409 lines
11 KiB
C
409 lines
11 KiB
C
|
/* $NetBSD: vmem.c,v 1.1.1.1 1999/09/16 12:23:31 takemura Exp $ */
|
||
|
|
||
|
/*-
|
||
|
* Copyright (c) 1999 Shin Takemura.
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* This software is part of the PocketBSD.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* 1. Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* 3. All advertising materials mentioning features or use of this software
|
||
|
* must display the following acknowledgement:
|
||
|
* This product includes software developed by the PocketBSD project
|
||
|
* and its contributors.
|
||
|
* 4. Neither the name of the project nor the names of its contributors
|
||
|
* may be used to endorse or promote products derived from this software
|
||
|
* without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
||
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
||
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
|
* SUCH DAMAGE.
|
||
|
*
|
||
|
*/
|
||
|
#include <pbsdboot.h>
|
||
|
|
||
|
#define MAX_MEMORY (1024*1024*32) /* 32 MB */
|
||
|
#define MEM_BLOCKS 8
|
||
|
#define MEM_BLOCK_SIZE (1024*1024*4)
|
||
|
|
||
|
struct addr_s {
|
||
|
caddr_t addr;
|
||
|
int in_use;
|
||
|
};
|
||
|
|
||
|
struct page_header_s {
|
||
|
unsigned long magic0;
|
||
|
int pageno;
|
||
|
unsigned long magic1;
|
||
|
};
|
||
|
|
||
|
struct map_s *map = NULL;
|
||
|
struct addr_s *phys_addrs = NULL;
|
||
|
unsigned char* heap = NULL;
|
||
|
int npages;
|
||
|
caddr_t kernel_start;
|
||
|
caddr_t kernel_end;
|
||
|
|
||
|
int
|
||
|
vmem_exec(caddr_t entry, int argc, char *argv[], struct bootinfo *bi)
|
||
|
{
|
||
|
int i;
|
||
|
caddr_t p;
|
||
|
|
||
|
if (map == NULL) {
|
||
|
debug_printf(TEXT("vmem is not initialized.\n"));
|
||
|
msg_printf(MSG_ERROR, whoami, TEXT("vmem is not initialized.\n"));
|
||
|
return (-1);
|
||
|
}
|
||
|
|
||
|
debug_printf(TEXT("entry point=0x%x\n"), entry);
|
||
|
|
||
|
map->entry = entry;
|
||
|
map->base = kernel_start;
|
||
|
|
||
|
for (i = 0; i < argc; i++) {
|
||
|
argv[i] = vtophysaddr(argv[i]);
|
||
|
}
|
||
|
map->arg0 = (caddr_t)argc;
|
||
|
map->arg1 = vtophysaddr((caddr_t)argv);
|
||
|
map->arg2 = vtophysaddr((caddr_t)bi);
|
||
|
map->arg3 = NULL;
|
||
|
|
||
|
if (map->arg1 == NULL || map->arg2 == NULL) {
|
||
|
debug_printf(TEXT("arg, vtophysaddr() failed\n"));
|
||
|
msg_printf(MSG_ERROR, whoami,
|
||
|
TEXT("arg, vtophysaddr() failed\n"));
|
||
|
return (-1);
|
||
|
}
|
||
|
|
||
|
for (i = 0; p = map->leaf[i / map->leafsize][i % map->leafsize]; i++) {
|
||
|
if ((p = vtophysaddr(p)) == NULL) {
|
||
|
debug_printf(TEXT("vtophysaddr() failed, page %d (addr=0x%x) \n"),
|
||
|
i, map->leaf[i / map->leafsize][i % map->leafsize]);
|
||
|
msg_printf(MSG_ERROR, whoami,
|
||
|
TEXT("vtophysaddr() failed, page %d (addr=0x%x) \n"),
|
||
|
i, map->leaf[i / map->leafsize][i % map->leafsize]);
|
||
|
return (-1);
|
||
|
}
|
||
|
map->leaf[i / map->leafsize][i % map->leafsize] = p;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < map->nleaves; i++) {
|
||
|
if ((p = vtophysaddr((caddr_t)map->leaf[i])) == NULL) {
|
||
|
debug_printf(TEXT("vtophysaddr() failed, leaf %d (addr=0x%x) \n"),
