758 lines
22 KiB
C
758 lines
22 KiB
C
|
/* Save and restore call-clobbered registers which are live across a call.
|
|||
|
Copyright (C) 1989, 1992, 94-95, 97, 98, 1999 Free Software Foundation, Inc.
|
|||
|
|
|||
|
This file is part of GNU CC.
|
|||
|
|
|||
|
GNU CC is free software; you can redistribute it and/or modify
|
|||
|
it under the terms of the GNU General Public License as published by
|
|||
|
the Free Software Foundation; either version 2, or (at your option)
|
|||
|
any later version.
|
|||
|
|
|||
|
GNU CC is distributed in the hope that it will be useful,
|
|||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|||
|
GNU General Public License for more details.
|
|||
|
|
|||
|
You should have received a copy of the GNU General Public License
|
|||
|
along with GNU CC; see the file COPYING. If not, write to
|
|||
|
the Free Software Foundation, 59 Temple Place - Suite 330,
|
|||
|
Boston, MA 02111-1307, USA. */
|
|||
|
|
|||
|
#include "config.h"
|
|||
|
#include "system.h"
|
|||
|
#include "rtl.h"
|
|||
|
#include "insn-config.h"
|
|||
|
#include "flags.h"
|
|||
|
#include "regs.h"
|
|||
|
#include "hard-reg-set.h"
|
|||
|
#include "recog.h"
|
|||
|
#include "basic-block.h"
|
|||
|
#include "reload.h"
|
|||
|
#include "expr.h"
|
|||
|
#include "toplev.h"
|
|||
|
|
|||
|
#ifndef MAX_MOVE_MAX
|
|||
|
#define MAX_MOVE_MAX MOVE_MAX
|
|||
|
#endif
|
|||
|
|
|||
|
#ifndef MIN_UNITS_PER_WORD
|
|||
|
#define MIN_UNITS_PER_WORD UNITS_PER_WORD
|
|||
|
#endif
|
|||
|
|
|||
|
#define MOVE_MAX_WORDS (MOVE_MAX / UNITS_PER_WORD)
|
|||
|
|
|||
|
/* Modes for each hard register that we can save. The smallest mode is wide
|
|||
|
enough to save the entire contents of the register. When saving the
|
|||
|
register because it is live we first try to save in multi-register modes.
|
|||
|
If that is not possible the save is done one register at a time. */
|
|||
|
|
|||
|
static enum machine_mode
|
|||
|
regno_save_mode[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
|
|||
|
|
|||
|
/* For each hard register, a place on the stack where it can be saved,
|
|||
|
if needed. */
|
|||
|
|
|||
|
static rtx
|
|||
|
regno_save_mem[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
|
|||
|
|
|||
|
/* We will only make a register eligible for caller-save if it can be
|
|||
|
saved in its widest mode with a simple SET insn as long as the memory
|
|||
|
address is valid. We record the INSN_CODE is those insns here since
|
|||
|
when we emit them, the addresses might not be valid, so they might not
|
|||
|
be recognized. */
|
|||
|
|
|||
|
static enum insn_code
|
|||
|
reg_save_code[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
|
|||
|
static enum insn_code
|
|||
|
reg_restore_code[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
|
|||
|
|
|||
|
/* Set of hard regs currently residing in save area (during insn scan). */
|
|||
|
|
|||
|
static HARD_REG_SET hard_regs_saved;
|
|||
|
|
|||
|
/* Number of registers currently in hard_regs_saved. */
|
|||
|
|
|||
|
static int n_regs_saved;
|
|||
|
|
|||
|
/* Computed by mark_referenced_regs, all regs referenced in a given
|
|||
|
insn. */
|
|||
|
static HARD_REG_SET referenced_regs;
|
|||
|
|
|||
|
/* Computed in mark_set_regs, holds all registers set by the current
|
|||
|
instruction. */
|
|||
|
static HARD_REG_SET this_insn_sets;
|
|||
|
|
|||
|
|
|||
|
static void mark_set_regs PROTO((rtx, rtx));
|
|||
|
static void mark_referenced_regs PROTO((rtx));
|
|||
|
static int insert_save PROTO((struct insn_chain *, int, int,
|
|||
|
HARD_REG_SET *));
|
|||
|
static int insert_restore PROTO((struct insn_chain *, int, int,
|
|||
|
int));
|
|||
|
static void insert_one_insn PROTO((struct insn_chain *, int,
|
|||
|
enum insn_code, rtx));
|
|||
|
|
|||
|
/* Initialize for caller-save.
