NetBSD/usr.sbin/sysinst/geom.c

123 lines
3.3 KiB
C
Raw Normal View History

/* $NetBSD: geom.c,v 1.4 2021/01/31 22:45:46 rillig Exp $ */
/*
* Copyright (c) 1995, 1997 Jason R. Thorpe.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project
* by Jason R. Thorpe.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* Modified by Philip A. Nelson for use in sysinst. */
#include <sys/param.h>
#include <sys/ioctl.h>
#include <fcntl.h>
#include <unistd.h>
#include <util.h>
#include <stdint.h>
#include <errno.h>
Rework internal data structures and "interfaces to user interface" functions to get rid of all disklabel assumptions. Previously (even for GPT partitioning) struct disklabel was used, which obviously breaks large disk setups. Also many MD parts and parts of the user interface assumed (a) a struct disklabel is used internally to store partitioning information and (b) partitions are named 'a' ... $MAXPART. Get rid of this and replace it with a quite abstract interface that should be able to deal with all variants in partition storage: - partitions are stored in a (partly abstract) struct disk_partitions and most parts of it are only accessed via accessor functions provided by a "partitioning scheme". - implement partitioning schemes for MBR, disklabel and GPT (with likely RDB [amiga] and Apple Partition Map [mac*] to follow soon) - partitioning schemes may be cascaded, e.g. on x86 when using MBR as "outer partitions", we have disklabel as "inner partitions". - all user interface goes via accessor functions in the partitioning scheme, some of which return pointers to special user interface descriptors (e.g. to allow editing partition flags, which are scheme specific) Overall the user interface changes (in this initial step) are minimal but noticable. A new Anita is needed for automatic test setups - many thanks to Andreas Gustafsson for lots of early testing and a new Anita version, and to Manuel Bouyer for cooperation and tests of the Anita release. This work was sponsored by The NetBSD Foundation, Inc.
2019-06-12 09:20:17 +03:00
#include "partutil.h"
#include "defs.h"
bool
disk_ioctl(const char *disk, unsigned long cmd, void *d)
{
char diskpath[MAXPATHLEN];
int fd;
int sv_errno;
/* Open the disk. */
fd = opendisk(disk, O_RDONLY, diskpath, sizeof(diskpath), 0);
if (fd == -1)
return false;
if (ioctl(fd, cmd, d) == -1) {
sv_errno = errno;
1998-06-20 17:05:48 +04:00
(void)close(fd);
errno = sv_errno;
return false;
}
1998-06-20 17:05:48 +04:00
(void)close(fd);
return true;
}
bool
get_wedge_list(const char *disk, struct dkwedge_list *dkwl)
{
struct dkwedge_info *dkw;
memset(dkwl, 0, sizeof(*dkwl));
for (;;) {
if (!disk_ioctl(disk, DIOCLWEDGES, dkwl))
goto out;
if (dkwl->dkwl_nwedges == dkwl->dkwl_ncopied)
return true;
dkwl->dkwl_bufsize = dkwl->dkwl_nwedges * sizeof(*dkw);
dkw = realloc(dkwl->dkwl_buf, dkwl->dkwl_bufsize);
if (dkw == NULL)
goto out;
dkwl->dkwl_buf = dkw;
}
out:
free(dkwl->dkwl_buf);
return false;
}
bool
get_wedge_info(const char *disk, struct dkwedge_info *dkw)
{
return disk_ioctl(disk, DIOCGWEDGEINFO, dkw);
}
bool
Rework internal data structures and "interfaces to user interface" functions to get rid of all disklabel assumptions. Previously (even for GPT partitioning) struct disklabel was used, which obviously breaks large disk setups. Also many MD parts and parts of the user interface assumed (a) a struct disklabel is used internally to store partitioning information and (b) partitions are named 'a' ... $MAXPART. Get rid of this and replace it with a quite abstract interface that should be able to deal with all variants in partition storage: - partitions are stored in a (partly abstract) struct disk_partitions and most parts of it are only accessed via accessor functions provided by a "partitioning scheme". - implement partitioning schemes for MBR, disklabel and GPT (with likely RDB [amiga] and Apple Partition Map [mac*] to follow soon) - partitioning schemes may be cascaded, e.g. on x86 when using MBR as "outer partitions", we have disklabel as "inner partitions". - all user interface goes via accessor functions in the partitioning scheme, some of which return pointers to special user interface descriptors (e.g. to allow editing partition flags, which are scheme specific) Overall the user interface changes (in this initial step) are minimal but noticable. A new Anita is needed for automatic test setups - many thanks to Andreas Gustafsson for lots of early testing and a new Anita version, and to Manuel Bouyer for cooperation and tests of the Anita release. This work was sponsored by The NetBSD Foundation, Inc.