|
||
|
i, map->leaf[i / map->leafsize][i % map->leafsize]);
|
||
|
msg_printf(MSG_ERROR, whoami,
|
||
|
TEXT("vtophysaddr() failed, leaf %d (addr=0x%x) \n"),
|
||
|
i, map->leaf[i / map->leafsize][i % map->leafsize]);
|
||
|
return (-1);
|
||
|
}
|
||
|
map->leaf[i] = (caddr_t*)p;
|
||
|
}
|
||
|
|
||
|
debug_printf(TEXT("execute startprog()\n"));
|
||
|
//return (-1);
|
||
|
return (startprog(vtophysaddr((caddr_t)map)));
|
||
|
}
|
||
|
|
||
|
DWORD
|
||
|
getpagesize()
|
||
|
{
|
||
|
static int init = 0;
|
||
|
static SYSTEM_INFO info;
|
||
|
|
||
|
if (!init) {
|
||
|
GetSystemInfo(&info);
|
||
|
init = 1;
|
||
|
}
|
||
|
|
||
|
return (info.dwPageSize);
|
||
|
}
|
||
|
|
||
|
caddr_t
|
||
|
vmem_alloc()
|
||
|
{
|
||
|
int i;
|
||
|
struct page_header_s *page;
|
||
|
for (i = 0; i < npages; i++) {
|
||
|
page = (struct page_header_s*)&heap[getpagesize() * i];
|
||
|
if (!phys_addrs[i].in_use &&
|
||
|
!(kernel_start <= phys_addrs[i].addr &&
|
||
|
phys_addrs[i].addr < kernel_end)) {
|
||
|
phys_addrs[i].in_use = 1;
|
||
|
return ((caddr_t)page);
|
||
|
}
|
||
|
}
|
||
|
return (NULL);
|
||
|
}
|
||
|
|
||
|
static caddr_t
|
||
|
alloc_kpage(caddr_t phys_addr)
|
||
|
{
|
||
|
int i;
|
||
|
struct page_header_s *page;
|
||
|
for (i = 0; i < npages; i++) {
|
||
|
page = (struct page_header_s*)&heap[getpagesize() * i];
|
||
|
if (phys_addrs[i].addr == phys_addr) {
|
||
|
if (phys_addrs[i].in_use) {
|
||
|
debug_printf(TEXT("page %d (phys addr=0x%x) is already in use\n"),
|
||
|
i, phys_addr);
|
||
|
msg_printf(MSG_ERROR, whoami,
|
||
|
TEXT("page %d (phys addr=0x%x) is already in use\n"),
|
||
|
i, phys_addr);
|
||
|
return (NULL);
|
||
|
}
|
||
|
phys_addrs[i].in_use = 1;
|
||
|
return ((caddr_t)page);
|
||
|
}
|
||
|
}
|
||
|
return (vmem_alloc());
|
||
|
}
|
||
|
|
||
|
caddr_t
|
||
|
vmem_get(caddr_t phys_addr, int *length)
|
||
|
{
|
||
|
int pageno = (phys_addr - kernel_start) / getpagesize();
|
||
|
int offset = (phys_addr - kernel_start) % getpagesize();
|
||
|
|
||
|
if (map == NULL || pageno < 0 || npages <= pageno) {
|
||
|
return (NULL);
|
||
|
}
|
||
|
if (length) {
|
||
|
*length = getpagesize() - offset;
|
||
|
}
|
||
|
return (map->leaf[pageno / map->leafsize][pageno % map->leafsize] + offset);
|
||
|
}
|
||
|
|
||
|
caddr_t
|
||
|
vtophysaddr(caddr_t page)
|
||
|
{
|
||
|
int pageno = (page - heap) / getpagesize();
|
||
|
int offset = (page - heap) % getpagesize();
|
||
|
|
||
|
if (map == NULL || pageno < 0 || npages <= pageno) {
|
||
|
return (NULL);
|
||
|
}
|
||
|
return (phys_addrs[pageno].addr + offset);
|
||
|
}
|
||
|
|
||
|
int
|
||
|
vmem_init(caddr_t start, caddr_t end)
|
||
|
{
|
||
|
int i, N, pageno;
|
||
|
unsigned long magic0;
|
||
|
unsigned long magic1;
|
||
|
int nfounds;
|
||
|
struct page_header_s *page;
|
||
|
long size;
|
||
|
int nleaves;
|
||
|
|
||
|
/* align with page size */
|
||
|
start = (caddr_t)(((long)start / getpagesize()) * getpagesize());
|
||
|
end = (caddr_t)((((long)end + getpagesize() - 1) / getpagesize()) * getpagesize());
|
||
|
|
||
|
kernel_start = start;
|
||
|
kernel_end = end;
|
||
|
size = end - start;
|
||
|
|
||
|
/*
|
||
|
* program image pages.