|
|||
|
|
|||
|
Look at all the hard registers that are used by a call and for which
|
|||
|
regclass.c has not already excluded from being used across a call.
|
|||
|
|
|||
|
Ensure that we can find a mode to save the register and that there is a
|
|||
|
simple insn to save and restore the register. This latter check avoids
|
|||
|
problems that would occur if we tried to save the MQ register of some
|
|||
|
machines directly into memory. */
|
|||
|
|
|||
|
void
|
|||
|
init_caller_save ()
|
|||
|
{
|
|||
|
char *first_obj = (char *) oballoc (0);
|
|||
|
rtx addr_reg;
|
|||
|
int offset;
|
|||
|
rtx address;
|
|||
|
int i, j;
|
|||
|
|
|||
|
/* First find all the registers that we need to deal with and all
|
|||
|
the modes that they can have. If we can't find a mode to use,
|
|||
|
we can't have the register live over calls. */
|
|||
|
|
|||
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
|||
|
{
|
|||
|
if (call_used_regs[i] && ! call_fixed_regs[i])
|
|||
|
{
|
|||
|
for (j = 1; j <= MOVE_MAX_WORDS; j++)
|
|||
|
{
|
|||
|
regno_save_mode[i][j] = HARD_REGNO_CALLER_SAVE_MODE (i, j);
|
|||
|
if (regno_save_mode[i][j] == VOIDmode && j == 1)
|
|||
|
{
|
|||
|
call_fixed_regs[i] = 1;
|
|||
|
SET_HARD_REG_BIT (call_fixed_reg_set, i);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
else
|
|||
|
regno_save_mode[i][1] = VOIDmode;
|
|||
|
}
|
|||
|
|
|||
|
/* The following code tries to approximate the conditions under which
|
|||
|
we can easily save and restore a register without scratch registers or
|
|||
|
other complexities. It will usually work, except under conditions where
|
|||
|
the validity of an insn operand is dependent on the address offset.
|
|||
|
No such cases are currently known.
|
|||
|
|
|||
|
We first find a typical offset from some BASE_REG_CLASS register.
|
|||
|
This address is chosen by finding the first register in the class
|
|||
|
and by finding the smallest power of two that is a valid offset from
|
|||
|
that register in every mode we will use to save registers. */
|
|||
|
|
|||
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
|||
|
if (TEST_HARD_REG_BIT (reg_class_contents[(int) BASE_REG_CLASS], i))
|
|||
|
break;
|
|||
|
|
|||
|
if (i == FIRST_PSEUDO_REGISTER)
|
|||
|
abort ();
|
|||
|
|
|||
|
addr_reg = gen_rtx_REG (Pmode, i);
|
|||
|
|
|||
|
for (offset = 1 << (HOST_BITS_PER_INT / 2); offset; offset >>= 1)
|
|||
|
{
|
|||
|
address = gen_rtx_PLUS (Pmode, addr_reg, GEN_INT (offset));
|
|||
|
|
|||
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
|||
|
if (regno_save_mode[i][1] != VOIDmode
|
|||
|
&& ! strict_memory_address_p (regno_save_mode[i][1], address))
|
|||
|
break;
|
|||
|
|
|||
|
if (i == FIRST_PSEUDO_REGISTER)
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
/* If we didn't find a valid address, we must use register indirect. */
|
|||
|
if (offset == 0)
|
|||
|
address = addr_reg;
|
|||
|
|
|||
|
/* Next we try to form an insn to save and restore the register. We
|
|||
|
see if such an insn is recognized and meets its constraints. */
|
|||
|
|
|||
|
start_sequence ();
|
|||
|
|
|||
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
|||
|
for (j = 1; j <= MOVE_MAX_WORDS; j++)
|
|||
|
if (regno_save_mode[i][j] != VOIDmode)
|
|||
|
