 +04:00
|
|
|
if (inp == NULL)
|
1993-03-21 12:45:37 +03:00
|
|
|
return (ENOBUFS);
|
2011-09-24 21:18:17 +04:00
|
|
|
memset(inp, 0, sizeof(*inp));
|
2003-09-04 13:16:57 +04:00
|
|
|
inp->inp_af = AF_INET;
|
1995-06-12 04:46:47 +04:00
|
|
|
inp->inp_table = table;
|
1993-03-21 12:45:37 +03:00
|
|
|
inp->inp_socket = so;
|
1997-10-14 04:52:39 +04:00
|
|
|
inp->inp_errormtu = -1;
|
2012-06-25 19:28:38 +04:00
|
|
|
inp->inp_portalgo = PORTALGO_DEFAULT;
|
2011-09-24 21:18:17 +04:00
|
|
|
inp->inp_bindportonsend = false;
|
2013-06-05 23:01:26 +04:00
|
|
|
#if defined(IPSEC)
|
2014-05-30 05:39:03 +04:00
|
|
|
if (ipsec_enabled) {
|
|
|
|
int error = ipsec_init_pcbpolicy(so, &inp->inp_sp);
|
|
|
|
if (error != 0) {
|
|
|
|
s = splnet();
|
|
|
|
pool_put(&inpcb_pool, inp);
|
|
|
|
splx(s);
|
|
|
|
return error;
|
|
|
|
}
|
2001-07-26 03:28:02 +04:00
|
|
|
}
|
|
|
|
#endif
|
1996-09-15 22:11:06 +04:00
|
|
|
so->so_pcb = inp;
|
1996-01-31 06:49:23 +03:00
|
|
|
s = splnet();
|
2013-11-23 18:20:21 +04:00
|
|
|
TAILQ_INSERT_HEAD(&table->inpt_queue, &inp->inp_head, inph_queue);
|
2003-10-28 20:18:37 +03:00
|
|
|
LIST_INSERT_HEAD(INPCBHASH_PORT(table, inp->inp_lport), &inp->inp_head,
|
|
|
|
inph_lhash);
|
1996-09-15 22:11:06 +04:00
|
|
|
in_pcbstate(inp, INP_ATTACHED);
|
1996-01-31 06:49:23 +03:00
|
|
|
splx(s);
|
1993-03-21 12:45:37 +03:00
|
|
|
return (0);
|
|
|
|
}
|
1994-01-09 00:21:28 +03:00
|
|
|
|
2009-04-23 20:42:56 +04:00
|
|
|
static int
|
2009-04-30 22:18:34 +04:00
|
|
|
in_pcbsetport(struct sockaddr_in *sin, struct inpcb *inp, kauth_cred_t cred)
|
1993-03-21 12:45:37 +03:00
|
|
|
{
|
2000-03-30 16:51:13 +04:00
|
|
|
struct inpcbtable *table = inp->inp_table;
|
2009-04-23 20:42:56 +04:00
|
|
|
struct socket *so = inp->inp_socket;
|
|
|
|
u_int16_t *lastport;
|
1995-04-13 10:25:36 +04:00
|
|
|
u_int16_t lport = 0;
|
2009-04-30 22:18:34 +04:00
|
|
|
enum kauth_network_req req;
|
|
|
|
int error;
|
1993-03-21 12:45:37 +03:00
|
|
|
|
2009-04-23 20:42:56 +04:00
|
|
|
if (inp->inp_flags & INP_LOWPORT) {
|
|
|
|
#ifndef IPNOPRIVPORTS
|
2009-04-30 22:18:34 +04:00
|
|
|
req = KAUTH_REQ_NETWORK_BIND_PRIVPORT;
|
|
|
|
#else
|
|
|
|
req = KAUTH_REQ_NETWORK_BIND_PORT;
|
2009-04-23 20:42:56 +04:00
|
|
|
#endif
|
2009-04-30 22:18:34 +04:00
|
|
|
|
2009-04-23 20:42:56 +04:00
|
|
|
lastport = &table->inpt_lastlow;
|
|
|
|
} else {
|
2009-04-30 22:18:34 +04:00
|
|
|
req = KAUTH_REQ_NETWORK_BIND_PORT;
|
|
|
|
|
2009-04-23 20:42:56 +04:00
|
|
|
lastport = &table->inpt_lastport;
|
|
|
|
}
|
2009-04-30 22:18:34 +04:00
|
|
|
|
|
|
|
/* XXX-kauth: KAUTH_REQ_NETWORK_BIND_AUTOASSIGN_{,PRIV}PORT */
|
|
|
|
error = kauth_authorize_network(cred, KAUTH_NETWORK_BIND, req, so, sin,
|
|
|
|
NULL);
|
|
|
|
if (error)
|
2009-05-13 02:22:46 +04:00
|
|
|
return (EACCES);
|
2009-04-30 22:18:34 +04:00
|
|
|
|
2011-09-24 21:18:17 +04:00
|
|
|
/*
|
|
|
|
* Use RFC6056 randomized port selection
|
|
|
|
*/
|
2012-06-25 19:28:38 +04:00
|
|
|
error = portalgo_randport(&lport, &inp->inp_head, cred);
|
2011-09-24 21:18:17 +04:00
|
|
|
if (error)
|
|
|
|
return error;
|
2009-04-23 20:42:56 +04:00
|
|
|
|
|
|
|
inp->inp_flags |= INP_ANONPORT;
|
|
|
|
*lastport = lport;
|
|
|
|
lport = htons(lport);
|
|
|
|
inp->inp_lport = lport;
|
|
|
|
in_pcbstate(inp, INP_BOUND);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
in_pcbbind_addr(struct inpcb *inp, struct sockaddr_in *sin, kauth_cred_t cred)
|
|
|
|
{
|
1996-05-22 17:54:55 +04:00
|
|
|
if (sin->sin_family != AF_INET)
|
|
|
|
return (EAFNOSUPPORT);
|
2009-04-23 20:42:56 +04:00
|
|
|
|
2009-05-10 00:54:52 +04:00
|
|
|
if (IN_MULTICAST(sin->sin_addr.s_addr)) {
|
|
|
|
/* Always succeed; port reuse handled in in_pcbbind_port(). */
|
|
|
|
} else if (!in_nullhost(sin->sin_addr)) {
|
2009-04-23 20:42:56 +04:00
|
|
|
struct in_ifaddr *ia = NULL;
|
|
|
|
|
|
|
|
INADDR_TO_IA(sin->sin_addr, ia);
|
|
|
|
/* check for broadcast addresses */
|
|
|
|
if (ia == NULL)
|
|
|
|
ia = ifatoia(ifa_ifwithaddr(sintosa(sin)));
|
|
|
|
if (ia == NULL)
|
|
|
|
return (EADDRNOTAVAIL);
|
2015-05-02 17:41:32 +03:00
|
|
|
if (ia->ia4_flags & (IN_IFF_NOTREADY | IN_IFF_DETACHED))
|
|
|
|
return (EADDRNOTAVAIL);
|
2009-04-23 20:42:56 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
inp->inp_laddr = sin->sin_addr;
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
in_pcbbind_port(struct inpcb *inp, struct sockaddr_in *sin, kauth_cred_t cred)
|
|
|
|
{
|
|
|
|
struct inpcbtable *table = inp->inp_table;
|
|
|
|
struct socket *so = inp->inp_socket;
|
|
|
|
int reuseport = (so->so_options & SO_REUSEPORT);
|
2009-04-23 21:02:26 +04:00
|
|
|
int wild = 0, error;
|
2009-04-23 20:42:56 +04:00
|
|
|
|
1996-05-22 17:54:55 +04:00
|
|
|
if (IN_MULTICAST(sin->sin_addr.s_addr)) {
|
1994-05-13 10:02:48 +04:00
|
|
|
/*
|
1996-05-22 17:54:55 +04:00
|
|
|
* Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
|
|
|
|
* allow complete duplication of binding if
|
|
|
|
* SO_REUSEPORT is set, or if SO_REUSEADDR is set
|
|
|
|
* and a multicast address is bound on both
|
|
|
|
* new and duplicated sockets.
|
1994-05-13 10:02:48 +04:00
|
|
|
*/
|
2014-11-25 22:09:13 +03:00
|
|
|
if (so->so_options & (SO_REUSEADDR | SO_REUSEPORT))
|
1996-05-22 17:54:55 +04:00
|
|
|
reuseport = SO_REUSEADDR|SO_REUSEPORT;
|
2009-04-23 20:42:56 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
if (sin->sin_port == 0) {
|
2009-04-30 22:18:34 +04:00
|
|
|
error = in_pcbsetport(sin, inp, cred);
|
2009-04-23 20:42:56 +04:00
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
} else {
|
1996-05-22 17:54:55 +04:00
|
|
|
struct inpcb *t;
|
Reduces the resources demanded by TCP sessions in TIME_WAIT-state using
methods called Vestigial Time-Wait (VTW) and Maximum Segment Lifetime
Truncation (MSLT).
MSLT and VTW were contributed by Coyote Point Systems, Inc.
Even after a TCP session enters the TIME_WAIT state, its corresponding
socket and protocol control blocks (PCBs) stick around until the TCP
Maximum Segment Lifetime (MSL) expires. On a host whose workload
necessarily creates and closes down many TCP sockets, the sockets & PCBs
for TCP sessions in TIME_WAIT state amount to many megabytes of dead
weight in RAM.
Maximum Segment Lifetimes Truncation (MSLT) assigns each TCP session to
a class based on the nearness of the peer. Corresponding to each class
is an MSL, and a session uses the MSL of its class. The classes are
loopback (local host equals remote host), local (local host and remote
host are on the same link/subnet), and remote (local host and remote
host communicate via one or more gateways). Classes corresponding to
nearer peers have lower MSLs by default: 2 seconds for loopback, 10
seconds for local, 60 seconds for remote. Loopback and local sessions
expire more quickly when MSLT is used.
Vestigial Time-Wait (VTW) replaces a TIME_WAIT session's PCB/socket
dead weight with a compact representation of the session, called a
"vestigial PCB". VTW data structures are designed to be very fast and
memory-efficient: for fast insertion and lookup of vestigial PCBs,
the PCBs are stored in a hash table that is designed to minimize the
number of cacheline visits per lookup/insertion. The memory both
for vestigial PCBs and for elements of the PCB hashtable come from
fixed-size pools, and linked data structures exploit this to conserve
memory by representing references with a narrow index/offset from the
start of a pool instead of a pointer. When space for new vestigial PCBs
runs out, VTW makes room by discarding old vestigial PCBs, oldest first.
VTW cooperates with MSLT.
It may help to think of VTW as a "FIN cache" by analogy to the SYN
cache.
A 2.8-GHz Pentium 4 running a test workload that creates TIME_WAIT
sessions as fast as it can is approximately 17% idle when VTW is active
versus 0% idle when VTW is inactive. It has 103 megabytes more free RAM
when VTW is active (approximately 64k vestigial PCBs are created) than
when it is inactive.
2011-05-03 22:28:44 +04:00
|
|
|
vestigial_inpcb_t vestige;
|
2003-09-04 13:16:57 +04:00
|
|
|
#ifdef INET6
|
|
|
|
struct in6pcb *t6;
|
|
|
|
struct in6_addr mapped;
|
|
|
|
#endif
|
2009-04-23 21:02:26 +04:00
|
|
|
enum kauth_network_req req;
|
2009-04-23 20:42:56 +04:00
|
|
|
|
|
|
|
if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
|
|
|
|
wild = 1;
|
|
|
|
|
1996-09-05 22:10:03 +04:00
|
|
|
#ifndef IPNOPRIVPORTS
|
2009-04-23 21:02:26 +04:00
|
|
|
if (ntohs(sin->sin_port) < IPPORT_RESERVED)
|
|
|
|
req = KAUTH_REQ_NETWORK_BIND_PRIVPORT;
|
|
|
|
else
|
|
|
|
#endif /* !IPNOPRIVPORTS */
|
|
|
|
req = KAUTH_REQ_NETWORK_BIND_PORT;
|
|
|
|
|
|
|
|
error = kauth_authorize_network(cred, KAUTH_NETWORK_BIND, req,
|
|
|
|
so, sin, NULL);
|
|
|
|
if (error)
|
2009-05-13 02:22:46 +04:00
|
|
|
return (EACCES);
|
2009-04-23 21:02:26 +04:00
|
|
|
|
2003-09-04 13:16:57 +04:00
|
|
|
#ifdef INET6
|
|
|
|
memset(&mapped, 0, sizeof(mapped));
|
|
|
|
mapped.s6_addr16[5] = 0xffff;
|
|
|
|
memcpy(&mapped.s6_addr32[3], &sin->sin_addr,
|
|
|
|
sizeof(mapped.s6_addr32[3]));
|
Reduces the resources demanded by TCP sessions in TIME_WAIT-state using
methods called Vestigial Time-Wait (VTW) and Maximum Segment Lifetime
Truncation (MSLT).
