2004-03-28 03:23:06 +04:00
|
|
|
/* $NetBSD: cgd.c,v 1.16 2004/03/27 23:23:06 elric Exp $ */
|
2002-10-04 22:22:35 +04:00
|
|
|
|
|
|
|
/*-
|
|
|
|
* Copyright (c) 2002 The NetBSD Foundation, Inc.
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
|
|
* by Roland C. Dowdeswell.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
|
|
* must display the following acknowledgement:
|
|
|
|
* This product includes software developed by the NetBSD
|
|
|
|
* Foundation, Inc. and its contributors.
|
|
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
|
|
* contributors may be used to endorse or promote products derived
|
|
|
|
* from this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/cdefs.h>
|
2004-03-28 03:23:06 +04:00
|
|
|
__KERNEL_RCSID(0, "$NetBSD: cgd.c,v 1.16 2004/03/27 23:23:06 elric Exp $");
|
2002-10-04 22:22:35 +04:00
|
|
|
|
|
|
|
#include <sys/types.h>
|
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/systm.h>
|
|
|
|
#include <sys/proc.h>
|
|
|
|
#include <sys/errno.h>
|
|
|
|
#include <sys/buf.h>
|
|
|
|
#include <sys/malloc.h>
|
|
|
|
#include <sys/pool.h>
|
|
|
|
#include <sys/ioctl.h>
|
|
|
|
#include <sys/device.h>
|
|
|
|
#include <sys/disk.h>
|
|
|
|
#include <sys/disklabel.h>
|
|
|
|
#include <sys/fcntl.h>
|
|
|
|
#include <sys/vnode.h>
|
|
|
|
#include <sys/lock.h>
|
|
|
|
#include <sys/conf.h>
|
|
|
|
|
|
|
|
#include <dev/dkvar.h>
|
|
|
|
#include <dev/cgdvar.h>
|
|
|
|
|
|
|
|
/* Entry Point Functions */
|
|
|
|
|
|
|
|
void cgdattach(int);
|
|
|
|
|
|
|
|
dev_type_open(cgdopen);
|
|
|
|
dev_type_close(cgdclose);
|
|
|
|
dev_type_read(cgdread);
|
|
|
|
dev_type_write(cgdwrite);
|
|
|
|
dev_type_ioctl(cgdioctl);
|
|
|
|
dev_type_strategy(cgdstrategy);
|
|
|
|
dev_type_dump(cgddump);
|
|
|
|
dev_type_size(cgdsize);
|
|
|
|
|
|
|
|
const struct bdevsw cgd_bdevsw = {
|
|
|
|
cgdopen, cgdclose, cgdstrategy, cgdioctl,
|
|
|
|
cgddump, cgdsize, D_DISK
|
|
|
|
};
|
|
|
|
|
|
|
|
const struct cdevsw cgd_cdevsw = {
|
|
|
|
cgdopen, cgdclose, cgdread, cgdwrite, cgdioctl,
|
2002-10-24 12:04:00 +04:00
|
|
|
nostop, notty, nopoll, nommap, nokqfilter, D_DISK
|
2002-10-04 22:22:35 +04:00
|
|
|
};
|
|
|
|
|
|
|
|
/* Internal Functions */
|
|
|
|
|
2004-03-28 03:23:06 +04:00
|
|
|
static int cgdstart(struct dk_softc *, struct buf *);
|
2002-10-04 22:22:35 +04:00
|
|
|
static void cgdiodone(struct buf *);
|
|
|
|
|
2003-06-30 02:28:00 +04:00
|
|
|
static int cgd_ioctl_set(struct cgd_softc *, void *, struct proc *);
|
|
|
|
static int cgd_ioctl_clr(struct cgd_softc *, void *, struct proc *);
|
2002-10-04 22:22:35 +04:00
|
|
|
static int cgdinit(struct cgd_softc *, char *, struct vnode *,
|
2003-06-30 02:28:00 +04:00
|
|
|