{
|
|||
|
rtx mem = gen_rtx_MEM (regno_save_mode[i][j], address);
|
|||
|
rtx reg = gen_rtx_REG (regno_save_mode[i][j], i);
|
|||
|
rtx savepat = gen_rtx_SET (VOIDmode, mem, reg);
|
|||
|
rtx restpat = gen_rtx_SET (VOIDmode, reg, mem);
|
|||
|
rtx saveinsn = emit_insn (savepat);
|
|||
|
rtx restinsn = emit_insn (restpat);
|
|||
|
int ok;
|
|||
|
|
|||
|
reg_save_code[i][j] = recog_memoized (saveinsn);
|
|||
|
reg_restore_code[i][j] = recog_memoized (restinsn);
|
|||
|
|
|||
|
/* Now extract both insns and see if we can meet their
|
|||
|
constraints. */
|
|||
|
ok = (reg_save_code[i][j] != (enum insn_code)-1
|
|||
|
&& reg_restore_code[i][j] != (enum insn_code)-1);
|
|||
|
if (ok)
|
|||
|
{
|
|||
|
extract_insn (saveinsn);
|
|||
|
ok = constrain_operands (1);
|
|||
|
extract_insn (restinsn);
|
|||
|
ok &= constrain_operands (1);
|
|||
|
}
|
|||
|
|
|||
|
if (! ok)
|
|||
|
{
|
|||
|
regno_save_mode[i][j] = VOIDmode;
|
|||
|
if (j == 1)
|
|||
|
{
|
|||
|
call_fixed_regs[i] = 1;
|
|||
|
SET_HARD_REG_BIT (call_fixed_reg_set, i);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
end_sequence ();
|
|||
|
|
|||
|
obfree (first_obj);
|
|||
|
}
|
|||
|
|
|||
|
/* Initialize save areas by showing that we haven't allocated any yet. */
|
|||
|
|
|||
|
void
|
|||
|
init_save_areas ()
|
|||
|
{
|
|||
|
int i, j;
|
|||
|
|
|||
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
|||
|
for (j = 1; j <= MOVE_MAX_WORDS; j++)
|
|||
|
regno_save_mem[i][j] = 0;
|
|||
|
}
|
|||
|
|
|||
|
/* Allocate save areas for any hard registers that might need saving.
|
|||
|
We take a conservative approach here and look for call-clobbered hard
|
|||
|
registers that are assigned to pseudos that cross calls. This may
|
|||
|
overestimate slightly (especially if some of these registers are later
|
|||
|
used as spill registers), but it should not be significant.
|
|||
|
|
|||
|
Future work:
|
|||
|
|
|||
|
In the fallback case we should iterate backwards across all possible
|
|||
|
modes for the save, choosing the largest available one instead of
|
|||
|
falling back to the smallest mode immediately. (eg TF -> DF -> SF).
|
|||
|
|
|||
|
We do not try to use "move multiple" instructions that exist
|
|||
|
on some machines (such as the 68k moveml). It could be a win to try
|
|||
|
and use them when possible. The hard part is doing it in a way that is
|
|||
|
machine independent since they might be saving non-consecutive
|
|||
|
registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */
|
|||
|
|
|||
|
void
|
|||
|
setup_save_areas ()
|
|||
|
{
|
|||
|
int i, j, k;
|
|||
|
HARD_REG_SET hard_regs_used;
|
|||
|
|
|||
|
/* Allocate space in the save area for the largest multi-register
|
|||
|
pseudos first, then work backwards to single register
|
|||
|
pseudos. */
|
|||
|
|
|||
|
/* Find and record all call-used hard-registers in this function. */
|
|||
|
CLEAR_HARD_REG_SET (hard_regs_used);
|
|||
|
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
|||
|
if (reg_renumber[i] >= 0 && REG_N_CALLS_CROSSED (i) > 0)
|
|||
|
{
|
|||
|
int regno = reg_renumber[i];
|
|||
|
int endregno
|
|||
|
= regno + HARD_REGNO_NREGS (regno, GET_MODE (regno_reg_rtx[i]));
|
|||
|
int nregs = endregno - regno;
|
|||
|
|
|||
|
for (j = 0; j < nregs; j++)