2019-06-12 09:20:17 +03:00
get_disk_geom(const char *disk, struct disk_geom *d)
{
Rework internal data structures and "interfaces to user interface" functions to get rid of all disklabel assumptions. Previously (even for GPT partitioning) struct disklabel was used, which obviously breaks large disk setups. Also many MD parts and parts of the user interface assumed (a) a struct disklabel is used internally to store partitioning information and (b) partitions are named 'a' ... $MAXPART. Get rid of this and replace it with a quite abstract interface that should be able to deal with all variants in partition storage: - partitions are stored in a (partly abstract) struct disk_partitions and most parts of it are only accessed via accessor functions provided by a "partitioning scheme". - implement partitioning schemes for MBR, disklabel and GPT (with likely RDB [amiga] and Apple Partition Map [mac*] to follow soon) - partitioning schemes may be cascaded, e.g. on x86 when using MBR as "outer partitions", we have disklabel as "inner partitions". - all user interface goes via accessor functions in the partitioning scheme, some of which return pointers to special user interface descriptors (e.g. to allow editing partition flags, which are scheme specific) Overall the user interface changes (in this initial step) are minimal but noticable. A new Anita is needed for automatic test setups - many thanks to Andreas Gustafsson for lots of early testing and a new Anita version, and to Manuel Bouyer for cooperation and tests of the Anita release. This work was sponsored by The NetBSD Foundation, Inc.
2019-06-12 09:20:17 +03:00
char buf[MAXPATHLEN];
int fd, error;
Rework internal data structures and "interfaces to user interface" functions to get rid of all disklabel assumptions. Previously (even for GPT partitioning) struct disklabel was used, which obviously breaks large disk setups. Also many MD parts and parts of the user interface assumed (a) a struct disklabel is used internally to store partitioning information and (b) partitions are named 'a' ... $MAXPART. Get rid of this and replace it with a quite abstract interface that should be able to deal with all variants in partition storage: - partitions are stored in a (partly abstract) struct disk_partitions and most parts of it are only accessed via accessor functions provided by a "partitioning scheme". - implement partitioning schemes for MBR, disklabel and GPT (with likely RDB [amiga] and Apple Partition Map [mac*] to follow soon) - partitioning schemes may be cascaded, e.g. on x86 when using MBR as "outer partitions", we have disklabel as "inner partitions". - all user interface goes via accessor functions in the partitioning scheme, some of which return pointers to special user interface descriptors (e.g. to allow editing partition flags, which are scheme specific) Overall the user interface changes (in this initial step) are minimal but noticable. A new Anita is needed for automatic test setups - many thanks to Andreas Gustafsson for lots of early testing and a new Anita version, and to Manuel Bouyer for cooperation and tests of the Anita release. This work was sponsored by The NetBSD Foundation, Inc.