MSLT and VTW were contributed by Coyote Point Systems, Inc.
Even after a TCP session enters the TIME_WAIT state, its corresponding
socket and protocol control blocks (PCBs) stick around until the TCP
Maximum Segment Lifetime (MSL) expires. On a host whose workload
necessarily creates and closes down many TCP sockets, the sockets & PCBs
for TCP sessions in TIME_WAIT state amount to many megabytes of dead
weight in RAM.
Maximum Segment Lifetimes Truncation (MSLT) assigns each TCP session to
a class based on the nearness of the peer. Corresponding to each class
is an MSL, and a session uses the MSL of its class. The classes are
loopback (local host equals remote host), local (local host and remote
host are on the same link/subnet), and remote (local host and remote
host communicate via one or more gateways). Classes corresponding to
nearer peers have lower MSLs by default: 2 seconds for loopback, 10
seconds for local, 60 seconds for remote. Loopback and local sessions
expire more quickly when MSLT is used.
Vestigial Time-Wait (VTW) replaces a TIME_WAIT session's PCB/socket
dead weight with a compact representation of the session, called a
"vestigial PCB". VTW data structures are designed to be very fast and
memory-efficient: for fast insertion and lookup of vestigial PCBs,
the PCBs are stored in a hash table that is designed to minimize the
number of cacheline visits per lookup/insertion. The memory both
for vestigial PCBs and for elements of the PCB hashtable come from
fixed-size pools, and linked data structures exploit this to conserve
memory by representing references with a narrow index/offset from the
start of a pool instead of a pointer. When space for new vestigial PCBs
runs out, VTW makes room by discarding old vestigial PCBs, oldest first.
VTW cooperates with MSLT.
It may help to think of VTW as a "FIN cache" by analogy to the SYN
cache.
A 2.8-GHz Pentium 4 running a test workload that creates TIME_WAIT
sessions as fast as it can is approximately 17% idle when VTW is active
versus 0% idle when VTW is inactive. It has 103 megabytes more free RAM
when VTW is active (approximately 64k vestigial PCBs are created) than
when it is inactive.
2011-05-03 22:28:44 +04:00
|
|
|
t6 = in6_pcblookup_port(table, &mapped, sin->sin_port, wild, &vestige);
|
2003-09-04 13:16:57 +04:00
|
|
|
if (t6 && (reuseport & t6->in6p_socket->so_options) == 0)
|
|
|
|
return (EADDRINUSE);
|
Reduces the resources demanded by TCP sessions in TIME_WAIT-state using
methods called Vestigial Time-Wait (VTW) and Maximum Segment Lifetime
Truncation (MSLT).
MSLT and VTW were contributed by Coyote Point Systems, Inc.
Even after a TCP session enters the TIME_WAIT state, its corresponding
socket and protocol control blocks (PCBs) stick around until the TCP
Maximum Segment Lifetime (MSL) expires. On a host whose workload
necessarily creates and closes down many TCP sockets, the sockets & PCBs
for TCP sessions in TIME_WAIT state amount to many megabytes of dead
weight in RAM.
Maximum Segment Lifetimes Truncation (MSLT) assigns each TCP session to
a class based on the nearness of the peer. Corresponding to each class
is an MSL, and a session uses the MSL of its class. The classes are
loopback (local host equals remote host), local (local host and remote
host are on the same link/subnet), and remote (local host and remote
host communicate via one or more gateways). Classes corresponding to
nearer peers have lower MSLs by default: 2 seconds for loopback, 10
seconds for local, 60 seconds for remote. Loopback and local sessions
expire more quickly when MSLT is used.
Vestigial Time-Wait (VTW) replaces a TIME_WAIT session's PCB/socket
dead weight with a compact representation of the session, called a
"vestigial PCB". VTW data structures are designed to be very fast and
memory-efficient: for fast insertion and lookup of vestigial PCBs,
the PCBs are stored in a hash table that is designed to minimize the
number of cacheline visits per lookup/insertion. The memory both
for vestigial PCBs and for elements of the PCB hashtable come from
fixed-size pools, and linked data structures exploit this to conserve
memory by representing references with a narrow index/offset from the
start of a pool instead of a pointer. When space for new vestigial PCBs
runs out, VTW makes room by discarding old vestigial PCBs, oldest first.
VTW cooperates with MSLT.
It may help to think of VTW as a "FIN cache" by analogy to the SYN
cache.
A 2.8-GHz Pentium 4 running a test workload that creates TIME_WAIT
sessions as fast as it can is approximately 17% idle when VTW is active
versus 0% idle when VTW is inactive. It has 103 megabytes more free RAM
when VTW is active (approximately 64k vestigial PCBs are created) than
when it is inactive.
2011-05-03 22:28:44 +04:00
|
|
|
if (!t6 && vestige.valid) {
|
|
|
|
if (!!reuseport != !!vestige.reuse_port) {
|
|
|
|
return EADDRINUSE;
|
|
|
|
}
|
|
|
|
}
|
1996-09-05 22:10:03 +04:00
|
|
|
#endif
|
2009-04-23 21:02:26 +04:00
|
|
|
|
|
|
|
/* XXX-kauth */
|
2005-05-07 21:42:09 +04:00
|
|
|
if (so->so_uidinfo->ui_uid && !IN_MULTICAST(sin->sin_addr.s_addr)) {
|
Reduces the resources demanded by TCP sessions in TIME_WAIT-state using
methods called Vestigial Time-Wait (VTW) and Maximum Segment Lifetime
Truncation (MSLT).
MSLT and VTW were contributed by Coyote Point Systems, Inc.
Even after a TCP session enters the TIME_WAIT state, its corresponding
socket and protocol control blocks (PCBs) stick around until the TCP
Maximum Segment Lifetime (MSL) expires. On a host whose workload
necessarily creates and closes down many TCP sockets, the sockets & PCBs
for TCP sessions in TIME_WAIT state amount to many megabytes of dead
weight in RAM.
Maximum Segment Lifetimes Truncation (MSLT) assigns each TCP session to
a class based on the nearness of the peer. Corresponding to each class
is an MSL, and a session uses the MSL of its class. The classes are
loopback (local host equals remote host), local (local host and remote
host are on the same link/subnet), and remote (local host and remote
host communicate via one or more gateways). Classes corresponding to
nearer peers have lower MSLs by default: 2 seconds for loopback, 10
seconds for local, 60 seconds for remote. Loopback and local sessions
expire more quickly when MSLT is used.
Vestigial Time-Wait (VTW) replaces a TIME_WAIT session's PCB/socket
dead weight with a compact representation of the session, called a
"vestigial PCB". VTW data structures are designed to be very fast and
memory-efficient: for fast insertion and lookup of vestigial PCBs,
the PCBs are stored in a hash table that is designed to minimize the
number of cacheline visits per lookup/insertion. The memory both
for vestigial PCBs and for elements of the PCB hashtable come from
fixed-size pools, and linked data structures exploit this to conserve
memory by representing references with a narrow index/offset from the
start of a pool instead of a pointer. When space for new vestigial PCBs
runs out, VTW makes room by discarding old vestigial PCBs, oldest first.
VTW cooperates with MSLT.
It may help to think of VTW as a "FIN cache" by analogy to the SYN
cache.
A 2.8-GHz Pentium 4 running a test workload that creates TIME_WAIT
sessions as fast as it can is approximately 17% idle when VTW is active
versus 0% idle when VTW is inactive. It has 103 megabytes more free RAM
when VTW is active (approximately 64k vestigial PCBs are created) than
when it is inactive.
2011-05-03 22:28:44 +04:00
|
|
|
t = in_pcblookup_port(table, sin->sin_addr, sin->sin_port, 1, &vestige);
|
2009-04-23 21:02:26 +04:00
|
|
|
/*
|
|
|
|
* XXX: investigate ramifications of loosening this
|
|
|
|
* restriction so that as long as both ports have
|
|
|
|
* SO_REUSEPORT allow the bind
|
|
|
|
*/
|
1999-03-23 13:45:37 +03:00
|
|
|
if (t &&
|
|
|
|
(!in_nullhost(sin->sin_addr) ||
|
|
|
|
!in_nullhost(t->inp_laddr) ||
|
|
|
|
(t->inp_socket->so_options & SO_REUSEPORT) == 0)
|
2005-05-07 21:42:09 +04:00
|
|
|
&& (so->so_uidinfo->ui_uid != t->inp_socket->so_uidinfo->ui_uid)) {
|
1999-03-23 13:45:37 +03:00
|
|
|
return (EADDRINUSE);
|
|
|
|
}
|
Reduces the resources demanded by TCP sessions in TIME_WAIT-state using
methods called Vestigial Time-Wait (VTW) and Maximum Segment Lifetime
Truncation (MSLT).
MSLT and VTW were contributed by Coyote Point Systems, Inc.
Even after a TCP session enters the TIME_WAIT state, its corresponding
socket and protocol control blocks (PCBs) stick around until the TCP
Maximum Segment Lifetime (MSL) expires. On a host whose workload
necessarily creates and closes down many TCP sockets, the sockets & PCBs
for TCP sessions in TIME_WAIT state amount to many megabytes of dead
weight in RAM.
Maximum Segment Lifetimes Truncation (MSLT) assigns each TCP session to
a class based on the nearness of the peer. Corresponding to each class
is an MSL, and a session uses the MSL of its class. The classes are
loopback (local host equals remote host), local (local host and remote
host are on the same link/subnet), and remote (local host and remote
host communicate via one or more gateways). Classes corresponding to
nearer peers have lower MSLs by default: 2 seconds for loopback, 10
seconds for local, 60 seconds for remote. Loopback and local sessions
expire more quickly when MSLT is used.
Vestigial Time-Wait (VTW) replaces a TIME_WAIT session's PCB/socket
dead weight with a compact representation of the session, called a
"vestigial PCB". VTW data structures are designed to be very fast and
memory-efficient: for fast insertion and lookup of vestigial PCBs,
the PCBs are stored in a hash table that is designed to minimize the
number of cacheline visits per lookup/insertion. The memory both
for vestigial PCBs and for elements of the PCB hashtable come from
fixed-size pools, and linked data structures exploit this to conserve
memory by representing references with a narrow index/offset from the
start of a pool instead of a pointer. When space for new vestigial PCBs
runs out, VTW makes room by discarding old vestigial PCBs, oldest first.
VTW cooperates with MSLT.
It may help to think of VTW as a "FIN cache" by analogy to the SYN
cache.
A 2.8-GHz Pentium 4 running a test workload that creates TIME_WAIT
sessions as fast as it can is approximately 17% idle when VTW is active
versus 0% idle when VTW is inactive. It has 103 megabytes more free RAM
when VTW is active (approximately 64k vestigial PCBs are created) than
when it is inactive.
2011-05-03 22:28:44 +04:00
|
|
|
if (!t && vestige.valid) {
|
|
|
|
if ((!in_nullhost(sin->sin_addr)
|
|
|
|
|| !in_nullhost(vestige.laddr.v4)
|
|
|
|
|| !vestige.reuse_port)
|
|
|
|
&& so->so_uidinfo->ui_uid != vestige.uid) {
|
|
|
|
return EADDRINUSE;
|
|
|
|
}
|
|
|
|
}
|
1999-03-23 13:45:37 +03:00
|
|
|
}
|
Reduces the resources demanded by TCP sessions in TIME_WAIT-state using
methods called Vestigial Time-Wait (VTW) and Maximum Segment Lifetime
Truncation (MSLT).