|
|||
|
{
|
|||
|
if (call_used_regs[regno+j])
|
|||
|
SET_HARD_REG_BIT (hard_regs_used, regno+j);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Now run through all the call-used hard-registers and allocate
|
|||
|
space for them in the caller-save area. Try to allocate space
|
|||
|
in a manner which allows multi-register saves/restores to be done. */
|
|||
|
|
|||
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
|||
|
for (j = MOVE_MAX_WORDS; j > 0; j--)
|
|||
|
{
|
|||
|
int do_save = 1;
|
|||
|
|
|||
|
/* If no mode exists for this size, try another. Also break out
|
|||
|
if we have already saved this hard register. */
|
|||
|
if (regno_save_mode[i][j] == VOIDmode || regno_save_mem[i][1] != 0)
|
|||
|
continue;
|
|||
|
|
|||
|
/* See if any register in this group has been saved. */
|
|||
|
for (k = 0; k < j; k++)
|
|||
|
if (regno_save_mem[i + k][1])
|
|||
|
{
|
|||
|
do_save = 0;
|
|||
|
break;
|
|||
|
}
|
|||
|
if (! do_save)
|
|||
|
continue;
|
|||
|
|
|||
|
for (k = 0; k < j; k++)
|
|||
|
if (! TEST_HARD_REG_BIT (hard_regs_used, i + k))
|
|||
|
{
|
|||
|
do_save = 0;
|
|||
|
break;
|
|||
|
}
|
|||
|
if (! do_save)
|
|||
|
continue;
|
|||
|
|
|||
|
/* We have found an acceptable mode to store in. */
|
|||
|
regno_save_mem[i][j]
|
|||
|
= assign_stack_local (regno_save_mode[i][j],
|
|||
|
GET_MODE_SIZE (regno_save_mode[i][j]), 0);
|
|||
|
|
|||
|
/* Setup single word save area just in case... */
|
|||
|
for (k = 0; k < j; k++)
|
|||
|
{
|
|||
|
/* This should not depend on WORDS_BIG_ENDIAN.
|
|||
|
The order of words in regs is the same as in memory. */
|
|||
|
rtx temp = gen_rtx_MEM (regno_save_mode[i+k][1],
|
|||
|
XEXP (regno_save_mem[i][j], 0));
|
|||
|
|
|||
|
regno_save_mem[i+k][1]
|
|||
|
= adj_offsettable_operand (temp, k * UNITS_PER_WORD);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Find the places where hard regs are live across calls and save them. */
|
|||
|
void
|
|||
|
save_call_clobbered_regs ()
|
|||
|
{
|
|||
|
struct insn_chain *chain, *next;
|
|||
|
|
|||
|
CLEAR_HARD_REG_SET (hard_regs_saved);
|
|||
|
n_regs_saved = 0;
|
|||
|
|
|||
|
for (chain = reload_insn_chain; chain != 0; chain = next)
|
|||
|
{
|
|||
|
rtx insn = chain->insn;
|
|||
|
enum rtx_code code = GET_CODE (insn);
|
|||
|
|
|||
|
next = chain->next;
|
|||
|
|
|||
|
if (chain->is_caller_save_insn)
|
|||
|
abort ();
|
|||
|
|
|||
|
if (GET_RTX_CLASS (code) == 'i')
|
|||
|
{
|
|||
|
/* If some registers have been saved, see if INSN references
|
|||
|
any of them. We must restore them before the insn if so. */
|
|||
|
|
|||
|
if (n_regs_saved)
|
|||
|
{
|
|||
|
int regno;
|
|||
|
|
|||
|
if (code == JUMP_INSN)
|
|||
|
/* Restore all registers if this is a JUMP_INSN. */
|
|||
|
COPY_HARD_REG_SET (referenced_regs, hard_regs_saved);
|
|||
|
else
|
|||
|
{
|
|||
|
CLEAR_HARD_REG_SET (referenced_regs);
|
|||
|
mark_referenced_regs (PATTERN (insn));
|
|||
|
AND_HARD_REG_SET (referenced_regs, hard_regs_saved);
|
|||
|
}
|
|||
|
|
|||
|
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
|||
|
if (TEST_HARD_REG_BIT (referenced_regs, regno))
|
|||
|
regno += insert_restore (chain, 1, regno, MOVE_MAX_WORDS);
|
|||
|
}
|
|||
|
|
|||
|
if (code == CALL_INSN)
|
|||
|
{
|
|||
|
rtx x;
|