struct proc *);
|
2002-10-04 22:22:35 +04:00
|
|
|
static void cgd_cipher(struct cgd_softc *, caddr_t, caddr_t,
|
|
|
|
size_t, daddr_t, size_t, int);
|
|
|
|
|
|
|
|
/* Pseudo-disk Interface */
|
|
|
|
|
|
|
|
static struct dk_intf the_dkintf = {
|
|
|
|
DTYPE_CGD,
|
|
|
|
"cgd",
|
|
|
|
cgdopen,
|
|
|
|
cgdclose,
|
|
|
|
cgdstrategy,
|
|
|
|
cgdstart,
|
|
|
|
};
|
|
|
|
static struct dk_intf *di = &the_dkintf;
|
|
|
|
|
|
|
|
/* DIAGNOSTIC and DEBUG definitions */
|
|
|
|
|
|
|
|
#if defined(CGDDEBUG) && !defined(DEBUG)
|
|
|
|
#define DEBUG
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
int cgddebug = 0;
|
|
|
|
|
|
|
|
#define CGDB_FOLLOW 0x1
|
|
|
|
#define CGDB_IO 0x2
|
|
|
|
#define CGDB_CRYPTO 0x4
|
|
|
|
|
|
|
|
#define IFDEBUG(x,y) if (cgddebug & (x)) y
|
|
|
|
#define DPRINTF(x,y) IFDEBUG(x, printf y)
|
|
|
|
#define DPRINTF_FOLLOW(y) DPRINTF(CGDB_FOLLOW, y)
|
|
|
|
|
|
|
|
static void hexprint(char *, void *, int);
|
|
|
|
|
|
|
|
#else
|
|
|
|
#define IFDEBUG(x,y)
|
|
|
|
#define DPRINTF(x,y)
|
|
|
|
#define DPRINTF_FOLLOW(y)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef DIAGNOSTIC
|
|
|
|
#define DIAGPANIC(x) panic x
|
|
|
|
#define DIAGCONDPANIC(x,y) if (x) panic y
|
|
|
|
#else
|
|
|
|
#define DIAGPANIC(x)
|
|
|
|
#define DIAGCONDPANIC(x,y)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Component Buffer Pool structures and macros */
|
|
|
|
|
|
|
|
struct cgdbuf {
|
|
|
|
struct buf cb_buf; /* new I/O buf */
|
|
|
|
struct buf *cb_obp; /* ptr. to original I/O buf */
|
|
|
|
struct cgd_softc *cb_sc; /* pointer to cgd softc */
|
|
|
|
};
|
|
|
|
|
|
|
|
struct pool cgd_cbufpool;
|
|
|
|
|
|
|
|
#define CGD_GETBUF() pool_get(&cgd_cbufpool, PR_NOWAIT)
|
|
|
|
#define CGD_PUTBUF(cbp) pool_put(&cgd_cbufpool, cbp)
|
|
|
|
|
|
|
|
/* Global variables */
|
|
|
|
|
|
|
|
struct cgd_softc *cgd_softc;
|
|
|
|
int numcgd = 0;
|
|
|
|
|
|
|
|
/* Utility Functions */
|
|
|
|
|
|
|
|
#define CGDUNIT(x) DISKUNIT(x)
|
|
|
|
#define GETCGD_SOFTC(_cs, x) if (!((_cs) = getcgd_softc(x))) return ENXIO
|
|
|
|
|
|
|
|
static struct cgd_softc *
|
|
|
|
getcgd_softc(dev_t dev)
|
|
|
|
{
|
|
|
|
int unit = CGDUNIT(dev);
|
|
|
|
|
|
|
|
DPRINTF_FOLLOW(("getcgd_softc(0x%x): unit = %d\n", dev, unit));
|
|
|
|
if (unit >= numcgd)
|
|
|
|
return NULL;
|
|
|
|
return &cgd_softc[unit];
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The code */
|
|
|
|
|
|
|
|
static void
|
|
|
|
cgdsoftc_init(struct cgd_softc *cs, int num)
|
|
|
|
{
|
|
|
|
char buf[DK_XNAME_SIZE];
|
|
|
|
|
|
|
|
memset(cs, 0x0, sizeof(*cs));
|
|
|
|
snprintf(buf, DK_XNAME_SIZE, "cgd%d", num);
|
2004-03-28 03:23:06 +04:00
|
|
|
simple_lock_init(&cs->sc_slock);
|
