1993-03-21 12:45:37 +03:00
|
|
|
/*
|
|
|
|
* Copyright (c) 1982, 1986 Regents of the University of California.
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
|
|
* must display the following acknowledgement:
|
|
|
|
* This product includes software developed by the University of
|
|
|
|
* California, Berkeley and its contributors.
|
|
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
|
|
* may be used to endorse or promote products derived from this software
|
|
|
|
* without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
1993-05-20 07:49:51 +04:00
|
|
|
* from: @(#)if_ether.h 7.5 (Berkeley) 6/28/90
|
1993-12-30 07:17:40 +03:00
|
|
|
* $Id: if_ether.h,v 1.6 1993/12/30 04:17:40 deraadt Exp $
|
1993-03-21 12:45:37 +03:00
|
|
|
*/
|
|
|
|
|
1993-04-19 07:45:34 +04:00
|
|
|
#ifndef _NETINET_IF_ETHER_H_
|
|
|
|
#define _NETINET_IF_ETHER_H_
|
|
|
|
|
1993-12-30 07:17:40 +03:00
|
|
|
/*
|
|
|
|
* Ethernet address - 6 octets
|
|
|
|
* this is only used by the ethers(3) functions.
|
|
|
|
*/
|
|
|
|
struct ether_addr {
|
|
|
|
u_char ether_addr_octet[6];
|
|
|
|
};
|
|
|
|
|
1993-03-21 12:45:37 +03:00
|
|
|
/*
|
|
|
|
* Structure of a 10Mb/s Ethernet header.
|
|
|
|
*/
|
|
|
|
struct ether_header {
|
|
|
|
u_char ether_dhost[6];
|
|
|
|
u_char ether_shost[6];
|
|
|
|
u_short ether_type;
|
|
|
|
};
|
|
|
|
|
1993-09-05 04:52:15 +04:00
|
|
|
#define ETHERTYPE_PUP 0x0200 /* PUP protocol */
|
|
|
|
#define ETHERTYPE_IP 0x0800 /* IP protocol */
|
|
|
|
#define ETHERTYPE_ARP 0x0806 /* address resolution protocol */
|
|
|
|
#define ETHERTYPE_REVARP 0x8035 /* reverse addr resolution protocol */
|
1993-03-21 12:45:37 +03:00
|
|
|
|
|
|
|
/*
|
|
|
|
* The ETHERTYPE_NTRAILER packet types starting at ETHERTYPE_TRAIL have
|
|
|
|
* (type-ETHERTYPE_TRAIL)*512 bytes of data followed
|
|
|
|
* by an ETHER type (as given above) and then the (variable-length) header.
|
|
|
|
*/
|
|
|
|
#define ETHERTYPE_TRAIL 0x1000 /* Trailer packet */
|
|
|
|
#define ETHERTYPE_NTRAILER 16
|
|
|
|
|
|
|
|
#define ETHERMTU 1500
|
|
|
|
#define ETHERMIN (60-14)
|
|
|
|
|
1993-12-13 18:10:40 +03:00
|
|
|
#ifdef KERNEL
|
|
|
|
/*
|
|
|
|
* Macro to map an IP multicast address to an Ethernet multicast address.
|
|
|
|
* The high-order 25 bits of the Ethernet address are statically assigned,
|
|
|
|
* and the low-order 23 bits are taken from the low end of the IP address.
|
|
|
|
*/
|
|
|
|
#define ETHER_MAP_IP_MULTICAST(ipaddr, enaddr) \
|
|
|
|
/* struct in_addr *ipaddr; */ \
|
|
|
|
/* u_char enaddr[6]; */ \
|
|
|
|
{ \
|
|
|
|
(enaddr)[0] = 0x01; \
|
|
|
|
(enaddr)[1] = 0x00; \
|
|
|
|
(enaddr)[2] = 0x5e; \
|
|
|
|
(enaddr)[3] = ((u_char *)ipaddr)[1] & 0x7f; \
|
|
|
|
(enaddr)[4] = ((u_char *)ipaddr)[2]; \
|
|
|
|
(enaddr)[5] = ((u_char *)ipaddr)[3]; \
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
1993-03-21 12:45:37 +03:00
|
|
|
/*
|
|
|
|
* Ethernet Address Resolution Protocol.
|
|
|
|
*
|
|
|
|
* See RFC 826 for protocol description. Structure below is adapted
|
|
|
|
* to resolving internet addresses. Field names used correspond to
|
|
|
|
* RFC 826.
|
|
|
|
*/
|
|
|
|
struct ether_arp {
|
|
|
|
struct arphdr ea_hdr; /* fixed-size header */
|
|
|
|
u_char arp_sha[6]; /* sender hardware address */
|
|
|
|
u_char arp_spa[4]; /* sender protocol address */
|
|
|
|
u_char arp_tha[6]; /* target hardware address */
|
|
|
|
u_char arp_tpa[4]; /* target protocol address */
|
|
|
|
};
|
|
|
|
#define arp_hrd ea_hdr.ar_hrd
|
|
|
|
#define arp_pro ea_hdr.ar_pro
|
|
|
|
#define arp_hln ea_hdr.ar_hln
|
|
|
|
#define arp_pln ea_hdr.ar_pln
|
|
|
|
#define arp_op ea_hdr.ar_op
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Structure shared between the ethernet driver modules and
|
|
|
|
* the address resolution code. For example, each ec_softc or il_softc
|
|
|
|
* begins with this structure.