|||
|
int regno, nregs;
|
|||
|
HARD_REG_SET hard_regs_to_save;
|
|||
|
|
|||
|
/* Use the register life information in CHAIN to compute which
|
|||
|
regs are live before the call. */
|
|||
|
REG_SET_TO_HARD_REG_SET (hard_regs_to_save, chain->live_before);
|
|||
|
compute_use_by_pseudos (&hard_regs_to_save, chain->live_before);
|
|||
|
|
|||
|
/* Record all registers set in this call insn. These don't need
|
|||
|
to be saved. */
|
|||
|
CLEAR_HARD_REG_SET (this_insn_sets);
|
|||
|
note_stores (PATTERN (insn), mark_set_regs);
|
|||
|
|
|||
|
/* Compute which hard regs must be saved before this call. */
|
|||
|
AND_COMPL_HARD_REG_SET (hard_regs_to_save, call_fixed_reg_set);
|
|||
|
AND_COMPL_HARD_REG_SET (hard_regs_to_save, this_insn_sets);
|
|||
|
AND_COMPL_HARD_REG_SET (hard_regs_to_save, hard_regs_saved);
|
|||
|
AND_HARD_REG_SET (hard_regs_to_save, call_used_reg_set);
|
|||
|
|
|||
|
/* Registers used for function parameters need not be saved. */
|
|||
|
for (x = CALL_INSN_FUNCTION_USAGE (insn); x != 0;
|
|||
|
x = XEXP (x, 1))
|
|||
|
{
|
|||
|
rtx y;
|
|||
|
|
|||
|
if (GET_CODE (XEXP (x, 0)) != USE)
|
|||
|
continue;
|
|||
|
y = XEXP (XEXP (x, 0), 0);
|
|||
|
if (GET_CODE (y) != REG)
|
|||
|
abort ();
|
|||
|
regno = REGNO (y);
|
|||
|
if (REGNO (y) >= FIRST_PSEUDO_REGISTER)
|
|||
|
abort ();
|
|||
|
nregs = HARD_REGNO_NREGS (regno, GET_MODE (y));
|
|||
|
while (nregs-- > 0)
|
|||
|
CLEAR_HARD_REG_BIT (hard_regs_to_save, regno + nregs);
|
|||
|
}
|
|||
|
|
|||
|
/* Neither do registers for which we find a death note. */
|
|||
|
for (x = REG_NOTES (insn); x != 0; x = XEXP (x, 1))
|
|||
|
{
|
|||
|
rtx y = XEXP (x, 0);
|
|||
|
|
|||
|
if (REG_NOTE_KIND (x) != REG_DEAD)
|
|||
|
continue;
|
|||
|
if (GET_CODE (y) != REG)
|
|||
|
abort ();
|
|||
|
regno = REGNO (y);
|
|||
|
|
|||
|
if (regno >= FIRST_PSEUDO_REGISTER)
|
|||
|
regno = reg_renumber[regno];
|
|||
|
if (regno < 0)
|
|||
|
continue;
|
|||
|
nregs = HARD_REGNO_NREGS (regno, GET_MODE (y));
|
|||
|
while (nregs-- > 0)
|
|||
|
CLEAR_HARD_REG_BIT (hard_regs_to_save, regno + nregs);
|
|||
|
}
|
|||
|
|
|||
|
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
|||
|
if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
|
|||
|
regno += insert_save (chain, 1, regno, &hard_regs_to_save);
|
|||
|
|
|||
|
/* Must recompute n_regs_saved. */
|
|||
|
n_regs_saved = 0;
|
|||
|
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
|||
|
if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
|
|||
|
n_regs_saved++;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if (chain->next == 0 || chain->next->block > chain->block)
|
|||
|
{
|
|||
|
int regno;
|
|||
|
/* At the end of the basic block, we must restore any registers that
|
|||
|
remain saved. If the last insn in the block is a JUMP_INSN, put
|
|||
|
the restore before the insn, otherwise, put it after the insn. */
|
|||
|
|
|||
|
if (n_regs_saved)
|
|||
|
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
|||
|
if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
|
|||
|
regno += insert_restore (chain, GET_CODE (insn) == JUMP_INSN,
|
|||
|
regno, MOVE_MAX_WORDS);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Here from note_stores when an insn stores a value in a register.