MSLT and VTW were contributed by Coyote Point Systems, Inc.
Even after a TCP session enters the TIME_WAIT state, its corresponding
socket and protocol control blocks (PCBs) stick around until the TCP
Maximum Segment Lifetime (MSL) expires. On a host whose workload
necessarily creates and closes down many TCP sockets, the sockets & PCBs
for TCP sessions in TIME_WAIT state amount to many megabytes of dead
weight in RAM.
Maximum Segment Lifetimes Truncation (MSLT) assigns each TCP session to
a class based on the nearness of the peer. Corresponding to each class
is an MSL, and a session uses the MSL of its class. The classes are
loopback (local host equals remote host), local (local host and remote
host are on the same link/subnet), and remote (local host and remote
host communicate via one or more gateways). Classes corresponding to
nearer peers have lower MSLs by default: 2 seconds for loopback, 10
seconds for local, 60 seconds for remote. Loopback and local sessions
expire more quickly when MSLT is used.
Vestigial Time-Wait (VTW) replaces a TIME_WAIT session's PCB/socket
dead weight with a compact representation of the session, called a
"vestigial PCB". VTW data structures are designed to be very fast and
memory-efficient: for fast insertion and lookup of vestigial PCBs,
the PCBs are stored in a hash table that is designed to minimize the
number of cacheline visits per lookup/insertion. The memory both
for vestigial PCBs and for elements of the PCB hashtable come from
fixed-size pools, and linked data structures exploit this to conserve
memory by representing references with a narrow index/offset from the
start of a pool instead of a pointer. When space for new vestigial PCBs
runs out, VTW makes room by discarding old vestigial PCBs, oldest first.
VTW cooperates with MSLT.
It may help to think of VTW as a "FIN cache" by analogy to the SYN
cache.
A 2.8-GHz Pentium 4 running a test workload that creates TIME_WAIT
sessions as fast as it can is approximately 17% idle when VTW is active
versus 0% idle when VTW is inactive. It has 103 megabytes more free RAM
when VTW is active (approximately 64k vestigial PCBs are created) than
when it is inactive.
2011-05-03 22:28:44 +04:00
|
|
|
t = in_pcblookup_port(table, sin->sin_addr, sin->sin_port, wild, &vestige);
|
1996-05-22 17:54:55 +04:00
|
|
|
if (t && (reuseport & t->inp_socket->so_options) == 0)
|
|
|
|
return (EADDRINUSE);
|
Reduces the resources demanded by TCP sessions in TIME_WAIT-state using
methods called Vestigial Time-Wait (VTW) and Maximum Segment Lifetime
Truncation (MSLT).
MSLT and VTW were contributed by Coyote Point Systems, Inc.
Even after a TCP session enters the TIME_WAIT state, its corresponding
socket and protocol control blocks (PCBs) stick around until the TCP
Maximum Segment Lifetime (MSL) expires. On a host whose workload
necessarily creates and closes down many TCP sockets, the sockets & PCBs
for TCP sessions in TIME_WAIT state amount to many megabytes of dead
weight in RAM.
Maximum Segment Lifetimes Truncation (MSLT) assigns each TCP session to
a class based on the nearness of the peer. Corresponding to each class
is an MSL, and a session uses the MSL of its class. The classes are
loopback (local host equals remote host), local (local host and remote
host are on the same link/subnet), and remote (local host and remote
host communicate via one or more gateways). Classes corresponding to
nearer peers have lower MSLs by default: 2 seconds for loopback, 10
seconds for local, 60 seconds for remote. Loopback and local sessions
expire more quickly when MSLT is used.
Vestigial Time-Wait (VTW) replaces a TIME_WAIT session's PCB/socket
dead weight with a compact representation of the session, called a
"vestigial PCB". VTW data structures are designed to be very fast and
memory-efficient: for fast insertion and lookup of vestigial PCBs,
the PCBs are stored in a hash table that is designed to minimize the
number of cacheline visits per lookup/insertion. The memory both
for vestigial PCBs and for elements of the PCB hashtable come from
fixed-size pools, and linked data structures exploit this to conserve
memory by representing references with a narrow index/offset from the
start of a pool instead of a pointer. When space for new vestigial PCBs
runs out, VTW makes room by discarding old vestigial PCBs, oldest first.
VTW cooperates with MSLT.
It may help to think of VTW as a "FIN cache" by analogy to the SYN
cache.
A 2.8-GHz Pentium 4 running a test workload that creates TIME_WAIT
sessions as fast as it can is approximately 17% idle when VTW is active
versus 0% idle when VTW is inactive. It has 103 megabytes more free RAM
when VTW is active (approximately 64k vestigial PCBs are created) than
when it is inactive.
2011-05-03 22:28:44 +04:00
|
|
|
if (!t
|
|
|
|
&& vestige.valid
|
|
|
|
&& !(reuseport && vestige.reuse_port))
|
|
|
|
return EADDRINUSE;
|
2009-04-23 20:42:56 +04:00
|
|
|
|
|
|
|
inp->inp_lport = sin->sin_port;
|
|
|
|
in_pcbstate(inp, INP_BOUND);
|
1993-03-21 12:45:37 +03:00
|
|
|
}
|
1998-01-08 01:51:22 +03:00
|
|
|
|
2009-04-23 20:42:56 +04:00
|
|
|
LIST_REMOVE(&inp->inp_head, inph_lhash);
|
|
|
|
LIST_INSERT_HEAD(INPCBHASH_PORT(table, inp->inp_lport), &inp->inp_head,
|
|
|
|
inph_lhash);
|
1998-01-08 01:51:22 +03:00
|
|
|
|
2009-04-23 20:42:56 +04:00
|
|
|
return (0);
|
|
|
|
}
|
1998-01-08 01:51:22 +03:00
|
|
|
|
2009-04-23 20:42:56 +04:00
|
|
|
int
|
2015-04-03 23:01:07 +03:00
|
|
|
in_pcbbind(void *v, struct sockaddr_in *sin, struct lwp *l)
|
2009-04-23 20:42:56 +04:00
|
|
|
{
|
|
|
|
struct inpcb *inp = v;
|
2009-04-30 22:18:34 +04:00
|
|
|
struct sockaddr_in lsin;
|
2009-04-23 20:42:56 +04:00
|
|
|
int error;
|
1998-01-05 12:52:02 +03:00
|
|
|
|
2009-04-23 20:42:56 +04:00
|
|
|
if (inp->inp_af != AF_INET)
|
|
|
|
return (EINVAL);
|
|
|
|
|
|
|
|
if (TAILQ_FIRST(&in_ifaddrhead) == 0)
|
|
|
|
return (EADDRNOTAVAIL);
|
|
|
|
if (inp->inp_lport || !in_nullhost(inp->inp_laddr))
|
|
|
|
return (EINVAL);
|
|
|
|
|
2015-04-03 23:01:07 +03:00
|
|
|
if (NULL != sin) {
|
|
|
|
if (sin->sin_len != sizeof(*sin))
|
2009-04-23 20:42:56 +04:00
|
|
|
return (EINVAL);
|
|
|
|
} else {
|
2009-04-30 22:18:34 +04:00
|
|
|
lsin = *((const struct sockaddr_in *)
|
|
|
|
inp->inp_socket->so_proto->pr_domain->dom_sa_any);
|
|
|
|
sin = &lsin;
|
1996-12-10 14:38:42 +03:00
|
|
|
}
|
2009-04-23 20:42:56 +04:00
|
|
|
|
|
|
|
/* Bind address. */
|
2014-08-05 09:24:26 +04:00
|
|
|
error = in_pcbbind_addr(inp, sin, l->l_cred);
|
2009-04-23 20:42:56 +04:00
|
|
|
if (error)
|
|
|
|
return (error);
|
|
|
|
|
|
|
|
/* Bind port. */
|
2014-08-05 09:24:26 +04:00
|
|
|
error = in_pcbbind_port(inp, sin, l->l_cred);
|
2009-04-23 20:42:56 +04:00
|
|
|
if (error) {
|
|
|
|
inp->inp_laddr.s_addr = INADDR_ANY;
|
|
|
|
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
1993-03-21 12:45:37 +03:00
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Connect from a socket to a specified address.
|
|
|
|
* Both address and port must be specified in argument sin.
|
|
|
|
* If don't have a local address for this socket yet,
|
|
|
|
* then pick one.
|
|
|
|
*/
|
1994-05-13 10:02:48 +04:00
|
|
|
int
|
2015-05-02 20:18:03 +03:00
|
|
|
in_pcbconnect(void *v, struct sockaddr_in *sin, struct lwp *l)
|
1993-03-21 12:45:37 +03:00
|
|
|
{
|
2000-03-30 16:51:13 +04:00
|
|
|
struct inpcb *inp = v;
|
2003-06-15 06:49:32 +04:00
|
|
|
struct in_ifaddr *ia = NULL;
|
1996-02-14 02:40:59 +03:00
|
|
|
struct sockaddr_in *ifaddr = NULL;
|
Reduces the resources demanded by TCP sessions in TIME_WAIT-state using
methods called Vestigial Time-Wait (VTW) and Maximum Segment Lifetime
Truncation (MSLT).
MSLT and VTW were contributed by Coyote Point Systems, Inc.
Even after a TCP session enters the TIME_WAIT state, its corresponding
socket and protocol control blocks (PCBs) stick around until the TCP
Maximum Segment Lifetime (MSL) expires. On a host whose workload
necessarily creates and closes down many TCP sockets, the sockets & PCBs
for TCP sessions in TIME_WAIT state amount to many megabytes of dead
weight in RAM.
Maximum Segment Lifetimes Truncation (MSLT) assigns each TCP session to
a class based on the nearness of the peer. Corresponding to each class
is an MSL, and a session uses the MSL of its class. The classes are
loopback (local host equals remote host), local (local host and remote
host are on the same link/subnet), and remote (local host and remote
host communicate via one or more gateways). Classes corresponding to
nearer peers have lower MSLs by default: 2 seconds for loopback, 10
seconds for local, 60 seconds for remote. Loopback and local sessions
expire more quickly when MSLT is used.
Vestigial Time-Wait (VTW) replaces a TIME_WAIT session's PCB/socket
dead weight with a compact representation of the session, called a
"vestigial PCB". VTW data structures are designed to be very fast and
memory-efficient: for fast insertion and lookup of vestigial PCBs,
the PCBs are stored in a hash table that is designed to minimize the
number of cacheline visits per lookup/insertion. The memory both
for vestigial PCBs and for elements of the PCB hashtable come from
fixed-size pools, and linked data structures exploit this to conserve
memory by representing references with a narrow index/offset from the
start of a pool instead of a pointer. When space for new vestigial PCBs
runs out, VTW makes room by discarding old vestigial PCBs, oldest first.
VTW cooperates with MSLT.
It may help to think of VTW as a "FIN cache" by analogy to the SYN
cache.
A 2.8-GHz Pentium 4 running a test workload that creates TIME_WAIT
sessions as fast as it can is approximately 17% idle when VTW is active
versus 0% idle when VTW is inactive. It has 103 megabytes more free RAM
when VTW is active (approximately 64k vestigial PCBs are created) than
when it is inactive.