2019-06-12 09:20:17 +03:00
if ((fd = opendisk(disk, O_RDONLY, buf, sizeof(buf), 0)) == -1)
return false;
Rework internal data structures and "interfaces to user interface" functions to get rid of all disklabel assumptions. Previously (even for GPT partitioning) struct disklabel was used, which obviously breaks large disk setups. Also many MD parts and parts of the user interface assumed (a) a struct disklabel is used internally to store partitioning information and (b) partitions are named 'a' ... $MAXPART. Get rid of this and replace it with a quite abstract interface that should be able to deal with all variants in partition storage: - partitions are stored in a (partly abstract) struct disk_partitions and most parts of it are only accessed via accessor functions provided by a "partitioning scheme". - implement partitioning schemes for MBR, disklabel and GPT (with likely RDB [amiga] and Apple Partition Map [mac*] to follow soon) - partitioning schemes may be cascaded, e.g. on x86 when using MBR as "outer partitions", we have disklabel as "inner partitions". - all user interface goes via accessor functions in the partitioning scheme, some of which return pointers to special user interface descriptors (e.g. to allow editing partition flags, which are scheme specific) Overall the user interface changes (in this initial step) are minimal but noticable. A new Anita is needed for automatic test setups - many thanks to Andreas Gustafsson for lots of early testing and a new Anita version, and to Manuel Bouyer for cooperation and tests of the Anita release. This work was sponsored by The NetBSD Foundation, Inc.
2019-06-12 09:20:17 +03:00
error = getdiskinfo(disk, fd, NULL, d, NULL);
close(fd);
if (error < 0) {
errno = error;
return false;
Rework internal data structures and "interfaces to user interface" functions to get rid of all disklabel assumptions. Previously (even for GPT partitioning) struct disklabel was used, which obviously breaks large disk setups. Also many MD parts and parts of the user interface assumed (a) a struct disklabel is used internally to store partitioning information and (b) partitions are named 'a' ... $MAXPART. Get rid of this and replace it with a quite abstract interface that should be able to deal with all variants in partition storage: - partitions are stored in a (partly abstract) struct disk_partitions and most parts of it are only accessed via accessor functions provided by a "partitioning scheme". - implement partitioning schemes for MBR, disklabel and GPT (with likely RDB [amiga] and Apple Partition Map [mac*] to follow soon) - partitioning schemes may be cascaded, e.g. on x86 when using MBR as "outer partitions", we have disklabel as "inner partitions". - all user interface goes via accessor functions in the partitioning scheme, some of which return pointers to special user interface descriptors (e.g. to allow editing partition flags, which are scheme specific) Overall the user interface changes (in this initial step) are minimal but noticable. A new Anita is needed for automatic test setups - many thanks to Andreas Gustafsson for lots of early testing and a new Anita version, and to Manuel Bouyer for cooperation and tests of the Anita release. This work was sponsored by The NetBSD Foundation, Inc.
2019-06-12 09:20:17 +03:00
}
return true;
}
bool
Rework internal data structures and "interfaces to user interface" functions to get rid of all disklabel assumptions. Previously (even for GPT partitioning) struct disklabel was used, which obviously breaks large disk setups. Also many MD parts and parts of the user interface assumed (a) a struct disklabel is used internally to store partitioning information and (b) partitions are named 'a' ... $MAXPART. Get rid of this and replace it with a quite abstract interface that should be able to deal with all variants in partition storage: - partitions are stored in a (partly abstract) struct disk_partitions and most parts of it are only accessed via accessor functions provided by a "partitioning scheme". - implement partitioning schemes for MBR, disklabel and GPT (with likely RDB [amiga] and Apple Partition Map [mac*] to follow soon) - partitioning schemes may be cascaded, e.g. on x86 when using MBR as "outer partitions", we have disklabel as "inner partitions". - all user interface goes via accessor functions in the partitioning scheme, some of which return pointers to special user interface descriptors (e.g. to allow editing partition flags, which are scheme specific) Overall the user interface changes (in this initial step) are minimal but noticable. A new Anita is needed for automatic test setups - many thanks to Andreas Gustafsson for lots of early testing and a new Anita version, and to Manuel Bouyer for cooperation and tests of the Anita release. This work was sponsored by The NetBSD Foundation, Inc.
2019-06-12 09:20:17 +03:00
get_label_geom(const char *disk, struct disklabel *l)
{
return disk_ioctl(disk, DIOCGDINFO, l);
}