|
|||
|
Set the proper bit or bits in this_insn_sets. All pseudos that have
|
|||
|
been assigned hard regs have had their register number changed already,
|
|||
|
so we can ignore pseudos. */
|
|||
|
static void
|
|||
|
mark_set_regs (reg, setter)
|
|||
|
rtx reg;
|
|||
|
rtx setter ATTRIBUTE_UNUSED;
|
|||
|
{
|
|||
|
register int regno, endregno, i;
|
|||
|
enum machine_mode mode = GET_MODE (reg);
|
|||
|
int word = 0;
|
|||
|
|
|||
|
if (GET_CODE (reg) == SUBREG)
|
|||
|
{
|
|||
|
word = SUBREG_WORD (reg);
|
|||
|
reg = SUBREG_REG (reg);
|
|||
|
}
|
|||
|
|
|||
|
if (GET_CODE (reg) != REG || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
|
|||
|
return;
|
|||
|
|
|||
|
regno = REGNO (reg) + word;
|
|||
|
endregno = regno + HARD_REGNO_NREGS (regno, mode);
|
|||
|
|
|||
|
for (i = regno; i < endregno; i++)
|
|||
|
SET_HARD_REG_BIT (this_insn_sets, i);
|
|||
|
}
|
|||
|
|
|||
|
/* Walk X and record all referenced registers in REFERENCED_REGS. */
|
|||
|
static void
|
|||
|
mark_referenced_regs (x)
|
|||
|
rtx x;
|
|||
|
{
|
|||
|
enum rtx_code code = GET_CODE (x);
|
|||
|
char *fmt;
|
|||
|
int i, j;
|
|||
|
|
|||
|
if (code == SET)
|
|||
|
mark_referenced_regs (SET_SRC (x));
|
|||
|
if (code == SET || code == CLOBBER)
|
|||
|
{
|
|||
|
x = SET_DEST (x);
|
|||
|
code = GET_CODE (x);
|
|||
|
if (code == REG || code == PC || code == CC0
|
|||
|
|| (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
|
|||
|
return;
|
|||
|
}
|
|||
|
if (code == MEM || code == SUBREG)
|
|||
|
{
|
|||
|
x = XEXP (x, 0);
|
|||
|
code = GET_CODE (x);
|
|||
|
}
|
|||
|
|
|||
|
if (code == REG)
|
|||
|
{
|
|||
|
int regno = REGNO (x);
|
|||
|
int hardregno = (regno < FIRST_PSEUDO_REGISTER ? regno
|
|||
|
: reg_renumber[regno]);
|
|||
|
|
|||
|
if (hardregno >= 0)
|
|||
|
{
|
|||
|
int nregs = HARD_REGNO_NREGS (hardregno, GET_MODE (x));
|
|||
|
while (nregs-- > 0)
|
|||
|
SET_HARD_REG_BIT (referenced_regs, hardregno + nregs);
|
|||
|
}
|
|||
|
/* If this is a pseudo that did not get a hard register, scan its
|
|||
|
memory location, since it might involve the use of another
|
|||
|
register, which might be saved. */
|
|||
|
else if (reg_equiv_mem[regno] != 0)
|
|||
|
mark_referenced_regs (XEXP (reg_equiv_mem[regno], 0));
|
|||
|
else if (reg_equiv_address[regno] != 0)
|
|||
|
mark_referenced_regs (reg_equiv_address[regno]);
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
fmt = GET_RTX_FORMAT (code);
|
|||
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
|||
|
{
|
|||
|
if (fmt[i] == 'e')
|
|||
|
mark_referenced_regs (XEXP (x, i));
|
|||
|
else if (fmt[i] == 'E')
|
|||
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
|||
|
mark_referenced_regs (XVECEXP (x, i, j));
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Insert a sequence of insns to restore. Place these insns in front of
|
|||
|
CHAIN if BEFORE_P is nonzero, behind the insn otherwise. MAXRESTORE is
|
|||
|
the maximum number of registers which should be restored during this call.
|
|||
|
It should never be less than 1 since we only work with entire registers.
|
|||
|
|
|||
|
Note that we have verified in init_caller_save that we can do this
|
|||
|
with a simple SET, so use it. Set INSN_CODE to what we save there
|
|||
|
since the address might not be valid so the insn might not be recognized.
|
|||
|
These insns will be reloaded and have register elimination done by
|
|||
|
find_reload, so we need not worry about that here.