2011-05-03 22:28:44 +04:00
|
|
|
vestigial_inpcb_t vestige;
|
1997-11-20 07:53:37 +03:00
|
|
|
int error;
|
1993-03-21 12:45:37 +03:00
|
|
|
|
2003-09-04 13:16:57 +04:00
|
|
|
if (inp->inp_af != AF_INET)
|
|
|
|
return (EINVAL);
|
|
|
|
|
2015-04-26 19:45:50 +03:00
|
|
|
if (sin->sin_len != sizeof (*sin))
|
|
|
|
return (EINVAL);
|
1993-03-21 12:45:37 +03:00
|
|
|
if (sin->sin_family != AF_INET)
|
|
|
|
return (EAFNOSUPPORT);
|
|
|
|
if (sin->sin_port == 0)
|
|
|
|
return (EADDRNOTAVAIL);
|
2013-04-13 01:30:40 +04:00
|
|
|
|
|
|
|
if (IN_MULTICAST(sin->sin_addr.s_addr) &&
|
|
|
|
inp->inp_socket->so_type == SOCK_STREAM)
|
|
|
|
return EADDRNOTAVAIL;
|
|
|
|
|
2003-11-11 23:25:26 +03:00
|
|
|
if (TAILQ_FIRST(&in_ifaddrhead) != 0) {
|
1993-03-21 12:45:37 +03:00
|
|
|
/*
|
|
|
|
* If the destination address is INADDR_ANY,
|
1998-02-13 21:21:38 +03:00
|
|
|
* use any local address (likely loopback).
|
1993-03-21 12:45:37 +03:00
|
|
|
* If the supplied address is INADDR_BROADCAST,
|
1998-02-13 21:21:38 +03:00
|
|
|
* use the broadcast address of an interface
|
|
|
|
* which supports broadcast. (loopback does not)
|
1993-03-21 12:45:37 +03:00
|
|
|
*/
|
1998-02-13 21:21:38 +03:00
|
|
|
|
2001-11-04 23:55:25 +03:00
|
|
|
if (in_nullhost(sin->sin_addr)) {
|
|
|
|
sin->sin_addr =
|
2003-11-11 23:25:26 +03:00
|
|
|
TAILQ_FIRST(&in_ifaddrhead)->ia_addr.sin_addr;
|
2001-11-04 23:55:25 +03:00
|
|
|
} else if (sin->sin_addr.s_addr == INADDR_BROADCAST) {
|
2003-11-11 23:25:26 +03:00
|
|
|
TAILQ_FOREACH(ia, &in_ifaddrhead, ia_list) {
|
2001-11-04 23:55:25 +03:00
|
|
|
if (ia->ia_ifp->if_flags & IFF_BROADCAST) {
|
|
|
|
sin->sin_addr =
|
|
|
|
ia->ia_broadaddr.sin_addr;
|
|
|
|
break;
|
|
|
|
}
|
1998-02-13 21:21:38 +03:00
|
|
|
}
|
2001-11-04 23:55:25 +03:00
|
|
|
}
|
1993-03-21 12:45:37 +03:00
|
|
|
}
|
1996-09-09 18:51:07 +04:00
|
|
|
/*
|
|
|
|
* If we haven't bound which network number to use as ours,
|
|
|
|
* we will use the number of the outgoing interface.
|
|
|
|
* This depends on having done a routing lookup, which
|
|
|
|
* we will probably have to do anyway, so we might
|
|
|
|
* as well do it now. On the other hand if we are
|
|
|
|
* sending to multiple destinations we may have already
|
|
|
|
* done the lookup, so see if we can use the route
|
|
|
|
* from before. In any case, we only
|
|
|
|
* chose a port number once, even if sending to multiple
|
|
|
|
* destinations.
|
|
|
|
*/
|
|
|
|
if (in_nullhost(inp->inp_laddr)) {
|
2005-05-30 01:41:23 +04:00
|
|
|
int xerror;
|
1999-07-01 12:12:45 +04:00
|
|
|
ifaddr = in_selectsrc(sin, &inp->inp_route,
|
2005-05-30 01:41:23 +04:00
|
|
|
inp->inp_socket->so_options, inp->inp_moptions, &xerror);
|
1999-07-01 12:12:45 +04:00
|
|
|
if (ifaddr == NULL) {
|
2005-05-30 01:41:23 +04:00
|
|
|
if (xerror == 0)
|
|
|
|
xerror = EADDRNOTAVAIL;
|
|
|
|
return xerror;
|
1999-07-01 12:12:45 +04:00
|
|
|
}
|
2003-06-15 06:49:32 +04:00
|
|
|
INADDR_TO_IA(ifaddr->sin_addr, ia);
|
2003-06-26 04:19:13 +04:00
|
|
|
if (ia == NULL)
|
|
|
|
return (EADDRNOTAVAIL);
|
1993-03-21 12:45:37 +03:00
|
|
|
}
|
1996-09-15 22:11:06 +04:00
|
|
|
if (in_pcblookup_connect(inp->inp_table, sin->sin_addr, sin->sin_port,
|
1996-09-09 18:51:07 +04:00
|
|
|
!in_nullhost(inp->inp_laddr) ? inp->inp_laddr : ifaddr->sin_addr,
|
Reduces the resources demanded by TCP sessions in TIME_WAIT-state using
methods called Vestigial Time-Wait (VTW) and Maximum Segment Lifetime
Truncation (MSLT).
MSLT and VTW were contributed by Coyote Point Systems, Inc.
Even after a TCP session enters the TIME_WAIT state, its corresponding
socket and protocol control blocks (PCBs) stick around until the TCP
Maximum Segment Lifetime (MSL) expires. On a host whose workload
necessarily creates and closes down many TCP sockets, the sockets & PCBs
for TCP sessions in TIME_WAIT state amount to many megabytes of dead
weight in RAM.
Maximum Segment Lifetimes Truncation (MSLT) assigns each TCP session to
a class based on the nearness of the peer. Corresponding to each class
is an MSL, and a session uses the MSL of its class. The classes are
loopback (local host equals remote host), local (local host and remote
host are on the same link/subnet), and remote (local host and remote
host communicate via one or more gateways). Classes corresponding to
nearer peers have lower MSLs by default: 2 seconds for loopback, 10
seconds for local, 60 seconds for remote. Loopback and local sessions
expire more quickly when MSLT is used.
Vestigial Time-Wait (VTW) replaces a TIME_WAIT session's PCB/socket
dead weight with a compact representation of the session, called a
"vestigial PCB". VTW data structures are designed to be very fast and
memory-efficient: for fast insertion and lookup of vestigial PCBs,
the PCBs are stored in a hash table that is designed to minimize the
number of cacheline visits per lookup/insertion. The memory both
for vestigial PCBs and for elements of the PCB hashtable come from
fixed-size pools, and linked data structures exploit this to conserve
memory by representing references with a narrow index/offset from the
start of a pool instead of a pointer. When space for new vestigial PCBs
runs out, VTW makes room by discarding old vestigial PCBs, oldest first.
VTW cooperates with MSLT.
It may help to think of VTW as a "FIN cache" by analogy to the SYN
cache.
A 2.8-GHz Pentium 4 running a test workload that creates TIME_WAIT
sessions as fast as it can is approximately 17% idle when VTW is active
versus 0% idle when VTW is inactive. It has 103 megabytes more free RAM
when VTW is active (approximately 64k vestigial PCBs are created) than
when it is inactive.
2011-05-03 22:28:44 +04:00
|
|
|
inp->inp_lport, &vestige) != 0
|
|
|
|
|| vestige.valid)
|
1993-03-21 12:45:37 +03:00
|
|
|
return (EADDRINUSE);
|
1996-09-09 18:51:07 +04:00
|
|
|
if (in_nullhost(inp->inp_laddr)) {
|
1997-11-20 07:53:37 +03:00
|
|
|
if (inp->inp_lport == 0) {
|
2014-08-05 09:24:26 +04:00
|
|
|
error = in_pcbbind(inp, NULL, l);
|
1997-11-20 07:53:37 +03:00
|
|
|
/*
|
|
|
|
* This used to ignore the return value
|
|
|
|
* completely, but we need to check for
|
|
|
|
* ephemeral port shortage.
|
2005-11-15 21:39:46 +03:00
|
|
|
* And attempts to request low ports if not root.
|
1997-11-20 07:53:37 +03:00
|
|
|
*/
|
2005-11-15 21:39:46 +03:00
|
|
|
if (error != 0)
|
1997-11-20 07:53:37 +03:00
|
|
|
return (error);
|
|
|
|
}
|
1993-03-21 12:45:37 +03:00
|
|
|
inp->inp_laddr = ifaddr->sin_addr;
|
|
|
|
}
|
|
|
|
inp->inp_faddr = sin->sin_addr;
|
|
|
|
inp->inp_fport = sin->sin_port;
|
2011-09-24 21:18:17 +04:00
|
|
|
|
|
|
|
/* Late bind, if needed */
|
|
|
|
if (inp->inp_bindportonsend) {
|
|
|
|
struct sockaddr_in lsin = *((const struct sockaddr_in *)
|
|
|
|
inp->inp_socket->so_proto->pr_domain->dom_sa_any);
|
|
|
|
lsin.sin_addr = inp->inp_laddr;
|
|
|
|
lsin.sin_port = 0;
|
|
|
|
|
|
|
|
if ((error = in_pcbbind_port(inp, &lsin, l->l_cred)) != 0)
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
1996-09-15 22:11:06 +04:00
|
|
|
in_pcbstate(inp, INP_CONNECTED);
|
2013-06-05 23:01:26 +04:00
|
|
|
#if defined(IPSEC)
|
2014-05-30 05:39:03 +04:00
|
|
|
if (ipsec_enabled && inp->inp_socket->so_type == SOCK_STREAM)
|
2001-08-06 14:25:00 +04:00
|
|
|
ipsec_pcbconn(inp->inp_sp);
|
|
|
|
#endif
|
1993-03-21 12:45:37 +03:00
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
1996-02-14 02:40:59 +03:00
|
|
|
void
|
2005-02-03 06:49:01 +03:00
|
|
|
in_pcbdisconnect(void *v)
|
1993-03-21 12:45:37 +03:00
|
|
|
{
|
1996-02-14 02:40:59 +03:00
|
|
|
struct inpcb *inp = v;
|
1993-03-21 12:45:37 +03:00
|
|
|
|
2003-09-04 13:16:57 +04:00
|
|
|
if (inp->inp_af != AF_INET)
|
|
|
|
return;
|
|
|
|
|
1996-09-09 18:51:07 +04:00
|
|
|
inp->inp_faddr = zeroin_addr;
|
1993-03-21 12:45:37 +03:00
|
|
|
inp->inp_fport = 0;
|
1996-09-15 22:11:06 +04:00
|
|
|
in_pcbstate(inp, INP_BOUND);
|
2013-06-05 23:01:26 +04:00
|
|
|
#if defined(IPSEC)
|
2014-05-30 05:39:03 +04:00
|
|
|
if (ipsec_enabled)
|
|
|
|
ipsec_pcbdisconn(inp->inp_sp);
|
2001-08-06 14:25:00 +04:00
|
|
|
#endif
|
2004-01-13 09:17:14 +03:00
|
|
|
if (inp->inp_socket->so_state & SS_NOFDREF)
|
|
|
|
in_pcbdetach(inp);
|
1993-03-21 12:45:37 +03:00
|
|
|
}
|
|
|
|
|
1996-02-14 02:40:59 +03:00
|
|
|
void
|
2005-02-03 06:49:01 +03:00
|
|
|
in_pcbdetach(void *v)
|
1993-03-21 12:45:37 +03:00
|
|
|
{
|
1996-02-14 02:40:59 +03:00
|
|
|
struct inpcb *inp = v;
|
1993-03-21 12:45:37 +03:00
|
|
|
struct socket *so = inp->inp_socket;
|
1996-01-31 06:49:23 +03:00
|
|
|
int s;
|
1993-03-21 12:45:37 +03:00
|
|
|
|
2003-09-04 13:16:57 +04:00
|
|
|
if (inp->inp_af != AF_INET)
|
|
|
|
return;
|
|
|
|
|
2013-06-05 23:01:26 +04:00
|
|
|
#if defined(IPSEC)
|
2014-05-30 05:39:03 +04:00
|
|
|
if (ipsec_enabled)
|
|
|
|
ipsec4_delete_pcbpolicy(inp);
|
2014-08-04 02:11:50 +04:00
|
|
|
#endif
|
|
|
|
so->so_pcb = NULL;
|
|
|
|
|
1996-01-31 06:49:23 +03:00
|
|
|
s = splnet();
|
1996-09-15 22:11:06 +04:00
|
|
|
in_pcbstate(inp, INP_ATTACHED);
|
2003-10-28 20:18:37 +03:00
|
|
|
LIST_REMOVE(&inp->inp_head, inph_lhash);
|
2013-11-23 18:20:21 +04:00
|
|
|
TAILQ_REMOVE(&inp->inp_table->inpt_queue, &inp->inp_head, inph_queue);
|
2006-10-05 21:35:19 +04:00
|
|
|
splx(s);
|
2014-08-04 02:11:50 +04:00
|
|
|
|
|
|
|
if (inp->inp_options) {
|
|
|
|
m_free(inp->inp_options);
|
|
|
|
}
|
|
|
|
rtcache_free(&inp->inp_route);
|
2014-09-07 04:50:56 +04:00
|
|
|
ip_freemoptions(inp->inp_moptions);
|
2008-08-04 11:01:05 +04:00
|
|
|
sofree(so); /* drops the socket's lock */
|
2014-08-04 02:11:50 +04:00
|
|
|
|
|
|
|
pool_put(&inpcb_pool, inp);
|
2008-08-04 10:29:58 +04:00
|
|
|
mutex_enter(softnet_lock); /* reacquire the softnet_lock */
|
1993-03-21 12:45:37 +03:00
|
|
|
}
|
|
|
|
|
1996-02-14 02:40:59 +03:00
|
|
|
void
|
2015-04-25 01:32:37 +03:00
|
|
|
in_setsockaddr(struct inpcb *inp, struct sockaddr_in *sin)
|
1993-03-21 12:45:37 +03:00
|
|
|
{
|
2002-06-09 20:33:36 +04:00
|
|
|
|
2003-09-04 13:16:57 +04:00
|
|
|
if (inp->inp_af != AF_INET)
|
|
|
|
return;
|
|
|
|
|
2007-08-21 12:34:33 +04:00
|
|
|
sockaddr_in_init(sin, &inp->inp_laddr, inp->inp_lport);
|
1993-03-21 12:45:37 +03:00
|
|
|
}
|
|
|
|
|
1996-02-14 02:40:59 +03:00
|
|
|
void
|
2015-04-25 01:32:37 +03:00
|
|
|
in_setpeeraddr(struct inpcb *inp, struct sockaddr_in *sin)
|
1993-03-21 12:45:37 +03:00
|
|
|
{
|
2002-06-09 20:33:36 +04:00
|
|
|
|
2003-09-04 13:16:57 +04:00
|
|
|
if (inp->inp_af != AF_INET)
|
|
|
|
return;
|
|
|
|
|
2007-08-21 12:34:33 +04:00
|
|
|
sockaddr_in_init(sin, &inp->inp_faddr, inp->inp_fport);
|
1993-03-21 12:45:37 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Pass some notification to all connections of a protocol
|
|
|
|
* associated with address dst. The local address and/or port numbers
|
|
|
|
* may be specified to limit the search. The "usual action" will be
|
|
|
|
* taken, depending on the ctlinput cmd. The caller must filter any
|
|
|
|
* cmds that are uninteresting (e.g., no error in the map).