2002-10-04 22:22:35 +04:00
|
|
|
dk_sc_init(&cs->sc_dksc, cs, buf);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
cgdattach(int num)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
DPRINTF_FOLLOW(("cgdattach(%d)\n", num));
|
|
|
|
if (num <= 0) {
|
|
|
|
DIAGPANIC(("cgdattach: count <= 0"));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2003-05-17 18:26:30 +04:00
|
|
|
cgd_softc = (void *)malloc(num * sizeof(*cgd_softc), M_DEVBUF, M_NOWAIT);
|
|
|
|
if (!cgd_softc) {
|
2002-10-04 22:22:35 +04:00
|
|
|
printf("WARNING: unable to malloc(9) memory for crypt disks\n");
|
|
|
|
DIAGPANIC(("cgdattach: cannot malloc(9) enough memory"));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
numcgd = num;
|
|
|
|
for (i=0; i<num; i++)
|
|
|
|
cgdsoftc_init(&cgd_softc[i], i);
|
|
|
|
|
|
|
|
/* Init component buffer pool. XXX, can we put this in dksubr.c? */
|
|
|
|
pool_init(&cgd_cbufpool, sizeof(struct cgdbuf), 0, 0, 0,
|
|
|
|
"cgdpl", NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
2003-06-30 02:28:00 +04:00
|
|
|
cgdopen(dev_t dev, int flags, int fmt, struct proc *p)
|
2002-10-04 22:22:35 +04:00
|
|
|
{
|
|
|
|
struct cgd_softc *cs;
|
|
|
|
|
|
|
|
DPRINTF_FOLLOW(("cgdopen(%d, %d)\n", dev, flags));
|
|
|
|
GETCGD_SOFTC(cs, dev);
|
2003-06-30 02:28:00 +04:00
|
|
|
return dk_open(di, &cs->sc_dksc, dev, flags, fmt, p);
|
2002-10-04 22:22:35 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
int
|
2003-06-30 02:28:00 +04:00
|
|
|
cgdclose(dev_t dev, int flags, int fmt, struct proc *p)
|
2002-10-04 22:22:35 +04:00
|
|
|
{
|
|
|
|
struct cgd_softc *cs;
|
|
|
|
|
|
|
|
DPRINTF_FOLLOW(("cgdclose(%d, %d)\n", dev, flags));
|
|
|
|
GETCGD_SOFTC(cs, dev);
|
2003-06-30 02:28:00 +04:00
|
|
|
return dk_close(di, &cs->sc_dksc, dev, flags, fmt, p);
|
2002-10-04 22:22:35 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
cgdstrategy(struct buf *bp)
|
|
|
|
{
|
|
|
|
struct cgd_softc *cs = getcgd_softc(bp->b_dev);
|
|
|
|
|
|
|
|
DPRINTF_FOLLOW(("cgdstrategy(%p): b_bcount = %ld\n", bp,
|
|
|
|
(long)bp->b_bcount));
|
|
|
|
/* XXXrcd: Should we test for (cs != NULL)? */
|
|
|
|
dk_strategy(di, &cs->sc_dksc, bp);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
cgdsize(dev_t dev)
|
|
|
|
{
|
|
|
|
struct cgd_softc *cs = getcgd_softc(dev);
|
|
|
|
|
|
|
|
DPRINTF_FOLLOW(("cgdsize(%d)\n", dev));
|
|
|
|
if (!cs)
|
|
|
|
return -1;
|
|
|
|
return dk_size(di, &cs->sc_dksc, dev);
|
|
|
|
}
|
|
|
|
|
2004-03-28 03:23:06 +04:00
|
|
|
/*
|
|
|
|
* cgd_{get,put}data are functions that deal with getting a buffer
|
|
|
|
* for the new encrypted data. We have a buffer per device so that
|
|
|
|
* we can ensure that we can always have a transaction in flight.
