NetBSD/sys/netnatm/natm.c

470 lines
11 KiB
C
Raw Normal View History

/* $NetBSD: natm.c,v 1.22 2009/04/18 14:58:06 tsutsui Exp $ */
/*
*
* Copyright (c) 1996 Charles D. Cranor and Washington University.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Charles D. Cranor and
* Washington University.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* natm.c: native mode ATM access (both aal0 and aal5).
*/
2001-11-13 03:56:55 +03:00
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: natm.c,v 1.22 2009/04/18 14:58:06 tsutsui Exp $");
2001-11-13 03:56:55 +03:00
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/domain.h>
#include <sys/ioctl.h>
#include <sys/proc.h>
#include <sys/protosw.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <net/if.h>
#include <net/if_atm.h>
#include <net/netisr.h>
#include <net/radix.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netnatm/natm.h>
u_long natm5_sendspace = 16*1024;
u_long natm5_recvspace = 16*1024;
u_long natm0_sendspace = 16*1024;
u_long natm0_recvspace = 16*1024;
/*
* user requests
*/
2005-12-11 15:16:03 +03:00
#if defined(__NetBSD__)
int natm_usrreq(so, req, m, nam, control, l)
#elif defined(__OpenBSD__)
int natm_usrreq(so, req, m, nam, control, p)
#elif defined(__FreeBSD__)
int natm_usrreq(so, req, m, nam, control)
#endif
struct socket *so;
int req;
struct mbuf *m, *nam, *control;
2005-12-11 15:16:03 +03:00
#if defined(__NetBSD__)
struct lwp *l;
#elif deifned(__OpenBSD__)
struct proc *p;
#endif
{
int error = 0, s, s2;
struct natmpcb *npcb;
struct sockaddr_natm *snatm;
struct atm_pseudoioctl api;
struct atm_pseudohdr *aph;
struct atm_rawioctl ario;
struct ifnet *ifp;
int proto = so->so_proto->pr_protocol;
s = SPLSOFTNET();
npcb = (struct natmpcb *) so->so_pcb;
if (npcb == NULL && req != PRU_ATTACH) {
error = EINVAL;
goto done;
}
2005-02-27 01:31:44 +03:00
switch (req) {
case PRU_ATTACH: /* attach protocol to up */
if (npcb) {
error = EISCONN;
break;
}
if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
2005-02-27 01:31:44 +03:00
if (proto == PROTO_NATMAAL5)
error = soreserve(so, natm5_sendspace, natm5_recvspace);
else
error = soreserve(so, natm0_sendspace, natm0_recvspace);
if (error)
break;
}
so->so_pcb = (void *) (npcb = npcb_alloc(M_WAITOK));
npcb->npcb_socket = so;
break;
case PRU_DETACH: /* detach protocol from up */
/*
* we turn on 'drain' *before* we sofree.
*/
npcb_free(npcb, NPCB_DESTROY); /* drain */
so->so_pcb = NULL;
/* sofree drops the lock */
sofree(so);
mutex_enter(softnet_lock);
break;
case PRU_CONNECT: /* establish connection to peer */
/*
* validate nam and npcb
*/
if (nam->m_len != sizeof(*snatm)) {
error = EINVAL;
break;
}
snatm = mtod(nam, struct sockaddr_natm *);
if (snatm->snatm_len != sizeof(*snatm) ||
(npcb->npcb_flags & NPCB_FREE) == 0) {
error = EINVAL;
break;
}
if (snatm->snatm_family != AF_NATM) {
error = EAFNOSUPPORT;
break;
}
snatm->snatm_if[IFNAMSIZ-1] = '\0'; /* XXX ensure null termination
since ifunit() uses strcmp */
/*
* convert interface string to ifp, validate.