|
||
|
*/
|
||
|
npages = (size + getpagesize() - 1) / getpagesize();
|
||
|
|
||
|
/*
|
||
|
* map leaf pages.
|
||
|
* npages plus one for end mark.
|
||
|
*/
|
||
|
npages += (nleaves = ((npages * sizeof(caddr_t) + getpagesize()) / getpagesize()));
|
||
|
|
||
|
/*
|
||
|
* map root page, startprg code page, argument page and bootinfo page.
|
||
|
*/
|
||
|
npages += 4;
|
||
|
|
||
|
/*
|
||
|
* allocate pages
|
||
|
*/
|
||
|
debug_printf(TEXT("allocate %d pages\n"), npages);
|
||
|
heap = (unsigned char*)
|
||
|
VirtualAlloc(0,
|
||
|
npages * getpagesize(),
|
||
|
MEM_COMMIT,
|
||
|
PAGE_READWRITE | PAGE_NOCACHE);
|
||
|
if (heap == NULL) {
|
||
|
debug_printf(TEXT("can't allocate heap\n"));
|
||
|
msg_printf(MSG_ERROR, whoami, TEXT("can't allocate heap\n"));
|
||
|
goto error_cleanup;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* allocate address table.
|
||
|
*/
|
||
|
phys_addrs = (struct addr_s *)
|
||
|
VirtualAlloc(0,
|
||
|
npages * sizeof(struct addr_s),
|
||
|
MEM_COMMIT,
|
||
|
PAGE_READWRITE);
|
||
|
if (phys_addrs == NULL) {
|
||
|
debug_printf(TEXT("can't allocate address table\n"));
|
||
|
msg_printf(MSG_ERROR, whoami, TEXT("can't allocate address table\n"));
|
||
|
goto error_cleanup;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* set magic number for each page in buffer.
|
||
|
*/
|
||
|
magic0 = Random();
|
||
|
magic1 = Random();
|
||
|
debug_printf(TEXT("magic=%08x%08x\n"), magic0, magic1);
|
||
|
|
||
|
for (i = 0; i < npages; i++) {
|
||
|
page = (struct page_header_s*)&heap[getpagesize() * i];
|
||
|
page->magic0 = magic0;
|
||
|
page->pageno = i;
|
||
|
page->magic1 = magic1;
|
||
|
phys_addrs[i].addr = 0;
|
||
|
phys_addrs[i].in_use = 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Scan whole physical memory.