|
|
|
|
* We use this buffer first so that we have one less piece of
|
|
|
|
* malloc'ed data at any given point.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static void *
|
|
|
|
cgd_getdata(struct dk_softc *dksc, unsigned long size)
|
|
|
|
{
|
|
|
|
struct cgd_softc *cs =dksc->sc_osc;
|
|
|
|
caddr_t data = NULL;
|
|
|
|
|
|
|
|
simple_lock(&cs->sc_slock);
|
|
|
|
if (cs->sc_data_used == 0) {
|
|
|
|
cs->sc_data_used = 1;
|
|
|
|
data = cs->sc_data;
|
|
|
|
}
|
|
|
|
simple_unlock(&cs->sc_slock);
|
|
|
|
|
|
|
|
if (data)
|
|
|
|
return data;
|
|
|
|
|
|
|
|
return malloc(size, M_DEVBUF, M_NOWAIT);
|
|
|
|
}
|
|
|
|
|
2002-10-04 22:22:35 +04:00
|
|
|
static void
|
2004-03-28 03:23:06 +04:00
|
|
|
cgd_putdata(struct dk_softc *dksc, caddr_t data)
|
|
|
|
{
|
|
|
|
struct cgd_softc *cs =dksc->sc_osc;
|
|
|
|
|
|
|
|
if (data == cs->sc_data) {
|
|
|
|
simple_lock(&cs->sc_slock);
|
|
|
|
cs->sc_data_used = 0;
|
|
|
|
simple_unlock(&cs->sc_slock);
|
|
|
|
} else {
|
|
|
|
free(data, M_DEVBUF);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2002-10-04 22:22:35 +04:00
|
|
|
cgdstart(struct dk_softc *dksc, struct buf *bp)
|
|
|
|
{
|
|
|
|
struct cgd_softc *cs = dksc->sc_osc;
|
|
|
|
struct cgdbuf *cbp;
|
|
|
|
struct partition *pp;
|
|
|
|
caddr_t addr;
|
|
|
|
caddr_t newaddr;
|
|
|
|
daddr_t bn;
|
|
|
|
|
|
|
|
DPRINTF_FOLLOW(("cgdstart(%p, %p)\n", dksc, bp));
|
|
|
|
disk_busy(&dksc->sc_dkdev); /* XXX: put in dksubr.c */
|
|
|
|
|
|
|
|
/* XXXrcd:
|
|
|
|
* Translate partition relative blocks to absolute blocks,
|
|
|
|
* this probably belongs (somehow) in dksubr.c, since it
|
|
|
|
* is independant of the underlying code... This will require
|
|
|
|
* that the interface be expanded slightly, though.
|
|
|
|
*/
|
|
|
|
bn = bp->b_blkno;
|
|
|
|
if (DISKPART(bp->b_dev) != RAW_PART) {
|
|
|
|
pp = &cs->sc_dksc.sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
|
|
|
|
bn += pp->p_offset;
|
|
|
|
}
|
|
|
|
|
2004-03-28 03:23:06 +04:00
|
|
|
/*
|
|
|
|
* We attempt to allocate all of our resources up front, so that
|
|
|
|
* we can fail quickly if they are unavailable.
|
|
|
|
*/
|
|
|
|
|
|
|
|
cbp = CGD_GETBUF();
|
|
|
|
if (cbp == NULL) {
|
|
|
|
disk_unbusy(&dksc->sc_dkdev, 0, (bp->b_flags & B_READ));
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
2002-10-04 22:22:35 +04:00
|
|
|
/*
|
|
|
|
* If we are writing, then we need to encrypt the outgoing
|
2004-03-28 03:23:06 +04:00
|
|
|
* block into a new block of memory. If we fail, then we
|
|
|
|
* return an error and let the dksubr framework deal with it.
|
2002-10-04 22:22:35 +04:00
|
|
|
*/
|
|
|
|
newaddr = addr = bp->b_data;
|
|
|
|
if ((bp->b_flags & B_READ) == 0) {
|
2004-03-28 03:23:06 +04:00
|
|
|
newaddr = cgd_getdata(dksc, bp->b_bcount);
|
|
|
|
if (!newaddr) {
|
|
|
|
CGD_PUTBUF(cbp);
|
|
|
|
disk_unbusy(&dksc->sc_dkdev, 0, (bp->b_flags & B_READ));
|
|
|
|
return -1;
|
|
|
|
}
|
2002-10-04 22:22:35 +04:00
|
|
|
cgd_cipher(cs, newaddr, addr, bp->b_bcount, bn,
|
|
|
|
DEV_BSIZE, CGD_CIPHER_ENCRYPT);
|
|
|
|
}
|
|
|
|
|
2003-02-25 23:35:31 +03:00
|
|
|
BUF_INIT(&cbp->cb_buf);
|
