NetBSD/lib/libm/src/e_acosh.c

63 lines
1.6 KiB
C
Raw Normal View History

1994-02-11 20:52:17 +03:00
/* @(#)e_acosh.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
1999-07-02 19:37:33 +04:00
* software is freely granted, provided that this notice
1994-02-11 20:52:17 +03:00
* is preserved.
* ====================================================
*/
1997-10-09 15:27:48 +04:00
#include <sys/cdefs.h>
#if defined(LIBM_SCCS) && !defined(lint)
2002-05-27 02:01:47 +04:00
__RCSID("$NetBSD: e_acosh.c,v 1.12 2002/05/26 22:01:48 wiz Exp $");
1994-02-18 05:24:43 +03:00
#endif
1994-02-11 20:52:17 +03:00
/* __ieee754_acosh(x)
* Method :
1999-07-02 19:37:33 +04:00
* Based on
1994-02-11 20:52:17 +03:00
* acosh(x) = log [ x + sqrt(x*x-1) ]
* we have
* acosh(x) := log(x)+ln2, if x is large; else
* acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
* acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
*
* Special cases:
* acosh(x) is NaN with signal if x<1.
* acosh(NaN) is NaN without signal.
*/
#include "math.h"
#include "math_private.h"
1994-02-11 20:52:17 +03:00
1999-07-02 19:37:33 +04:00
static const double
1994-02-11 20:52:17 +03:00
one = 1.0,
ln2 = 6.93147180559945286227e-01; /* 0x3FE62E42, 0xFEFA39EF */
2002-05-27 02:01:47 +04:00
double
__ieee754_acosh(double x)
1999-07-02 19:37:33 +04:00
{
1994-02-11 20:52:17 +03:00
double t;
int32_t hx;
u_int32_t lx;
EXTRACT_WORDS(hx,lx,x);
1994-02-11 20:52:17 +03:00
if(hx<0x3ff00000) { /* x < 1 */
return (x-x)/(x-x);
} else if(hx >=0x41b00000) { /* x > 2**28 */
if(hx >=0x7ff00000) { /* x is inf of NaN */
return x+x;
1999-07-02 19:37:33 +04:00
} else
1994-02-11 20:52:17 +03:00
return __ieee754_log(x)+ln2; /* acosh(huge)=log(2x) */
} else if(((hx-0x3ff00000)|lx)==0) {
1994-02-11 20:52:17 +03:00
return 0.0; /* acosh(1) = 0 */
} else if (hx > 0x40000000) { /* 2**28 > x > 2 */
t=x*x;
return __ieee754_log(2.0*x-one/(x+__ieee754_sqrt(t-one)));
1994-02-11 20:52:17 +03:00
} else { /* 1<x<2 */
t = x-one;
return log1p(t+sqrt(2.0*t+t*t));
}
}