|
|||
|
|
|||
|
Return the extra number of registers saved. */
|
|||
|
|
|||
|
static int
|
|||
|
insert_restore (chain, before_p, regno, maxrestore)
|
|||
|
struct insn_chain *chain;
|
|||
|
int before_p;
|
|||
|
int regno;
|
|||
|
int maxrestore;
|
|||
|
{
|
|||
|
int i;
|
|||
|
rtx pat = NULL_RTX;
|
|||
|
enum insn_code code = CODE_FOR_nothing;
|
|||
|
int numregs = 0;
|
|||
|
|
|||
|
/* A common failure mode if register status is not correct in the RTL
|
|||
|
is for this routine to be called with a REGNO we didn't expect to
|
|||
|
save. That will cause us to write an insn with a (nil) SET_DEST
|
|||
|
or SET_SRC. Instead of doing so and causing a crash later, check
|
|||
|
for this common case and abort here instead. This will remove one
|
|||
|
step in debugging such problems. */
|
|||
|
|
|||
|
if (regno_save_mem[regno][1] == 0)
|
|||
|
abort ();
|
|||
|
|
|||
|
/* Get the pattern to emit and update our status.
|
|||
|
|
|||
|
See if we can restore `maxrestore' registers at once. Work
|
|||
|
backwards to the single register case. */
|
|||
|
for (i = maxrestore; i > 0; i--)
|
|||
|
{
|
|||
|
int j, k;
|
|||
|
int ok = 1;
|
|||
|
|
|||
|
if (regno_save_mem[regno][i] == 0)
|
|||
|
continue;
|
|||
|
|
|||
|
for (j = 0; j < i; j++)
|
|||
|
if (! TEST_HARD_REG_BIT (hard_regs_saved, regno + j))
|
|||
|
{
|
|||
|
ok = 0;
|
|||
|
break;
|
|||
|
}
|
|||
|
/* Must do this one restore at a time */
|
|||
|
if (! ok)
|
|||
|
continue;
|
|||
|
|
|||
|
pat = gen_rtx_SET (VOIDmode,
|
|||
|
gen_rtx_REG (GET_MODE (regno_save_mem[regno][i]),
|
|||
|
regno),
|
|||
|
regno_save_mem[regno][i]);
|
|||
|
code = reg_restore_code[regno][i];
|
|||
|
|
|||
|
/* Clear status for all registers we restored. */
|
|||
|
for (k = 0; k < i; k++)
|
|||
|
{
|
|||
|
CLEAR_HARD_REG_BIT (hard_regs_saved, regno + k);
|
|||
|
n_regs_saved--;
|
|||
|
}
|
|||
|
|
|||
|
numregs = i;
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
insert_one_insn (chain, before_p, code, pat);
|
|||
|
|
|||
|
/* Tell our callers how many extra registers we saved/restored */
|
|||
|
return numregs - 1;
|
|||
|
}
|
|||
|
|
|||
|
/* Like insert_restore above, but save registers instead. */
|
|||
|
static int
|
|||
|
insert_save (chain, before_p, regno, to_save)
|
|||
|
struct insn_chain *chain;
|
|||
|
int before_p;
|
|||
|
int regno;
|
|||
|
HARD_REG_SET *to_save;
|
|||
|
{
|
|||
|
int i;
|
|||
|
rtx pat = NULL_RTX;
|
|||
|
enum insn_code code = CODE_FOR_nothing;
|
|||
|
int numregs = 0;
|
|||
|
|
|||
|
/* A common failure mode if register status is not correct in the RTL
|
|||
|
is for this routine to be called with a REGNO we didn't expect to
|
|||
|
save. That will cause us to write an insn with a (nil) SET_DEST
|
|||
|
or SET_SRC. Instead of doing so and causing a crash later, check
|
|||
|
for this common case and abort here instead. This will remove one
|
|||
|
step in debugging such problems. */
|
|||
|
|
|||
|
if (regno_save_mem[regno][1] == 0)
|
|||
|
abort ();
|
|||
|
|
|||
|
/* Get the pattern to emit and update our status.
|
|||
|
|
|||
|
See if we can save several registers with a single instruction.