|
|
|
|
* Call the protocol specific routine (if any) to report
|
|
|
|
* any errors for each matching socket.
|
|
|
|
*
|
1995-08-13 03:59:09 +04:00
|
|
|
* Must be called at splsoftnet.
|
1993-03-21 12:45:37 +03:00
|
|
|
*/
|
1997-07-24 01:26:40 +04:00
|
|
|
int
|
2005-02-03 06:49:01 +03:00
|
|
|
in_pcbnotify(struct inpcbtable *table, struct in_addr faddr, u_int fport_arg,
|
|
|
|
struct in_addr laddr, u_int lport_arg, int errno,
|
|
|
|
void (*notify)(struct inpcb *, int))
|
1993-03-21 12:45:37 +03:00
|
|
|
{
|
1996-09-15 22:11:06 +04:00
|
|
|
struct inpcbhead *head;
|
2000-03-30 16:51:13 +04:00
|
|
|
struct inpcb *inp, *ninp;
|
1995-04-13 10:25:36 +04:00
|
|
|
u_int16_t fport = fport_arg, lport = lport_arg;
|
1997-07-24 01:26:40 +04:00
|
|
|
int nmatch;
|
1993-03-21 12:45:37 +03:00
|
|
|
|
1996-09-15 22:11:06 +04:00
|
|
|
if (in_nullhost(faddr) || notify == 0)
|
1997-07-24 01:26:40 +04:00
|
|
|
return (0);
|
1993-03-21 12:45:37 +03:00
|
|
|
|
1997-07-24 01:26:40 +04:00
|
|
|
nmatch = 0;
|
1996-09-15 22:11:06 +04:00
|
|
|
head = INPCBHASH_CONNECT(table, faddr, fport, laddr, lport);
|
2003-09-04 13:16:57 +04:00
|
|
|
for (inp = (struct inpcb *)LIST_FIRST(head); inp != NULL; inp = ninp) {
|
|
|
|
ninp = (struct inpcb *)LIST_NEXT(inp, inp_hash);
|
|
|
|
if (inp->inp_af != AF_INET)
|
|
|
|
continue;
|
1996-09-15 22:11:06 +04:00
|
|
|
if (in_hosteq(inp->inp_faddr, faddr) &&
|
|
|
|
inp->inp_fport == fport &&
|
|
|
|
inp->inp_lport == lport &&
|
1997-07-24 01:26:40 +04:00
|
|
|
in_hosteq(inp->inp_laddr, laddr)) {
|
1996-09-15 22:11:06 +04:00
|
|
|
(*notify)(inp, errno);
|
1997-07-24 01:26:40 +04:00
|
|
|
nmatch++;
|
|
|
|
}
|
1995-06-12 04:46:47 +04:00
|
|
|
}
|
1997-07-24 01:26:40 +04:00
|
|
|
return (nmatch);
|
1995-06-12 04:46:47 +04:00
|
|
|
}
|
|
|
|
|
1995-06-12 10:49:55 +04:00
|
|
|
void
|
2005-02-03 06:49:01 +03:00
|
|
|
in_pcbnotifyall(struct inpcbtable *table, struct in_addr faddr, int errno,
|
|
|
|
void (*notify)(struct inpcb *, int))
|
1995-06-12 04:46:47 +04:00
|
|
|
{
|
2013-11-23 18:20:21 +04:00
|
|
|
struct inpcb_hdr *inph, *ninph;
|
1995-06-12 04:46:47 +04:00
|
|
|
|
1996-09-15 22:11:06 +04:00
|
|
|
if (in_nullhost(faddr) || notify == 0)
|
1995-06-12 04:46:47 +04:00
|
|
|
return;
|
|
|
|
|
2013-11-23 18:20:21 +04:00
|
|
|
TAILQ_FOREACH_SAFE(inph, &table->inpt_queue, inph_queue, ninph) {
|
|
|
|
struct inpcb *inp = (struct inpcb *)inph;
|
2003-09-04 13:16:57 +04:00
|
|
|
if (inp->inp_af != AF_INET)
|
|
|
|
continue;
|
1996-09-15 22:11:06 +04:00
|
|
|
if (in_hosteq(inp->inp_faddr, faddr))
|
|
|
|
(*notify)(inp, errno);
|
1993-03-21 12:45:37 +03:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-11-25 18:04:37 +03:00
|
|
|
void
|
|
|
|
in_purgeifmcast(struct ip_moptions *imo, struct ifnet *ifp)
|
|
|
|
{
|
|
|
|
int i, gap;
|
|
|
|
|
|
|
|
if (imo == NULL)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Unselect the outgoing interface if it is being
|
|
|
|
* detached.
|
|
|
|
*/
|
|
|
|
if (imo->imo_multicast_ifp == ifp)
|
|
|
|
imo->imo_multicast_ifp = NULL;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Drop multicast group membership if we joined
|
|
|
|
* through the interface being detached.
|
|
|
|
*/
|
|
|
|
for (i = 0, gap = 0; i < imo->imo_num_memberships; i++) {
|
|
|
|
if (imo->imo_membership[i]->inm_ifp == ifp) {
|
|
|
|
in_delmulti(imo->imo_membership[i]);
|
|
|
|
gap++;
|
|
|
|
} else if (gap != 0)
|
|
|
|
imo->imo_membership[i - gap] = imo->imo_membership[i];
|
|
|
|
}
|
|
|
|
imo->imo_num_memberships -= gap;
|
|
|
|
}
|
|
|
|
|
2000-02-03 02:28:08 +03:00
|
|
|
void
|
2005-02-03 06:49:01 +03:00
|
|
|
in_pcbpurgeif0(struct inpcbtable *table, struct ifnet *ifp)
|
2000-02-03 02:28:08 +03:00
|
|
|
{
|
2013-11-23 18:20:21 +04:00
|
|
|
struct inpcb_hdr *inph, *ninph;
|
2000-02-03 02:28:08 +03:00
|
|
|
|
2013-11-23 18:20:21 +04:00
|
|
|
TAILQ_FOREACH_SAFE(inph, &table->inpt_queue, inph_queue, ninph) {
|
|
|
|
struct inpcb *inp = (struct inpcb *)inph;
|
2003-09-04 13:16:57 +04:00
|
|
|
if (inp->inp_af != AF_INET)
|
|
|
|
continue;
|
2014-11-25 18:04:37 +03:00
|
|
|
in_purgeifmcast(inp->inp_moptions, ifp);
|
2000-02-03 02:28:08 +03:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2001-07-02 19:25:34 +04:00
|
|
|
void
|
2005-02-03 06:49:01 +03:00
|
|
|
in_pcbpurgeif(struct inpcbtable *table, struct ifnet *ifp)
|
2001-07-02 19:25:34 +04:00
|
|
|
{
|
2007-12-20 22:53:29 +03:00
|
|
|
struct rtentry *rt;
|
2013-11-23 18:20:21 +04:00
|
|
|
struct inpcb_hdr *inph, *ninph;
|
2001-07-02 19:25:34 +04:00
|
|
|
|
2013-11-23 18:20:21 +04:00
|
|
|
TAILQ_FOREACH_SAFE(inph, &table->inpt_queue, inph_queue, ninph) {
|
|
|
|
struct inpcb *inp = (struct inpcb *)inph;
|
2003-09-04 13:16:57 +04:00
|
|
|
if (inp->inp_af != AF_INET)
|
|
|
|
continue;
|
2008-01-14 07:19:09 +03:00
|
|
|
if ((rt = rtcache_validate(&inp->inp_route)) != NULL &&
|
2007-12-20 22:53:29 +03:00
|
|
|
rt->rt_ifp == ifp)
|
2001-07-02 19:25:34 +04:00
|
|
|
in_rtchange(inp, 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
1993-03-21 12:45:37 +03:00
|
|
|
/*
|
|
|
|
* Check for alternatives when higher level complains
|
|
|
|
* about service problems. For now, invalidate cached
|
|
|
|
* routing information. If the route was created dynamically
|
|
|
|
* (by a redirect), time to try a default gateway again.
|
|
|
|
*/
|
1996-02-14 02:40:59 +03:00
|
|
|
void
|
2005-02-03 06:49:01 +03:00
|
|
|
in_losing(struct inpcb *inp)
|
1993-03-21 12:45:37 +03:00
|
|
|
{
|
2000-03-30 16:51:13 +04:00
|
|
|
struct rtentry *rt;
|
1994-05-13 10:02:48 +04:00
|
|
|
struct rt_addrinfo info;
|
1993-03-21 12:45:37 +03:00
|
|
|
|
2003-09-04 13:16:57 +04:00
|
|
|
if (inp->inp_af != AF_INET)
|
|
|
|
return;
|
|
|
|
|
2008-01-14 07:19:09 +03:00
|
|
|
if ((rt = rtcache_validate(&inp->inp_route)) == NULL)
|
|
|
|
return;
|
|
|
|
|
|
|
|
memset(&info, 0, sizeof(info));
|
|
|
|
info.rti_info[RTAX_DST] = rtcache_getdst(&inp->inp_route);
|
|
|
|
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
|
|
|
|
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
|
|
|
|
rt_missmsg(RTM_LOSING, &info, rt->rt_flags, 0);
|
|
|
|
if (rt->rt_flags & RTF_DYNAMIC)
|
|
|
|
(void) rtrequest(RTM_DELETE, rt_getkey(rt),
|
|
|
|
rt->rt_gateway, rt_mask(rt), rt->rt_flags,
|
|
|
|
NULL);
|
|
|
|
/*
|
|
|
|
* A new route can be allocated
|
|
|
|
* the next time output is attempted.
|
|
|
|
*/
|
|
|
|
rtcache_free(&inp->inp_route);
|
1993-03-21 12:45:37 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
Here are various changes designed to protect against bad IPv4
routing caused by stale route caches (struct route). Route caches
are sprinkled throughout PCBs, the IP fast-forwarding table, and
IP tunnel interfaces (gre, gif, stf).