2002-10-04 22:22:35 +04:00
|
|
|
cbp->cb_buf.b_data = newaddr;
|
|
|
|
cbp->cb_buf.b_flags = bp->b_flags | B_CALL;
|
|
|
|
cbp->cb_buf.b_iodone = cgdiodone;
|
|
|
|
cbp->cb_buf.b_proc = bp->b_proc;
|
|
|
|
cbp->cb_buf.b_blkno = bn;
|
|
|
|
cbp->cb_buf.b_vp = cs->sc_tvn;
|
|
|
|
cbp->cb_buf.b_bcount = bp->b_bcount;
|
|
|
|
|
|
|
|
/* context for cgdiodone */
|
|
|
|
cbp->cb_obp = bp;
|
|
|
|
cbp->cb_sc = cs;
|
|
|
|
|
2004-01-10 17:39:50 +03:00
|
|
|
BIO_COPYPRIO(&cbp->cb_buf, bp);
|
|
|
|
|
2002-10-04 22:22:35 +04:00
|
|
|
if ((cbp->cb_buf.b_flags & B_READ) == 0)
|
|
|
|
cbp->cb_buf.b_vp->v_numoutput++;
|
2004-01-25 21:06:48 +03:00
|
|
|
VOP_STRATEGY(cs->sc_tvn, &cbp->cb_buf);
|
2004-03-28 03:23:06 +04:00
|
|
|
return 0;
|
2002-10-04 22:22:35 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
cgdiodone(struct buf *vbp)
|
|
|
|
{
|
|
|
|
struct cgdbuf *cbp = (struct cgdbuf *)vbp;
|
|
|
|
struct buf *obp = cbp->cb_obp;
|
|
|
|
struct buf *nbp = &cbp->cb_buf;
|
|
|
|
struct cgd_softc *cs = cbp->cb_sc;
|
|
|
|
struct dk_softc *dksc = &cs->sc_dksc;
|
|
|
|
int s;
|
|
|
|
|
|
|
|
DPRINTF_FOLLOW(("cgdiodone(%p)\n", vbp));
|
|
|
|
DPRINTF(CGDB_IO, ("cgdiodone: bp %p bcount %ld resid %ld\n",
|
|
|
|
obp, obp->b_bcount, obp->b_resid));
|
2003-02-02 23:55:16 +03:00
|
|
|
DPRINTF(CGDB_IO, (" dev 0x%x, cbp %p bn %" PRId64 " addr %p bcnt %ld\n",
|
2002-10-04 22:22:35 +04:00
|
|
|
cbp->cb_buf.b_dev, cbp, cbp->cb_buf.b_blkno, cbp->cb_buf.b_data,
|
|
|
|
cbp->cb_buf.b_bcount));
|
|
|
|
s = splbio();
|
|
|
|
if (nbp->b_flags & B_ERROR) {
|
|
|
|
obp->b_flags |= B_ERROR;
|
|
|
|
obp->b_error = nbp->b_error ? nbp->b_error : EIO;
|
|
|
|
|
|
|
|
printf("%s: error %d\n", dksc->sc_xname, obp->b_error);
|
|
|
|
}
|
|
|
|
|
2004-03-28 03:23:06 +04:00
|
|
|
/* Perform the decryption if we are reading.
|
2002-10-04 22:22:35 +04:00
|
|
|
*
|
|
|
|
* Note: use the blocknumber from nbp, since it is what
|
|
|
|
* we used to encrypt the blocks.
|
|
|
|
*/
|
|
|
|
|
2004-03-28 03:23:06 +04:00
|
|
|
if (nbp->b_flags & B_READ)
|
2002-10-04 22:22:35 +04:00
|
|
|
cgd_cipher(cs, obp->b_data, obp->b_data, obp->b_bcount,
|
|
|
|
nbp->b_blkno, DEV_BSIZE, CGD_CIPHER_DECRYPT);
|
|
|
|
|
2004-03-28 03:23:06 +04:00
|
|
|
/* If we allocated memory, free it now... */
|
2002-10-04 22:22:35 +04:00
|
|
|
if (nbp->b_data != obp->b_data)
|
2004-03-28 03:23:06 +04:00
|
|
|
cgd_putdata(dksc, nbp->b_data);
|
2002-10-04 22:22:35 +04:00
|
|
|
|
|
|
|
CGD_PUTBUF(cbp);
|
|
|
|
|
|
|
|
/* Request is complete for whatever reason */
|
|
|
|
obp->b_resid = 0;
|
|
|
|
if (obp->b_flags & B_ERROR)
|
|
|
|
obp->b_resid = obp->b_bcount;
|
2002-11-01 14:31:50 +03:00
|
|
|
disk_unbusy(&dksc->sc_dkdev, obp->b_bcount - obp->b_resid,
|
|
|
|
(obp->b_flags & B_READ));
|
2002-10-04 22:22:35 +04:00
|
|
|
biodone(obp);
|
2004-03-28 03:23:06 +04:00
|
|
|
dk_iodone(di, dksc);
|
2002-10-04 22:22:35 +04:00
|
|
|
splx(s);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* XXX: we should probably put these into dksubr.c, mostly */
|
|
|
|
int
|
|
|
|
cgdread(dev_t dev, struct uio *uio, int flags)
|
|
|
|
{
|
|
|
|
struct cgd_softc *cs;
|
|
|
|