*/
ifp = ifunit(snatm->snatm_if);
if (ifp == NULL || (ifp->if_flags & IFF_RUNNING) == 0) {
error = ENXIO;
break;
}
if (ifp->if_output != atm_output) {
error = EAFNOSUPPORT;
break;
}
/*
* register us with the NATM PCB layer
*/
if (npcb_add(npcb, ifp, snatm->snatm_vci, snatm->snatm_vpi) != npcb) {
error = EADDRINUSE;
break;
}
/*
* enable rx
*/
ATM_PH_FLAGS(&api.aph) = (proto == PROTO_NATMAAL5) ? ATM_PH_AAL5 : 0;
ATM_PH_VPI(&api.aph) = npcb->npcb_vpi;
ATM_PH_SETVCI(&api.aph, npcb->npcb_vci);
api.rxhand = npcb;
s2 = splnet();
*** Summary *** When a link-layer address changes (e.g., ifconfig ex0 link 02:de:ad:be:ef:02 active), send a gratuitous ARP and/or a Neighbor Advertisement to update the network-/link-layer address bindings on our LAN peers. Refuse a change of ethernet address to the address 00:00:00:00:00:00 or to any multicast/broadcast address. (Thanks matt@.) Reorder ifnet ioctl operations so that driver ioctls may inherit the functions of their "class"---ether_ioctl(), fddi_ioctl(), et cetera---and the class ioctls may inherit from the generic ioctl, ifioctl_common(), but both driver- and class-ioctls may override the generic behavior. Make network drivers share more code. Distinguish a "factory" link-layer address from others for the purposes of both protecting that address from deletion and computing EUI64. Return consistent, appropriate error codes from network drivers. Improve readability. KNF. *** Details *** In if_attach(), always initialize the interface ioctl routine, ifnet->if_ioctl, if the driver has not already initialized it. Delete if_ioctl == NULL tests everywhere else, because it cannot happen. In the ioctl routines of network interfaces, inherit common ioctl behaviors by calling either ifioctl_common() or whichever ioctl routine is appropriate for the class of interface---e.g., ether_ioctl() for ethernets. Stop (ab)using SIOCSIFADDR and start to use SIOCINITIFADDR. In the user->kernel interface, SIOCSIFADDR's argument was an ifreq, but on the protocol->ifnet interface, SIOCSIFADDR's argument was an ifaddr. That was confusing, and it would work against me as I make it possible for a network interface to overload most ioctls. On the protocol->ifnet interface, replace SIOCSIFADDR with SIOCINITIFADDR. In ifioctl(), return EPERM if userland tries to invoke SIOCINITIFADDR. In ifioctl(), give the interface the first shot at handling most interface ioctls, and give the protocol the second shot, instead of the other way around. Finally, let compatibility code (COMPAT_OSOCK) take a shot. Pull device initialization out of switch statements under SIOCINITIFADDR. For example, pull ..._init() out of any switch statement that looks like this: switch (...->sa_family) { case ...: ..._init(); ... break; ... default: ..._init(); ... break; } Rewrite many if-else clauses that handle all permutations of IFF_UP and IFF_RUNNING to use a switch statement, switch (x & (IFF_UP|IFF_RUNNING)) { case 0: ... break; case IFF_RUNNING: ... break; case IFF_UP: ... break; case IFF_UP|IFF_RUNNING: ... break; } unifdef lots of code containing #ifdef FreeBSD, #ifdef NetBSD, and #ifdef SIOCSIFMTU, especially in fwip(4) and in ndis(4). In ipw(4), remove an if_set_sadl() call that is out of place. In nfe(4), reuse the jumbo MTU logic in ether_ioctl(). Let ethernets register a callback for setting h/w state such as promiscuous mode and the multicast filter in accord with a change in the if_flags: ether_set_ifflags_cb() registers a callback that returns ENETRESET if the caller should reset the ethernet by calling if_init(), 0 on success, != 0 on failure. Pull common code from ex(4), gem(4), nfe(4), sip(4), tlp(4), vge(4) into ether_ioctl(), and register if_flags callbacks for those drivers. Return ENOTTY instead of EINVAL for inappropriate ioctls. In zyd(4), use ENXIO instead of ENOTTY to indicate that the device is not any longer attached. Add to if_set_sadl() a boolean 'factory' argument that indicates whether a link-layer address was assigned by the factory or some other source. In a comment, recommend using the factory address for generating an EUI64, and update in6_get_hw_ifid() to prefer a factory address to any other link-layer address. Add a routing message, RTM_LLINFO_UPD, that tells protocols to update the binding of network-layer addresses to link-layer addresses. Implement this message in IPv4 and IPv6 by sending a gratuitous ARP or a neighbor advertisement, respectively. Generate RTM_LLINFO_UPD messages on a change of an interface's link-layer address. In ether_ioctl(), do not let SIOCALIFADDR set a link-layer address that is broadcast/multicast or equal to 00:00:00:00:00:00. Make ether_ioctl() call ifioctl_common() to handle ioctls that it does not understand. In gif(4), initialize if_softc and use it, instead of assuming that the gif_softc and ifp overlap. Let ifioctl_common() handle SIOCGIFADDR. Sprinkle rtcache_invariants(), which checks on DIAGNOSTIC kernels that certain invariants on a struct route are satisfied. In agr(4), rewrite agr_ioctl_filter() to be a bit more explicit about the ioctls that we do not allow on an agr(4) member interface. bzero -> memset. Delete unnecessary casts to void *. Use sockaddr_in_init() and sockaddr_in6_init(). Compare pointers with NULL instead of "testing truth". Replace some instances of (type *)0 with NULL. Change some K&R prototypes to ANSI C, and join lines.