Stale IPv6 and ISO route caches will be treated by separate patches.
Thank you to Christoph Badura for suggesting the general approach
to invalidating route caches that I take here.
Here are the details:
Add hooks to struct domain for tracking and for invalidating each
domain's route caches: dom_rtcache, dom_rtflush, and dom_rtflushall.
Introduce helper subroutines, rtflush(ro) for invalidating a route
cache, rtflushall(family) for invalidating all route caches in a
routing domain, and rtcache(ro) for notifying the domain of a new
cached route.
Chain together all IPv4 route caches where ro_rt != NULL. Provide
in_rtcache() for adding a route to the chain. Provide in_rtflush()
and in_rtflushall() for invalidating IPv4 route caches. In
in_rtflush(), set ro_rt to NULL, and remove the route from the
chain. In in_rtflushall(), walk the chain and remove every route
cache.
In rtrequest1(), call rtflushall() to invalidate route caches when
a route is added.
In gif(4), discard the workaround for stale caches that involves
expiring them every so often.
Replace the pattern 'RTFREE(ro->ro_rt); ro->ro_rt = NULL;' with a
call to rtflush(ro).
Update ipflow_fastforward() and all other users of route caches so
that they expect a cached route, ro->ro_rt, to turn to NULL.
Take care when moving a 'struct route' to rtflush() the source and
to rtcache() the destination.
In domain initializers, use .dom_xxx tags.
KNF here and there.
2006-12-09 08:33:04 +03:00
|
|
|
* After a routing change, flush old routing. A new route can be
|
|
|
|
* allocated the next time output is attempted.
|
1993-03-21 12:45:37 +03:00
|
|
|
*/
|
1994-05-13 10:02:48 +04:00
|
|
|
void
|
2006-11-16 04:32:37 +03:00
|
|
|
in_rtchange(struct inpcb *inp, int errno)
|
1993-03-21 12:45:37 +03:00
|
|
|
{
|
1996-09-09 18:51:07 +04:00
|
|
|
|
2003-09-04 13:16:57 +04:00
|
|
|
if (inp->inp_af != AF_INET)
|
|
|
|
return;
|
|
|
|
|
2006-12-16 00:18:52 +03:00
|
|
|
rtcache_free(&inp->inp_route);
|
|
|
|
|
1998-02-13 21:21:38 +03:00
|
|
|
/* XXX SHOULD NOTIFY HIGHER-LEVEL PROTOCOLS */
|
1993-03-21 12:45:37 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
struct inpcb *
|
2005-02-03 06:49:01 +03:00
|
|
|
in_pcblookup_port(struct inpcbtable *table, struct in_addr laddr,
|
Reduces the resources demanded by TCP sessions in TIME_WAIT-state using
methods called Vestigial Time-Wait (VTW) and Maximum Segment Lifetime
Truncation (MSLT).
MSLT and VTW were contributed by Coyote Point Systems, Inc.
Even after a TCP session enters the TIME_WAIT state, its corresponding
socket and protocol control blocks (PCBs) stick around until the TCP
Maximum Segment Lifetime (MSL) expires. On a host whose workload
necessarily creates and closes down many TCP sockets, the sockets & PCBs
for TCP sessions in TIME_WAIT state amount to many megabytes of dead
weight in RAM.
Maximum Segment Lifetimes Truncation (MSLT) assigns each TCP session to
a class based on the nearness of the peer. Corresponding to each class
is an MSL, and a session uses the MSL of its class. The classes are
loopback (local host equals remote host), local (local host and remote
host are on the same link/subnet), and remote (local host and remote
host communicate via one or more gateways). Classes corresponding to
nearer peers have lower MSLs by default: 2 seconds for loopback, 10
seconds for local, 60 seconds for remote. Loopback and local sessions
expire more quickly when MSLT is used.
Vestigial Time-Wait (VTW) replaces a TIME_WAIT session's PCB/socket
dead weight with a compact representation of the session, called a
"vestigial PCB". VTW data structures are designed to be very fast and
memory-efficient: for fast insertion and lookup of vestigial PCBs,
the PCBs are stored in a hash table that is designed to minimize the
number of cacheline visits per lookup/insertion. The memory both
for vestigial PCBs and for elements of the PCB hashtable come from
fixed-size pools, and linked data structures exploit this to conserve
memory by representing references with a narrow index/offset from the
start of a pool instead of a pointer. When space for new vestigial PCBs
runs out, VTW makes room by discarding old vestigial PCBs, oldest first.
VTW cooperates with MSLT.
It may help to think of VTW as a "FIN cache" by analogy to the SYN
cache.
A 2.8-GHz Pentium 4 running a test workload that creates TIME_WAIT
sessions as fast as it can is approximately 17% idle when VTW is active
versus 0% idle when VTW is inactive. It has 103 megabytes more free RAM
when VTW is active (approximately 64k vestigial PCBs are created) than
when it is inactive.
2011-05-03 22:28:44 +04:00
|
|
|
u_int lport_arg, int lookup_wildcard, vestigial_inpcb_t *vp)
|
1993-03-21 12:45:37 +03:00
|
|
|
{
|
2003-10-28 20:18:37 +03:00
|
|
|
struct inpcbhead *head;
|
2003-09-04 13:16:57 +04:00
|
|
|
struct inpcb_hdr *inph;
|
2012-06-21 14:31:45 +04:00
|
|
|
struct inpcb *match = NULL;
|
|
|
|
int matchwild = 3;
|
|
|
|
int wildcard;
|
1996-09-15 22:11:06 +04:00
|
|
|
u_int16_t lport = lport_arg;
|
1993-03-21 12:45:37 +03:00
|
|
|
|
Reduces the resources demanded by TCP sessions in TIME_WAIT-state using
methods called Vestigial Time-Wait (VTW) and Maximum Segment Lifetime
Truncation (MSLT).
MSLT and VTW were contributed by Coyote Point Systems, Inc.
Even after a TCP session enters the TIME_WAIT state, its corresponding
socket and protocol control blocks (PCBs) stick around until the TCP
Maximum Segment Lifetime (MSL) expires. On a host whose workload
necessarily creates and closes down many TCP sockets, the sockets & PCBs
for TCP sessions in TIME_WAIT state amount to many megabytes of dead
weight in RAM.
Maximum Segment Lifetimes Truncation (MSLT) assigns each TCP session to
a class based on the nearness of the peer. Corresponding to each class
is an MSL, and a session uses the MSL of its class. The classes are
loopback (local host equals remote host), local (local host and remote
host are on the same link/subnet), and remote (local host and remote
host communicate via one or more gateways). Classes corresponding to
nearer peers have lower MSLs by default: 2 seconds for loopback, 10
seconds for local, 60 seconds for remote. Loopback and local sessions
expire more quickly when MSLT is used.
Vestigial Time-Wait (VTW) replaces a TIME_WAIT session's PCB/socket
dead weight with a compact representation of the session, called a
"vestigial PCB". VTW data structures are designed to be very fast and
memory-efficient: for fast insertion and lookup of vestigial PCBs,
the PCBs are stored in a hash table that is designed to minimize the
number of cacheline visits per lookup/insertion. The memory both
for vestigial PCBs and for elements of the PCB hashtable come from
fixed-size pools, and linked data structures exploit this to conserve
memory by representing references with a narrow index/offset from the
start of a pool instead of a pointer. When space for new vestigial PCBs
runs out, VTW makes room by discarding old vestigial PCBs, oldest first.
VTW cooperates with MSLT.
It may help to think of VTW as a "FIN cache" by analogy to the SYN
cache.
A 2.8-GHz Pentium 4 running a test workload that creates TIME_WAIT
sessions as fast as it can is approximately 17% idle when VTW is active
versus 0% idle when VTW is inactive. It has 103 megabytes more free RAM
when VTW is active (approximately 64k vestigial PCBs are created) than
when it is inactive.
2011-05-03 22:28:44 +04:00
|
|
|
if (vp)
|
|
|
|
vp->valid = 0;
|
|
|
|
|
2003-10-28 20:18:37 +03:00
|
|
|
head = INPCBHASH_PORT(table, lport);
|
|
|
|
LIST_FOREACH(inph, head, inph_lhash) {
|
2012-06-21 14:31:45 +04:00
|
|
|
struct inpcb * const inp = (struct inpcb *)inph;
|
|
|
|
|
2003-09-04 13:16:57 +04:00
|
|
|
if (inp->inp_af != AF_INET)
|
|
|
|
continue;
|
1993-03-21 12:45:37 +03:00
|
|
|
if (inp->inp_lport != lport)
|
|
|
|
continue;
|
2012-06-21 14:31:45 +04:00
|
|
|
/*
|
|
|
|
* check if inp's faddr and laddr match with ours.
|
|
|
|
* our faddr is considered null.
|
|
|
|
* count the number of wildcard matches. (0 - 2)
|
|
|
|
*
|
|
|
|
* null null match
|
|
|
|
* A null wildcard match
|
|
|
|
* null B wildcard match
|
|
|
|
* A B non match
|
|
|
|
* A A match
|
|
|
|
*/
|
1993-03-21 12:45:37 +03:00
|
|
|
wildcard = 0;
|
1996-09-15 22:11:06 +04:00
|
|
|
if (!in_nullhost(inp->inp_faddr))
|
|
|
|
wildcard++;
|
1996-09-09 18:51:07 +04:00
|
|
|
if (in_nullhost(inp->inp_laddr)) {
|
|
|
|
if (!in_nullhost(laddr))
|
1996-01-31 06:49:23 +03:00
|
|
|
wildcard++;
|
|
|
|
} else {
|
1996-09-09 18:51:07 +04:00
|
|
|
if (in_nullhost(laddr))
|
1996-01-31 06:49:23 +03:00
|
|
|
wildcard++;
|
1996-09-09 18:51:07 +04:00
|
|
|
else {
|
|
|
|
if (!in_hosteq(inp->inp_laddr, laddr))
|
|
|
|
continue;
|
|
|
|
}
|
1996-01-31 06:49:23 +03:00
|
|
|
}
|
1998-10-05 18:33:14 +04:00
|
|
|
if (wildcard && !lookup_wildcard)
|
1993-03-21 12:45:37 +03:00
|
|
|
continue;
|
2012-06-21 14:31:45 +04:00
|
|
|
/*
|
|
|
|
* prefer an address with less wildcards.
|
|
|
|
*/
|
1993-03-21 12:45:37 +03:00
|
|
|
if (wildcard < matchwild) {
|
|
|
|
match = inp;
|
|
|
|
matchwild = wildcard;
|
|
|
|
if (matchwild == 0)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
Reduces the resources demanded by TCP sessions in TIME_WAIT-state using
methods called Vestigial Time-Wait (VTW) and Maximum Segment Lifetime
Truncation (MSLT).
MSLT and VTW were contributed by Coyote Point Systems, Inc.
Even after a TCP session enters the TIME_WAIT state, its corresponding
socket and protocol control blocks (PCBs) stick around until the TCP
Maximum Segment Lifetime (MSL) expires. On a host whose workload
necessarily creates and closes down many TCP sockets, the sockets & PCBs
for TCP sessions in TIME_WAIT state amount to many megabytes of dead
weight in RAM.