struct dk_softc *dksc;
|
|
|
|
|
|
|
|
DPRINTF_FOLLOW(("cgdread(%d, %p, %d)\n", dev, uio, flags));
|
|
|
|
GETCGD_SOFTC(cs, dev);
|
|
|
|
dksc = &cs->sc_dksc;
|
|
|
|
if ((dksc->sc_flags & DKF_INITED) == 0)
|
|
|
|
return ENXIO;
|
|
|
|
/* XXX see the comments about minphys in ccd.c */
|
|
|
|
return physio(cgdstrategy, NULL, dev, B_READ, minphys, uio);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* XXX: we should probably put these into dksubr.c, mostly */
|
|
|
|
int
|
|
|
|
cgdwrite(dev_t dev, struct uio *uio, int flags)
|
|
|
|
{
|
|
|
|
struct cgd_softc *cs;
|
|
|
|
struct dk_softc *dksc;
|
|
|
|
|
|
|
|
DPRINTF_FOLLOW(("cgdwrite(%d, %p, %d)\n", dev, uio, flags));
|
|
|
|
GETCGD_SOFTC(cs, dev);
|
|
|
|
dksc = &cs->sc_dksc;
|
|
|
|
if ((dksc->sc_flags & DKF_INITED) == 0)
|
|
|
|
return ENXIO;
|
|
|
|
/* XXX see the comments about minphys in ccd.c */
|
|
|
|
return physio(cgdstrategy, NULL, dev, B_WRITE, minphys, uio);
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
2003-06-30 02:28:00 +04:00
|
|
|
cgdioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
|
2002-10-04 22:22:35 +04:00
|
|
|
{
|
|
|
|
struct cgd_softc *cs;
|
|
|
|
struct dk_softc *dksc;
|
|
|
|
int ret;
|
|
|
|
int part = DISKPART(dev);
|
|
|
|
int pmask = 1 << part;
|
|
|
|
|
|
|
|
DPRINTF_FOLLOW(("cgdioctl(%d, %ld, %p, %d, %p)\n",
|
2003-06-30 02:28:00 +04:00
|
|
|
dev, cmd, data, flag, p));
|
2002-10-04 22:22:35 +04:00
|
|
|
GETCGD_SOFTC(cs, dev);
|
|
|
|
dksc = &cs->sc_dksc;
|
|
|
|
switch (cmd) {
|
|
|
|
case CGDIOCSET:
|
|
|
|
case CGDIOCCLR:
|
|
|
|
if ((flag & FWRITE) == 0)
|
|
|
|
return EBADF;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((ret = lockmgr(&dksc->sc_lock, LK_EXCLUSIVE, NULL)) != 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
switch (cmd) {
|
|
|
|
case CGDIOCSET:
|
|
|
|
if (dksc->sc_flags & DKF_INITED)
|
|
|
|
ret = EBUSY;
|
|
|
|
else
|
2003-06-30 02:28:00 +04:00
|
|
|
ret = cgd_ioctl_set(cs, data, p);
|
2002-10-04 22:22:35 +04:00
|
|
|
break;
|
|
|
|
case CGDIOCCLR:
|
|
|
|
if (!(dksc->sc_flags & DKF_INITED)) {
|
|
|
|
ret = ENXIO;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (DK_BUSY(&cs->sc_dksc, pmask)) {
|
|
|
|
ret = EBUSY;
|
|
|
|
break;
|
|
|
|
}
|
2003-06-30 02:28:00 +04:00
|
|
|
ret = cgd_ioctl_clr(cs, data, p);
|
2002-10-04 22:22:35 +04:00
|
|
|
break;
|
|
|
|
default:
|
2003-06-30 02:28:00 +04:00
|
|
|
ret = dk_ioctl(di, dksc, dev, cmd, data, flag, p);
|
2002-10-04 22:22:35 +04:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
lockmgr(&dksc->sc_lock, LK_RELEASE, NULL);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
cgddump(dev_t dev, daddr_t blkno, caddr_t va, size_t size)
|
|
|
|
{
|
|
|
|
struct cgd_softc *cs;
|
|
|
|
|
2003-02-02 23:55:16 +03:00
|
|
|
DPRINTF_FOLLOW(("cgddump(%d, %" PRId64 ", %p, %lu)\n", dev, blkno, va,
|
2002-10-14 23:16:55 +04:00
|
|
|
(unsigned long)size));
|
2002-10-04 22:22:35 +04:00
|
|
|
GETCGD_SOFTC(cs, dev);
|
|
|
|
return dk_dump(di, &cs->sc_dksc, dev, blkno, va, size);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* XXXrcd:
|
|
|
|
* for now we hardcode the maximum key length.