2008-11-07 03:20:01 +03:00
if (ifp->if_ioctl(ifp, SIOCATMENA, &api) != 0) {
splx(s2);
npcb_free(npcb, NPCB_REMOVE);
error = EIO;
break;
}
splx(s2);
soisconnected(so);
break;
case PRU_DISCONNECT: /* disconnect from peer */
if ((npcb->npcb_flags & NPCB_CONNECTED) == 0) {
1996-10-13 05:59:55 +04:00
printf("natm: disconnected check\n");
error = EIO;
break;
}
ifp = npcb->npcb_ifp;
/*
* disable rx
*/
ATM_PH_FLAGS(&api.aph) = ATM_PH_AAL5;
ATM_PH_VPI(&api.aph) = npcb->npcb_vpi;
ATM_PH_SETVCI(&api.aph, npcb->npcb_vci);
api.rxhand = npcb;
s2 = splnet();
*** Summary *** When a link-layer address changes (e.g., ifconfig ex0 link 02:de:ad:be:ef:02 active), send a gratuitous ARP and/or a Neighbor Advertisement to update the network-/link-layer address bindings on our LAN peers. Refuse a change of ethernet address to the address 00:00:00:00:00:00 or to any multicast/broadcast address. (Thanks matt@.) Reorder ifnet ioctl operations so that driver ioctls may inherit the functions of their "class"---ether_ioctl(), fddi_ioctl(), et cetera---and the class ioctls may inherit from the generic ioctl, ifioctl_common(), but both driver- and class-ioctls may override the generic behavior. Make network drivers share more code. Distinguish a "factory" link-layer address from others for the purposes of both protecting that address from deletion and computing EUI64. Return consistent, appropriate error codes from network drivers. Improve readability. KNF. *** Details *** In if_attach(), always initialize the interface ioctl routine, ifnet->if_ioctl, if the driver has not already initialized it. Delete if_ioctl == NULL tests everywhere else, because it cannot happen. In the ioctl routines of network interfaces, inherit common ioctl behaviors by calling either ifioctl_common() or whichever ioctl routine is appropriate for the class of interface---e.g., ether_ioctl() for ethernets. Stop (ab)using SIOCSIFADDR and start to use SIOCINITIFADDR. In the user->kernel interface, SIOCSIFADDR's argument was an ifreq, but on the protocol->ifnet interface, SIOCSIFADDR's argument was an ifaddr. That was confusing, and it would work against me as I make it possible for a network interface to overload most ioctls. On the protocol->ifnet interface, replace SIOCSIFADDR with SIOCINITIFADDR. In ifioctl(), return EPERM if userland tries to invoke SIOCINITIFADDR. In ifioctl(), give the interface the first shot at handling most interface ioctls, and give the protocol the second shot, instead of the other way around. Finally, let compatibility code (COMPAT_OSOCK) take a shot. Pull device initialization out of switch statements under SIOCINITIFADDR. For example, pull ..._init() out of any switch statement that looks like this: switch (...->sa_family) { case ...: ..._init(); ... break; ... default: ..._init(); ... break; } Rewrite many if-else clauses that handle all permutations of IFF_UP and IFF_RUNNING to use a switch statement, switch (x & (IFF_UP|IFF_RUNNING)) { case 0: ... break; case IFF_RUNNING: ... break; case IFF_UP: ... break; case IFF_UP|IFF_RUNNING: ... break; } unifdef lots of code containing #ifdef FreeBSD, #ifdef NetBSD, and #ifdef SIOCSIFMTU, especially in fwip(4) and in ndis(4). In ipw(4), remove an if_set_sadl() call that is out of place. In nfe(4), reuse the jumbo MTU logic in ether_ioctl(). Let ethernets register a callback for setting h/w state such as promiscuous mode and the multicast filter in accord with a change in the if_flags: ether_set_ifflags_cb() registers a callback that returns ENETRESET if the caller should reset the ethernet by calling if_init(), 0 on success, != 0 on failure. Pull common code from ex(4), gem(4), nfe(4), sip(4), tlp(4), vge(4) into ether_ioctl(), and register if_flags callbacks for those drivers. Return ENOTTY instead of EINVAL for inappropriate ioctls. In zyd(4), use ENXIO instead of ENOTTY to indicate that the device is not any longer attached. Add to if_set_sadl() a boolean 'factory' argument that indicates whether a link-layer address was assigned by the factory or some other source. In a comment, recommend using the factory address for generating an EUI64, and update in6_get_hw_ifid() to prefer a factory address to any other link-layer address. Add a routing message, RTM_LLINFO_UPD, that tells protocols to update the binding of network-layer addresses to link-layer addresses. Implement this message in IPv4 and IPv6 by sending a gratuitous ARP or a neighbor advertisement, respectively. Generate RTM_LLINFO_UPD messages on a change of an interface's link-layer address. In ether_ioctl(), do not let SIOCALIFADDR set a link-layer address that is broadcast/multicast or equal to 00:00:00:00:00:00. Make ether_ioctl() call ifioctl_common() to handle ioctls that it does not understand. In gif(4), initialize if_softc and use it, instead of assuming that the gif_softc and ifp overlap. Let ifioctl_common() handle SIOCGIFADDR. Sprinkle rtcache_invariants(), which checks on DIAGNOSTIC kernels that certain invariants on a struct route are satisfied. In agr(4), rewrite agr_ioctl_filter() to be a bit more explicit about the ioctls that we do not allow on an agr(4) member interface. bzero -> memset. Delete unnecessary casts to void *. Use sockaddr_in_init() and sockaddr_in6_init(). Compare pointers with NULL instead of "testing truth". Replace some instances of (type *)0 with NULL. Change some K&R prototypes to ANSI C, and join lines.
2008-11-07 03:20:01 +03:00
ifp->if_ioctl(ifp, SIOCATMDIS, &api);
splx(s);
npcb_free(npcb, NPCB_REMOVE);
soisdisconnected(so);
break;
case PRU_SHUTDOWN: /* won't send any more data */
socantsendmore(so);
break;
case PRU_SEND: /* send this data */
if (control && control->m_len) {
m_freem(control);
m_freem(m);
error = EINVAL;
break;
}
/*
* send the data. we must put an atm_pseudohdr on first
*/
M_PREPEND(m, sizeof(*aph), M_WAITOK);
if (m == NULL) {
error = ENOBUFS;
break;
}
aph = mtod(m, struct atm_pseudohdr *);
ATM_PH_VPI(aph) = npcb->npcb_vpi;
ATM_PH_SETVCI(aph, npcb->npcb_vci);
ATM_PH_FLAGS(aph) = (proto == PROTO_NATMAAL5) ? ATM_PH_AAL5 : 0;
error = atm_output(npcb->npcb_ifp, m, NULL, NULL);
break;
case PRU_SENSE: /* return status into m */
/* return zero? */
break;
case PRU_PEERADDR: /* fetch peer's address */
snatm = mtod(nam, struct sockaddr_natm *);
2009-03-18 19:00:08 +03:00
memset(snatm, 0, sizeof(*snatm));
nam->m_len = snatm->snatm_len = sizeof(*snatm);
snatm->snatm_family = AF_NATM;
#if defined(__NetBSD__) || defined(__OpenBSD__)
memcpy(snatm->snatm_if, npcb->npcb_ifp->if_xname, sizeof(snatm->snatm_if));
#elif defined(__FreeBSD__)
2004-04-21 22:40:37 +04:00
snprintf(snatm->snatm_if, sizeof(snatm->snatm_if), "%s%d",
npcb->npcb_ifp->if_name, npcb->npcb_ifp->if_unit);
#endif
snatm->snatm_vci = npcb->npcb_vci;
snatm->snatm_vpi = npcb->npcb_vpi;
break;
case PRU_CONTROL: /* control operations on protocol */
/*
* raw atm ioctl. comes in as a SIOCRAWATM. we convert it to
* SIOCXRAWATM and pass it to the driver.