|
|
|
|
*/
|
|
|
|
struct arpcom {
|
|
|
|
struct ifnet ac_if; /* network-visible interface */
|
|
|
|
u_char ac_enaddr[6]; /* ethernet hardware address */
|
|
|
|
struct in_addr ac_ipaddr; /* copy of ip address- XXX */
|
1993-12-13 18:10:40 +03:00
|
|
|
#ifdef MULTICAST
|
|
|
|
struct ether_multi *ac_multiaddrs; /* list of ether multicast addrs */
|
|
|
|
int ac_multicnt; /* length of ac_multiaddrs list */
|
|
|
|
#endif
|
1993-03-21 12:45:37 +03:00
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Internet to ethernet address resolution table.
|
|
|
|
*/
|
|
|
|
struct arptab {
|
|
|
|
struct in_addr at_iaddr; /* internet address */
|
|
|
|
u_char at_enaddr[6]; /* ethernet address */
|
|
|
|
u_char at_timer; /* minutes since last reference */
|
|
|
|
u_char at_flags; /* flags */
|
|
|
|
struct mbuf *at_hold; /* last packet until resolved/timeout */
|
|
|
|
};
|
|
|
|
|
|
|
|
#ifdef KERNEL
|
|
|
|
u_char etherbroadcastaddr[6];
|
1993-12-13 18:10:40 +03:00
|
|
|
#if defined(ISO) && !defined(MULTICAST)
|
|
|
|
#define MULTICAST 1
|
|
|
|
#endif
|
|
|
|
#ifdef MULTICAST
|
|
|
|
u_char ether_ipmulticast_min[6];
|
|
|
|
u_char ether_ipmulticast_max[6];
|
|
|
|
#endif
|
1993-03-21 12:45:37 +03:00
|
|
|
struct arptab *arptnew();
|
|
|
|
int ether_output(), ether_input();
|
|
|
|
char *ether_sprintf();
|
1993-12-13 18:10:40 +03:00
|
|
|
|
|
|
|
#ifdef MULTICAST
|
|
|
|
/*
|
|
|
|
* Ethernet multicast address structure. There is one of these for each
|
|
|
|
* multicast address or range of multicast addresses that we are supposed
|
|
|
|
* to listen to on a particular interface. They are kept in a linked list,
|
|
|
|
* rooted in the interface's arpcom structure. (This really has nothing to
|
|
|
|
* do with ARP, or with the Internet address family, but this appears to be
|
|
|
|
* the minimally-disrupting place to put it.)
|
|
|
|
*/
|
|
|
|
struct ether_multi {
|
|
|
|
u_char enm_addrlo[6]; /* low or only address of range */
|
|
|
|
u_char enm_addrhi[6]; /* high or only address of range */
|
|
|
|
struct arpcom *enm_ac; /* back pointer to arpcom */
|
|
|
|
u_int enm_refcount; /* no. claims to this addr/range */
|
|
|
|
struct ether_multi *enm_next; /* ptr to next ether_multi */
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Structure used by macros below to remember position when stepping through
|
|
|
|
* all of the ether_multi records.
|
|
|
|
*/
|
|
|
|
struct ether_multistep {
|
|
|
|
struct ether_multi *e_enm;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Macro for looking up the ether_multi record for a given range of Ethernet
|
|
|
|
* multicast addresses connected to a given arpcom structure. If no matching
|
|
|
|
* record is found, "enm" returns NULL.
|
|
|
|
*/
|
|
|
|
#define ETHER_LOOKUP_MULTI(addrlo, addrhi, ac, enm) \
|
|
|
|
/* u_char addrlo[6]; */ \
|
|
|
|
/* u_char addrhi[6]; */ \
|
|
|
|
/* struct arpcom *ac; */ \
|
|
|
|
/* struct ether_multi *enm; */ \
|
|
|
|
{ \
|
|
|
|
for ((enm) = (ac)->ac_multiaddrs; \
|
|
|
|
(enm) != NULL && \
|
|
|
|
(bcmp((enm)->enm_addrlo, (addrlo), 6) != 0 || \
|
|
|
|
bcmp((enm)->enm_addrhi, (addrhi), 6) != 0); \
|
|
|
|
(enm) = (enm)->enm_next); \
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Macro to step through all of the ether_multi records, one at a time.
|
|
|
|
* The current position is remembered in "step", which the caller must
|
|
|
|
* provide. ETHER_FIRST_MULTI(), below, must be called to initialize "step"
|
|
|
|
* and get the first record. Both macros return a NULL "enm" when there
|
|
|
|
* are no remaining records.
|
|
|
|
*/
|
|
|
|
#define ETHER_NEXT_MULTI(step, enm) \
|
|
|
|
/* struct ether_multistep step; */ \
|
|
|
|
/* struct ether_multi *enm; */ \
|
|
|
|
{ \
|
|
|
|
if (((enm) = (step).e_enm) != NULL) \
|
|
|
|
(step).e_enm = (enm)->enm_next; \
|
|
|
|
}
|
|
|
|
|
|
|
|
#define ETHER_FIRST_MULTI(step, ac, enm) \
|
|
|
|
/* struct ether_multistep step; */ \
|
|
|
|
/* struct arpcom *ac; */ \
|
|
|
|
/* struct ether_multi *enm; */ \
|
|
|
|
{ \
|
|
|
|
(step).e_enm = (ac)->ac_multiaddrs; \
|
|
|
|
ETHER_NEXT_MULTI((step), (enm)); \
|
|
|
|
}
|
|
|
|
#endif
|
1993-03-21 12:45:37 +03:00
|
|
|
#endif
|
1993-04-19 07:45:34 +04:00
|
|
|
|
|
|
|
#endif /* !_NETINET_IF_ETHER_H_ */
|