Maximum Segment Lifetimes Truncation (MSLT) assigns each TCP session to
a class based on the nearness of the peer. Corresponding to each class
is an MSL, and a session uses the MSL of its class. The classes are
loopback (local host equals remote host), local (local host and remote
host are on the same link/subnet), and remote (local host and remote
host communicate via one or more gateways). Classes corresponding to
nearer peers have lower MSLs by default: 2 seconds for loopback, 10
seconds for local, 60 seconds for remote. Loopback and local sessions
expire more quickly when MSLT is used.
Vestigial Time-Wait (VTW) replaces a TIME_WAIT session's PCB/socket
dead weight with a compact representation of the session, called a
"vestigial PCB". VTW data structures are designed to be very fast and
memory-efficient: for fast insertion and lookup of vestigial PCBs,
the PCBs are stored in a hash table that is designed to minimize the
number of cacheline visits per lookup/insertion. The memory both
for vestigial PCBs and for elements of the PCB hashtable come from
fixed-size pools, and linked data structures exploit this to conserve
memory by representing references with a narrow index/offset from the
start of a pool instead of a pointer. When space for new vestigial PCBs
runs out, VTW makes room by discarding old vestigial PCBs, oldest first.
VTW cooperates with MSLT.
It may help to think of VTW as a "FIN cache" by analogy to the SYN
cache.
A 2.8-GHz Pentium 4 running a test workload that creates TIME_WAIT
sessions as fast as it can is approximately 17% idle when VTW is active
versus 0% idle when VTW is inactive. It has 103 megabytes more free RAM
when VTW is active (approximately 64k vestigial PCBs are created) than
when it is inactive.
2011-05-03 22:28:44 +04:00
|
|
|
if (match && matchwild == 0)
|
|
|
|
return match;
|
|
|
|
|
|
|
|
if (vp && table->vestige) {
|
|
|
|
void *state = (*table->vestige->init_ports4)(laddr, lport_arg, lookup_wildcard);
|
|
|
|
vestigial_inpcb_t better;
|
|
|
|
|
|
|
|
while (table->vestige
|
|
|
|
&& (*table->vestige->next_port4)(state, vp)) {
|
|
|
|
|
|
|
|
if (vp->lport != lport)
|
|
|
|
continue;
|
|
|
|
wildcard = 0;
|
|
|
|
if (!in_nullhost(vp->faddr.v4))
|
|
|
|
wildcard++;
|
|
|
|
if (in_nullhost(vp->laddr.v4)) {
|
|
|
|
if (!in_nullhost(laddr))
|
|
|
|
wildcard++;
|
|
|
|
} else {
|
|
|
|
if (in_nullhost(laddr))
|
|
|
|
wildcard++;
|
|
|
|
else {
|
|
|
|
if (!in_hosteq(vp->laddr.v4, laddr))
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (wildcard && !lookup_wildcard)
|
|
|
|
continue;
|
|
|
|
if (wildcard < matchwild) {
|
|
|
|
better = *vp;
|
|
|
|
match = (void*)&better;
|
|
|
|
|
|
|
|
matchwild = wildcard;
|
|
|
|
if (matchwild == 0)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (match) {
|
|
|
|
if (match != (void*)&better)
|
|
|
|
return match;
|
|
|
|
else {
|
|
|
|
*vp = better;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
1993-03-21 12:45:37 +03:00
|
|
|
return (match);
|
|
|
|
}
|
1996-01-31 06:49:23 +03:00
|
|
|
|
|
|
|
#ifdef DIAGNOSTIC
|
|
|
|
int in_pcbnotifymiss = 0;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
struct inpcb *
|
2005-02-03 06:49:01 +03:00
|
|
|
in_pcblookup_connect(struct inpcbtable *table,
|
|
|
|
struct in_addr faddr, u_int fport_arg,
|
Reduces the resources demanded by TCP sessions in TIME_WAIT-state using
methods called Vestigial Time-Wait (VTW) and Maximum Segment Lifetime
Truncation (MSLT).
MSLT and VTW were contributed by Coyote Point Systems, Inc.
Even after a TCP session enters the TIME_WAIT state, its corresponding
socket and protocol control blocks (PCBs) stick around until the TCP
Maximum Segment Lifetime (MSL) expires. On a host whose workload
necessarily creates and closes down many TCP sockets, the sockets & PCBs
for TCP sessions in TIME_WAIT state amount to many megabytes of dead
weight in RAM.
Maximum Segment Lifetimes Truncation (MSLT) assigns each TCP session to
a class based on the nearness of the peer. Corresponding to each class
is an MSL, and a session uses the MSL of its class. The classes are
loopback (local host equals remote host), local (local host and remote
host are on the same link/subnet), and remote (local host and remote
host communicate via one or more gateways). Classes corresponding to
nearer peers have lower MSLs by default: 2 seconds for loopback, 10
seconds for local, 60 seconds for remote. Loopback and local sessions
expire more quickly when MSLT is used.
Vestigial Time-Wait (VTW) replaces a TIME_WAIT session's PCB/socket
dead weight with a compact representation of the session, called a
"vestigial PCB". VTW data structures are designed to be very fast and
memory-efficient: for fast insertion and lookup of vestigial PCBs,
the PCBs are stored in a hash table that is designed to minimize the
number of cacheline visits per lookup/insertion. The memory both
for vestigial PCBs and for elements of the PCB hashtable come from
fixed-size pools, and linked data structures exploit this to conserve
memory by representing references with a narrow index/offset from the
start of a pool instead of a pointer. When space for new vestigial PCBs
runs out, VTW makes room by discarding old vestigial PCBs, oldest first.
VTW cooperates with MSLT.
It may help to think of VTW as a "FIN cache" by analogy to the SYN
cache.
A 2.8-GHz Pentium 4 running a test workload that creates TIME_WAIT
sessions as fast as it can is approximately 17% idle when VTW is active
versus 0% idle when VTW is inactive. It has 103 megabytes more free RAM
when VTW is active (approximately 64k vestigial PCBs are created) than
when it is inactive.
2011-05-03 22:28:44 +04:00
|
|
|
struct in_addr laddr, u_int lport_arg,
|
|
|
|
vestigial_inpcb_t *vp)
|
1996-01-31 06:49:23 +03:00
|
|
|
{
|
|
|
|
struct inpcbhead *head;
|
2003-09-04 13:16:57 +04:00
|
|
|
struct inpcb_hdr *inph;
|
2000-03-30 16:51:13 +04:00
|
|
|
struct inpcb *inp;
|
1996-01-31 06:49:23 +03:00
|
|
|
u_int16_t fport = fport_arg, lport = lport_arg;
|
|
|
|
|
Reduces the resources demanded by TCP sessions in TIME_WAIT-state using
methods called Vestigial Time-Wait (VTW) and Maximum Segment Lifetime
Truncation (MSLT).
MSLT and VTW were contributed by Coyote Point Systems, Inc.
Even after a TCP session enters the TIME_WAIT state, its corresponding
socket and protocol control blocks (PCBs) stick around until the TCP
Maximum Segment Lifetime (MSL) expires. On a host whose workload
necessarily creates and closes down many TCP sockets, the sockets & PCBs
for TCP sessions in TIME_WAIT state amount to many megabytes of dead
weight in RAM.
Maximum Segment Lifetimes Truncation (MSLT) assigns each TCP session to
a class based on the nearness of the peer. Corresponding to each class
is an MSL, and a session uses the MSL of its class. The classes are
loopback (local host equals remote host), local (local host and remote
host are on the same link/subnet), and remote (local host and remote
host communicate via one or more gateways). Classes corresponding to
nearer peers have lower MSLs by default: 2 seconds for loopback, 10
seconds for local, 60 seconds for remote. Loopback and local sessions
expire more quickly when MSLT is used.
Vestigial Time-Wait (VTW) replaces a TIME_WAIT session's PCB/socket
dead weight with a compact representation of the session, called a
"vestigial PCB". VTW data structures are designed to be very fast and
memory-efficient: for fast insertion and lookup of vestigial PCBs,
the PCBs are stored in a hash table that is designed to minimize the
number of cacheline visits per lookup/insertion. The memory both
for vestigial PCBs and for elements of the PCB hashtable come from
fixed-size pools, and linked data structures exploit this to conserve
memory by representing references with a narrow index/offset from the
start of a pool instead of a pointer. When space for new vestigial PCBs
runs out, VTW makes room by discarding old vestigial PCBs, oldest first.
VTW cooperates with MSLT.
It may help to think of VTW as a "FIN cache" by analogy to the SYN
cache.
A 2.8-GHz Pentium 4 running a test workload that creates TIME_WAIT
sessions as fast as it can is approximately 17% idle when VTW is active
versus 0% idle when VTW is inactive. It has 103 megabytes more free RAM
when VTW is active (approximately 64k vestigial PCBs are created) than
when it is inactive.
2011-05-03 22:28:44 +04:00
|
|
|
if (vp)
|
|
|
|
vp->valid = 0;
|
|
|
|
|
1996-09-15 22:11:06 +04:00
|
|
|
head = INPCBHASH_CONNECT(table, faddr, fport, laddr, lport);
|
2003-09-04 13:16:57 +04:00
|
|
|
LIST_FOREACH(inph, head, inph_hash) {
|
|
|
|
inp = (struct inpcb *)inph;
|
|
|
|
if (inp->inp_af != AF_INET)
|
|
|
|
continue;
|
|
|
|
|
1996-09-15 22:11:06 +04:00
|
|
|
if (in_hosteq(inp->inp_faddr, faddr) &&
|
|
|
|
inp->inp_fport == fport &&
|
|
|
|
inp->inp_lport == lport &&
|
|
|
|
in_hosteq(inp->inp_laddr, laddr))
|
|
|
|
goto out;
|
1996-01-31 06:49:23 +03:00
|
|
|
}
|
Reduces the resources demanded by TCP sessions in TIME_WAIT-state using
methods called Vestigial Time-Wait (VTW) and Maximum Segment Lifetime
Truncation (MSLT).
MSLT and VTW were contributed by Coyote Point Systems, Inc.
Even after a TCP session enters the TIME_WAIT state, its corresponding
socket and protocol control blocks (PCBs) stick around until the TCP
Maximum Segment Lifetime (MSL) expires. On a host whose workload
necessarily creates and closes down many TCP sockets, the sockets & PCBs
for TCP sessions in TIME_WAIT state amount to many megabytes of dead
weight in RAM.
Maximum Segment Lifetimes Truncation (MSLT) assigns each TCP session to
a class based on the nearness of the peer. Corresponding to each class
is an MSL, and a session uses the MSL of its class. The classes are
loopback (local host equals remote host), local (local host and remote
host are on the same link/subnet), and remote (local host and remote
host communicate via one or more gateways). Classes corresponding to
nearer peers have lower MSLs by default: 2 seconds for loopback, 10
seconds for local, 60 seconds for remote. Loopback and local sessions
expire more quickly when MSLT is used.
Vestigial Time-Wait (VTW) replaces a TIME_WAIT session's PCB/socket
dead weight with a compact representation of the session, called a
"vestigial PCB". VTW data structures are designed to be very fast and
memory-efficient: for fast insertion and lookup of vestigial PCBs,
the PCBs are stored in a hash table that is designed to minimize the
number of cacheline visits per lookup/insertion. The memory both
for vestigial PCBs and for elements of the PCB hashtable come from
fixed-size pools, and linked data structures exploit this to conserve
memory by representing references with a narrow index/offset from the
start of a pool instead of a pointer. When space for new vestigial PCBs
runs out, VTW makes room by discarding old vestigial PCBs, oldest first.
VTW cooperates with MSLT.
It may help to think of VTW as a "FIN cache" by analogy to the SYN
cache.
A 2.8-GHz Pentium 4 running a test workload that creates TIME_WAIT
sessions as fast as it can is approximately 17% idle when VTW is active
versus 0% idle when VTW is inactive. It has 103 megabytes more free RAM
when VTW is active (approximately 64k vestigial PCBs are created) than
when it is inactive.