*/
if ((u_long)m == SIOCRAWATM) {
if (npcb->npcb_ifp == NULL) {
error = ENOTCONN;
break;
}
ario.npcb = npcb;
ario.rawvalue = *((int *)nam);
2008-05-22 04:59:19 +04:00
error = npcb->npcb_ifp->if_ioctl(npcb->npcb_ifp, SIOCXRAWATM, &ario);
if (!error) {
2005-02-27 01:31:44 +03:00
if (ario.rawvalue)
npcb->npcb_flags |= NPCB_RAW;
else
npcb->npcb_flags &= ~(NPCB_RAW);
}
break;
}
error = EOPNOTSUPP;
break;
case PRU_BIND: /* bind socket to address */
case PRU_LISTEN: /* listen for connection */
case PRU_ACCEPT: /* accept connection from peer */
case PRU_CONNECT2: /* connect two sockets */
case PRU_ABORT: /* abort (fast DISCONNECT, DETATCH) */
/* (only happens if LISTEN socket) */
case PRU_RCVD: /* have taken data; more room now */
case PRU_FASTTIMO: /* 200ms timeout */
case PRU_SLOWTIMO: /* 500ms timeout */
case PRU_RCVOOB: /* retrieve out of band data */
case PRU_SENDOOB: /* send out of band data */
case PRU_PROTORCV: /* receive from below */
case PRU_PROTOSEND: /* send to below */
case PRU_SOCKADDR: /* fetch socket's address */
#ifdef DIAGNOSTIC
1996-10-13 05:59:55 +04:00
printf("natm: PRU #%d unsupported\n", req);
#endif
error = EOPNOTSUPP;
break;
2005-02-27 01:31:44 +03:00
default: panic("natm usrreq");
}
done:
splx(s);
return(error);
}
/*
* natmintr: splsoftnet interrupt
*
* note: we expect a socket pointer in rcvif rather than an interface
* pointer. we can get the interface pointer from the so's PCB if
* we really need it.
*/
void
natmintr(void)
{
int s;
struct mbuf *m;
struct socket *so;
struct natmpcb *npcb;
mutex_enter(softnet_lock);
next:
s = splnet();
IF_DEQUEUE(&natmintrq, m);
splx(s);
if (m == NULL) {
mutex_exit(softnet_lock);
return;
}
#ifdef DIAGNOSTIC
if ((m->m_flags & M_PKTHDR) == 0)
panic("natmintr no HDR");
#endif
npcb = (struct natmpcb *) m->m_pkthdr.rcvif; /* XXX: overloaded */
so = npcb->npcb_socket;
s = splnet(); /* could have atm devs @ different levels */
npcb->npcb_inq--;
splx(s);
if (npcb->npcb_flags & NPCB_DRAIN) {
m_freem(m);
if (npcb->npcb_inq == 0)
2008-12-17 23:51:31 +03:00
free(npcb, M_PCB); /* done! */
goto next;
}
if (npcb->npcb_flags & NPCB_FREE) {
m_freem(m); /* drop */
goto next;
}
#ifdef NEED_TO_RESTORE_IFP
m->m_pkthdr.rcvif = npcb->npcb_ifp;
#else
#ifdef DIAGNOSTIC
m->m_pkthdr.rcvif = NULL; /* null it out to be safe */
#endif
#endif
if (sbspace(&so->so_rcv) > m->m_pkthdr.len ||
((npcb->npcb_flags & NPCB_RAW) != 0 && so->so_rcv.sb_cc < NPCB_RAWCC) ) {
#ifdef NATM_STAT
natm_sookcnt++;
natm_sookbytes += m->m_pkthdr.len;
#endif
sbappendrecord(&so->so_rcv, m);
sorwakeup(so);
} else {
#ifdef NATM_STAT
natm_sodropcnt++;
natm_sodropbytes += m->m_pkthdr.len;
#endif
m_freem(m);
}
goto next;
}
#if defined(__FreeBSD__)
NETISR_SET(NETISR_NATM, natmintr);
#endif
#ifdef notyet
2005-02-27 01:31:44 +03:00
/*
* natm0_sysctl: not used, but here in case we want to add something
* later...
*/
int natm0_sysctl(name, namelen, oldp, oldlenp, newp, newlen)
int *name;
u_int namelen;
void *oldp;
size_t *oldlenp;
void *newp;
size_t newlen;
{
/* All sysctl names at this level are terminal. */
if (namelen != 1)
return (ENOTDIR);
return (ENOPROTOOPT);
}
2005-02-27 01:31:44 +03:00
/*
* natm5_sysctl: not used, but here in case we want to add something
* later...
*/
int natm5_sysctl(name, namelen, oldp, oldlenp, newp, newlen)
int *name;
u_int namelen;
void *oldp;
size_t *oldlenp;
void *newp;
size_t newlen;
{
/* All sysctl names at this level are terminal. */
if (namelen != 1)
return (ENOTDIR);
return (ENOPROTOOPT);
}
#endif