|
|||
|
Work backwards to the single register case. */
|
|||
|
for (i = MOVE_MAX_WORDS; i > 0; i--)
|
|||
|
{
|
|||
|
int j, k;
|
|||
|
int ok = 1;
|
|||
|
if (regno_save_mem[regno][i] == 0)
|
|||
|
continue;
|
|||
|
|
|||
|
for (j = 0; j < i; j++)
|
|||
|
if (! TEST_HARD_REG_BIT (*to_save, regno + j))
|
|||
|
{
|
|||
|
ok = 0;
|
|||
|
break;
|
|||
|
}
|
|||
|
/* Must do this one save at a time */
|
|||
|
if (! ok)
|
|||
|
continue;
|
|||
|
|
|||
|
pat = gen_rtx_SET (VOIDmode, regno_save_mem[regno][i],
|
|||
|
gen_rtx_REG (GET_MODE (regno_save_mem[regno][i]),
|
|||
|
regno));
|
|||
|
code = reg_save_code[regno][i];
|
|||
|
|
|||
|
/* Set hard_regs_saved for all the registers we saved. */
|
|||
|
for (k = 0; k < i; k++)
|
|||
|
{
|
|||
|
SET_HARD_REG_BIT (hard_regs_saved, regno + k);
|
|||
|
n_regs_saved++;
|
|||
|
}
|
|||
|
|
|||
|
numregs = i;
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
insert_one_insn (chain, before_p, code, pat);
|
|||
|
|
|||
|
/* Tell our callers how many extra registers we saved/restored */
|
|||
|
return numregs - 1;
|
|||
|
}
|
|||
|
|
|||
|
/* Emit a new caller-save insn and set the code. */
|
|||
|
static void
|
|||
|
insert_one_insn (chain, before_p, code, pat)
|
|||
|
struct insn_chain *chain;
|
|||
|
int before_p;
|
|||
|
enum insn_code code;
|
|||
|
rtx pat;
|
|||
|
{
|
|||
|
rtx insn = chain->insn;
|
|||
|
struct insn_chain *new;
|
|||
|
|
|||
|
#ifdef HAVE_cc0
|
|||
|
/* If INSN references CC0, put our insns in front of the insn that sets
|
|||
|
CC0. This is always safe, since the only way we could be passed an
|
|||
|
insn that references CC0 is for a restore, and doing a restore earlier
|
|||
|
isn't a problem. We do, however, assume here that CALL_INSNs don't
|
|||
|
reference CC0. Guard against non-INSN's like CODE_LABEL. */
|
|||
|
|
|||
|
if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
|
|||
|
&& before_p
|
|||
|
&& reg_referenced_p (cc0_rtx, PATTERN (insn)))
|
|||
|
chain = chain->prev, insn = chain->insn;
|
|||
|
#endif
|
|||
|
|
|||
|
new = new_insn_chain ();
|
|||
|
if (before_p)
|
|||
|
{
|
|||
|
new->prev = chain->prev;
|
|||
|
if (new->prev != 0)
|
|||
|
new->prev->next = new;
|
|||
|
else
|
|||
|
reload_insn_chain = new;
|
|||
|
|
|||
|
chain->prev = new;
|
|||
|
new->next = chain;
|
|||
|
new->insn = emit_insn_before (pat, insn);
|
|||
|
/* ??? It would be nice if we could exclude the already / still saved
|
|||
|
registers from the live sets. */
|
|||
|
COPY_REG_SET (new->live_before, chain->live_before);
|
|||
|
COPY_REG_SET (new->live_after, chain->live_before);
|
|||
|
if (chain->insn == BLOCK_HEAD (chain->block))
|
|||
|
BLOCK_HEAD (chain->block) = new->insn;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
new->next = chain->next;
|
|||
|
if (new->next != 0)
|
|||
|
new->next->prev = new;
|
|||
|
chain->next = new;
|
|||
|
new->prev = chain;
|
|||
|
new->insn = emit_insn_after (pat, insn);
|
|||
|
/* ??? It would be nice if we could exclude the already / still saved
|
|||
|
registers from the live sets, and observe REG_UNUSED notes. */
|
|||
|
COPY_REG_SET (new->live_before, chain->live_after);
|
|||
|
COPY_REG_SET (new->live_after, chain->live_after);
|
|||
|
if (chain->insn == BLOCK_END (chain->block))
|
|||
|
BLOCK_END (chain->block) = new->insn;
|
|||
|
}
|
|||
|
new->block = chain->block;
|
|||
|
new->is_caller_save_insn = 1;
|
|||
|
|
|||
|
INSN_CODE (new->insn) = code;
|
|||
|
}
|