2011-05-03 22:28:44 +04:00
|
|
|
if (vp && table->vestige) {
|
|
|
|
if ((*table->vestige->lookup4)(faddr, fport_arg,
|
|
|
|
laddr, lport_arg, vp))
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
1996-01-31 06:49:23 +03:00
|
|
|
#ifdef DIAGNOSTIC
|
1996-09-15 22:11:06 +04:00
|
|
|
if (in_pcbnotifymiss) {
|
1996-10-13 06:03:00 +04:00
|
|
|
printf("in_pcblookup_connect: faddr=%08x fport=%d laddr=%08x lport=%d\n",
|
1996-01-31 06:49:23 +03:00
|
|
|
ntohl(faddr.s_addr), ntohs(fport),
|
|
|
|
ntohl(laddr.s_addr), ntohs(lport));
|
|
|
|
}
|
|
|
|
#endif
|
1996-09-15 22:11:06 +04:00
|
|
|
return (0);
|
|
|
|
|
|
|
|
out:
|
|
|
|
/* Move this PCB to the head of hash chain. */
|
2003-09-04 13:16:57 +04:00
|
|
|
inph = &inp->inp_head;
|
|
|
|
if (inph != LIST_FIRST(head)) {
|
|
|
|
LIST_REMOVE(inph, inph_hash);
|
|
|
|
LIST_INSERT_HEAD(head, inph, inph_hash);
|
1996-09-15 22:11:06 +04:00
|
|
|
}
|
|
|
|
return (inp);
|
|
|
|
}
|
|
|
|
|
|
|
|
struct inpcb *
|
2005-02-03 06:49:01 +03:00
|
|
|
in_pcblookup_bind(struct inpcbtable *table,
|
|
|
|
struct in_addr laddr, u_int lport_arg)
|
1996-09-15 22:11:06 +04:00
|
|
|
{
|
|
|
|
struct inpcbhead *head;
|
2003-09-04 13:16:57 +04:00
|
|
|
struct inpcb_hdr *inph;
|
2000-03-30 16:51:13 +04:00
|
|
|
struct inpcb *inp;
|
1996-09-15 22:11:06 +04:00
|
|
|
u_int16_t lport = lport_arg;
|
|
|
|
|
|
|
|
head = INPCBHASH_BIND(table, laddr, lport);
|
2003-09-04 13:16:57 +04:00
|
|
|
LIST_FOREACH(inph, head, inph_hash) {
|
|
|
|
inp = (struct inpcb *)inph;
|
|
|
|
if (inp->inp_af != AF_INET)
|
|
|
|
continue;
|
|
|
|
|
1996-09-15 22:11:06 +04:00
|
|
|
if (inp->inp_lport == lport &&
|
|
|
|
in_hosteq(inp->inp_laddr, laddr))
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
head = INPCBHASH_BIND(table, zeroin_addr, lport);
|
2003-09-04 13:16:57 +04:00
|
|
|
LIST_FOREACH(inph, head, inph_hash) {
|
|
|
|
inp = (struct inpcb *)inph;
|
|
|
|
if (inp->inp_af != AF_INET)
|
|
|
|
continue;
|
|
|
|
|
1996-09-15 22:11:06 +04:00
|
|
|
if (inp->inp_lport == lport &&
|
|
|
|
in_hosteq(inp->inp_laddr, zeroin_addr))
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
#ifdef DIAGNOSTIC
|
|
|
|
if (in_pcbnotifymiss) {
|
1996-10-13 06:03:00 +04:00
|
|
|
printf("in_pcblookup_bind: laddr=%08x lport=%d\n",
|
1996-09-15 22:11:06 +04:00
|
|
|
ntohl(laddr.s_addr), ntohs(lport));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
out:
|
|
|
|
/* Move this PCB to the head of hash chain. */
|
2003-09-04 13:16:57 +04:00
|
|
|
inph = &inp->inp_head;
|
|
|
|
if (inph != LIST_FIRST(head)) {
|
|
|
|
LIST_REMOVE(inph, inph_hash);
|
|
|
|
LIST_INSERT_HEAD(head, inph, inph_hash);
|
1996-09-15 22:11:06 +04:00
|
|
|
}
|
1996-01-31 06:49:23 +03:00
|
|
|
return (inp);
|
|
|
|
}
|
1996-09-15 22:11:06 +04:00
|
|
|
|
|
|
|
void
|
2005-02-03 06:49:01 +03:00
|
|
|
in_pcbstate(struct inpcb *inp, int state)
|
1996-09-15 22:11:06 +04:00
|
|
|
{
|
|
|
|
|
2003-09-04 13:16:57 +04:00
|
|
|
if (inp->inp_af != AF_INET)
|
|
|
|
return;
|
|
|
|
|
1996-09-15 22:11:06 +04:00
|
|
|
if (inp->inp_state > INP_ATTACHED)
|
2003-09-04 13:16:57 +04:00
|
|
|
LIST_REMOVE(&inp->inp_head, inph_hash);
|
1996-09-15 22:11:06 +04:00
|
|
|
|
|
|
|
switch (state) {
|
|
|
|
case INP_BOUND:
|
|
|
|
LIST_INSERT_HEAD(INPCBHASH_BIND(inp->inp_table,
|
2003-09-04 13:16:57 +04:00
|
|
|
inp->inp_laddr, inp->inp_lport), &inp->inp_head,
|
|
|
|
inph_hash);
|
1996-09-15 22:11:06 +04:00
|
|
|
break;
|
|
|
|
case INP_CONNECTED:
|
|
|
|
LIST_INSERT_HEAD(INPCBHASH_CONNECT(inp->inp_table,
|
|
|
|
inp->inp_faddr, inp->inp_fport,
|
2003-09-04 13:16:57 +04:00
|
|
|
inp->inp_laddr, inp->inp_lport), &inp->inp_head,
|
|
|
|
inph_hash);
|
1996-09-15 22:11:06 +04:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
inp->inp_state = state;
|
|
|
|
}
|
1997-09-23 01:39:40 +04:00
|
|
|
|
|
|
|
struct rtentry *
|
2005-02-03 06:49:01 +03:00
|
|
|
in_pcbrtentry(struct inpcb *inp)
|
1997-09-23 01:39:40 +04:00
|
|
|
{
|
|
|
|
struct route *ro;
|
Eliminate address family-specific route caches (struct route, struct
route_in6, struct route_iso), replacing all caches with a struct
route.
The principle benefit of this change is that all of the protocol
families can benefit from route cache-invalidation, which is
necessary for correct routing. Route-cache invalidation fixes an
ancient PR, kern/3508, at long last; it fixes various other PRs,
also.
Discussions with and ideas from Joerg Sonnenberger influenced this
work tremendously. Of course, all design oversights and bugs are
mine.
DETAILS
1 I added to each address family a pool of sockaddrs. I have
introduced routines for allocating, copying, and duplicating,
and freeing sockaddrs:
struct sockaddr *sockaddr_alloc(sa_family_t af, int flags);
struct sockaddr *sockaddr_copy(struct sockaddr *dst,
const struct sockaddr *src);
struct sockaddr *sockaddr_dup(const struct sockaddr *src, int flags);
void sockaddr_free(struct sockaddr *sa);
sockaddr_alloc() returns either a sockaddr from the pool belonging
to the specified family, or NULL if the pool is exhausted. The
returned sockaddr has the right size for that family; sa_family
and sa_len fields are initialized to the family and sockaddr
length---e.g., sa_family = AF_INET and sa_len = sizeof(struct
sockaddr_in). sockaddr_free() puts the given sockaddr back into
its family's pool.
sockaddr_dup() and sockaddr_copy() work analogously to strdup()
and strcpy(), respectively. sockaddr_copy() KASSERTs that the
family of the destination and source sockaddrs are alike.
The 'flags' argumet for sockaddr_alloc() and sockaddr_dup() is
passed directly to pool_get(9).
2 I added routines for initializing sockaddrs in each address
family, sockaddr_in_init(), sockaddr_in6_init(), sockaddr_iso_init(),
etc. They are fairly self-explanatory.
3 structs route_in6 and route_iso are no more. All protocol families
use struct route. I have changed the route cache, 'struct route',
so that it does not contain storage space for a sockaddr. Instead,
struct route points to a sockaddr coming from the pool the sockaddr
belongs to. I added a new method to struct route, rtcache_setdst(),
for setting the cache destination:
int rtcache_setdst(struct route *, const struct sockaddr *);
rtcache_setdst() returns 0 on success, or ENOMEM if no memory is
available to create the sockaddr storage.
It is now possible for rtcache_getdst() to return NULL if, say,
rtcache_setdst() failed. I check the return value for NULL
everywhere in the kernel.
4 Each routing domain (struct domain) has a list of live route
caches, dom_rtcache. rtflushall(sa_family_t af) looks up the
domain indicated by 'af', walks the domain's list of route caches
and invalidates each one.
2007-05-03 00:40:22 +04:00
|
|
|
union {
|
|
|
|
struct sockaddr dst;
|
|
|
|
struct sockaddr_in dst4;
|
|
|
|
} u;
|
1997-09-23 01:39:40 +04:00
|
|
|
|
2003-09-04 13:16:57 +04:00
|
|
|
if (inp->inp_af != AF_INET)
|
|
|
|
return (NULL);
|
|
|
|
|
1997-09-23 01:39:40 +04:00
|
|
|
ro = &inp->inp_route;
|
|
|
|
|
Eliminate address family-specific route caches (struct route, struct
route_in6, struct route_iso), replacing all caches with a struct
route.
The principle benefit of this change is that all of the protocol
families can benefit from route cache-invalidation, which is
necessary for correct routing. Route-cache invalidation fixes an
ancient PR, kern/3508, at long last; it fixes various other PRs,
also.
Discussions with and ideas from Joerg Sonnenberger influenced this
work tremendously. Of course, all design oversights and bugs are
mine.
DETAILS
1 I added to each address family a pool of sockaddrs. I have
introduced routines for allocating, copying, and duplicating,
and freeing sockaddrs:
struct sockaddr *sockaddr_alloc(sa_family_t af, int flags);
struct sockaddr *sockaddr_copy(struct sockaddr *dst,
const struct sockaddr *src);
struct sockaddr *sockaddr_dup(const struct sockaddr *src, int flags);
void sockaddr_free(struct sockaddr *sa);
sockaddr_alloc() returns either a sockaddr from the pool belonging
to the specified family, or NULL if the pool is exhausted. The
returned sockaddr has the right size for that family; sa_family
and sa_len fields are initialized to the family and sockaddr
length---e.g., sa_family = AF_INET and sa_len = sizeof(struct
sockaddr_in). sockaddr_free() puts the given sockaddr back into
its family's pool.
sockaddr_dup() and sockaddr_copy() work analogously to strdup()
and strcpy(), respectively. sockaddr_copy() KASSERTs that the
family of the destination and source sockaddrs are alike.
The 'flags' argumet for sockaddr_alloc() and sockaddr_dup() is
passed directly to pool_get(9).
2 I added routines for initializing sockaddrs in each address
family, sockaddr_in_init(), sockaddr_in6_init(), sockaddr_iso_init(),
etc. They are fairly self-explanatory.
3 structs route_in6 and route_iso are no more. All protocol families
use struct route. I have changed the route cache, 'struct route',
so that it does not contain storage space for a sockaddr. Instead,
struct route points to a sockaddr coming from the pool the sockaddr
belongs to. I added a new method to struct route, rtcache_setdst(),
for setting the cache destination:
int rtcache_setdst(struct route *, const struct sockaddr *);
rtcache_setdst() returns 0 on success, or ENOMEM if no memory is
available to create the sockaddr storage.
It is now possible for rtcache_getdst() to return NULL if, say,
rtcache_setdst() failed. I check the return value for NULL
everywhere in the kernel.
4 Each routing domain (struct domain) has a list of live route
caches, dom_rtcache. rtflushall(sa_family_t af) looks up the
domain indicated by 'af', walks the domain's list of route caches
and invalidates each one.
2007-05-03 00:40:22 +04:00
|
|
|
sockaddr_in_init(&u.dst4, &inp->inp_faddr, 0);
|
|
|
|
return rtcache_lookup(ro, &u.dst);
|
1997-09-23 01:39:40 +04:00
|
|
|
}
|