|
||
|
*/
|
||
|
nfounds = 0;
|
||
|
for (N = 0; N < MEM_BLOCKS && nfounds < npages; N++) {
|
||
|
unsigned char* mem;
|
||
|
int res;
|
||
|
mem = (unsigned char*)
|
||
|
VirtualAlloc(0,
|
||
|
MEM_BLOCK_SIZE,
|
||
|
MEM_RESERVE,
|
||
|
PAGE_NOACCESS);
|
||
|
res = VirtualCopy((LPVOID)mem,
|
||
|
//(LPVOID)((0xa0000000 + MEM_BLOCK_SIZE * N) >> 8),
|
||
|
(LPVOID)((0x80000000 + MEM_BLOCK_SIZE * N) >> 8),
|
||
|
MEM_BLOCK_SIZE,
|
||
|
PAGE_READWRITE | PAGE_NOCACHE | PAGE_PHYSICAL);
|
||
|
|
||
|
for (i = 0; i < (int)(MEM_BLOCK_SIZE/getpagesize()); i++) {
|
||
|
page = (struct page_header_s*)&mem[getpagesize() * i];
|
||
|
if (page->magic0 == magic0 &&
|
||
|
page->magic1 == magic1) {
|
||
|
pageno = page->pageno;
|
||
|
if (0 <= pageno && pageno < npages &&
|
||
|
phys_addrs[pageno].addr == 0) {
|
||
|
phys_addrs[pageno].addr =
|
||
|
(unsigned char*)(0x80000000 + MEM_BLOCK_SIZE * N +
|
||
|
getpagesize() * i);
|
||
|
page->magic0 = 0;
|
||
|
page->magic1 = 0;
|
||
|
if (npages <= ++nfounds) {
|
||
|
break;
|
||
|
}
|
||
|
} else {
|
||
|
debug_printf(TEXT("invalid page header\n"));
|
||
|
msg_printf(MSG_ERROR, whoami, TEXT("invalid page header\n"));
|
||
|
goto error_cleanup;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
VirtualFree(mem, 0, MEM_RELEASE);
|
||
|
}
|
||
|
|
||
|
if (nfounds < npages) {
|
||
|
debug_printf(TEXT("lost %d pages\n"), npages - nfounds);
|
||
|
msg_printf(MSG_ERROR, whoami, TEXT("lost %d pages\n"), npages - nfounds);
|
||
|
goto error_cleanup;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* allocate root page
|
||
|
*/
|
||
|
if ((map = (struct map_s*)vmem_alloc()) == NULL) {
|
||
|
debug_printf(TEXT("can't allocate root page.\n"));
|
||
|
msg_printf(MSG_ERROR, whoami, TEXT("can't allocate root page.\n"));
|
||
|
goto error_cleanup;
|
||
|
}
|
||
|
map->nleaves = nleaves;
|
||
|
map->leafsize = getpagesize() / sizeof(caddr_t);
|
||
|
map->pagesize = getpagesize();
|
||
|
|
||
|
/*
|
||
|
* allocate leaf pages
|
||
|
*/
|
||
|
for (i = 0; i < nleaves; i++) {
|
||
|
if ((map->leaf[i] = (caddr_t*)vmem_alloc()) == NULL) {
|
||
|
debug_printf(TEXT("can't allocate leaf page.\n"));
|
||
|
msg_printf(MSG_ERROR, whoami, TEXT("can't allocate leaf page.\n"));
|
||
|
goto error_cleanup;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* allocate kernel pages
|
||
|
*/
|
||
|
for (i = 0; start < kernel_end; start += getpagesize(), i++) {
|
||
|
caddr_t *leaf = map->leaf[i / map->leafsize];
|
||
|
if ((leaf[i % map->leafsize] = alloc_kpage(start)) == NULL) {
|
||
|
debug_printf(TEXT("can't allocate page 0x%x.\n"), start);
|
||
|
msg_printf(MSG_ERROR, whoami, TEXT("can't allocate page 0x%x.\n"), start);
|
||
|
goto error_cleanup;
|
||
|
}
|
||
|
}
|
||
|
map->leaf[i / map->leafsize][i % map->leafsize] = NULL; /* END MARK */
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
error_cleanup:
|
||
|
vmem_free();
|
||
|
|
||
|
return (-1);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
vmem_free()
|
||
|
{
|
||
|
map = NULL;
|
||
|
if (heap) {
|
||
|
VirtualFree(heap, 0, MEM_RELEASE);
|
||
|
heap = NULL;
|
||
|
}
|
||
|
if (phys_addrs) {
|
||
|
VirtualFree(phys_addrs, 0, MEM_RELEASE);
|
||
|
phys_addrs = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void
|
||
|
vmem_dump_map()
|
||
|
{
|
||
|
caddr_t addr, page, paddr;
|
||
|
|
||
|
if (map == NULL) {
|
||
|
debug_printf(TEXT("no page map\n"));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
for (addr = kernel_start; addr < kernel_end; addr += getpagesize()) {
|
||
|
page = vmem_get(addr, NULL);
|
||
|
paddr = vtophysaddr(page);
|
||
|
debug_printf(TEXT("%08X: vaddr=%08X paddr=%08X %s\n"),
|
||
|
addr, page, paddr, addr == paddr ? TEXT("*") : TEXT("reloc"));
|
||
|
|
||
|
}
|
||
|
}
|