|
|
|
|
*/
|
|
|
|
#define MAX_KEYSIZE 1024
|
|
|
|
|
|
|
|
/* ARGSUSED */
|
|
|
|
static int
|
2003-06-30 02:28:00 +04:00
|
|
|
cgd_ioctl_set(struct cgd_softc *cs, void *data, struct proc *p)
|
2002-10-04 22:22:35 +04:00
|
|
|
{
|
|
|
|
struct cgd_ioctl *ci = data;
|
|
|
|
struct vnode *vp;
|
|
|
|
int ret;
|
Fix a longstanding bug in key-handling for the blowfish cipher.
This is an incompatible change, and will break all existing cgd images
encrypted with blowfish. Users will need to dump their data before
booting a kernel with this change, and recreate cgd's and restore data
afterwards.
I believe this affects a very small number of users other than myself;
indeed after several alert mails in an attempt to find them, only 2
such users have come forward. They have both agreed the requirement
for backwards compatibility does not warrant the effort nor the mess
in the code. This code does exist, if it should later prove to be
needed, but will not be in the tree.
Further, by the nature of the issue, I have strong reasons to believe
that, even if they missed these mails, there would be few other users
of blowfish who update their systems with any regularity; any such
users would have tripped over the problem in the same way I did when
it was first found over a year ago.
The problem stems from two issues with the underlying blowfish
encryption routines used by cgd:
- they take key length arguments counted in bytes, rather than bits
like all the opther ciphers.
- they silently truncate any keys longer than an internal limit,
rather than returning an error (which would have exposed the
previous discrepancy immediately).
As a result, the kernel reads too much data as the key from cgdconfig,
and then truncates most of it. This can easily be demonstrated/tested.
Currently, Blowfish users will find that if they mis-enter the cgd
passphrase on the first attempt, when validation fails and cgdconfig
prompts for the passphrase again, the cgd will not correctly configure
even when given a correct passphrase.
2004-03-18 13:42:08 +03:00
|
|
|
int keybytes; /* key length in bytes */
|
2002-10-04 22:22:35 +04:00
|
|
|
char *cp;
|
|
|
|
char inbuf[MAX_KEYSIZE];
|
|
|
|
|
|
|
|
cp = ci->ci_disk;
|
2003-06-30 02:28:00 +04:00
|
|
|
if ((ret = dk_lookup(cp, p, &vp)) != 0)
|
2002-10-04 22:22:35 +04:00
|
|
|
return ret;
|
|
|
|
|
2003-06-30 02:28:00 +04:00
|
|
|
if ((ret = cgdinit(cs, cp, vp, p)) != 0)
|
2002-10-04 22:22:35 +04:00
|
|
|
goto bail;
|
|
|
|
|
|
|
|
memset(inbuf, 0x0, sizeof(inbuf));
|
|
|
|
ret = copyinstr(ci->ci_alg, inbuf, 256, NULL);
|
|
|
|
if (ret)
|
|
|
|
goto bail;
|
|
|
|
cs->sc_cfuncs = cryptfuncs_find(inbuf);
|
|
|
|
if (!cs->sc_cfuncs) {
|
|
|
|
ret = EINVAL;
|
|
|
|
goto bail;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* right now we only support encblkno, so hard-code it */
|
|
|
|
memset(inbuf, 0x0, sizeof(inbuf));
|
|
|
|
ret = copyinstr(ci->ci_ivmethod, inbuf, sizeof(inbuf), NULL);
|
|
|
|
if (ret)
|
|
|
|
goto bail;
|
|
|
|
if (strcmp("encblkno", inbuf)) {
|
|
|
|
ret = EINVAL;
|
|
|
|
goto bail;
|
|
|
|
}
|
|
|
|
|
Fix a longstanding bug in key-handling for the blowfish cipher.
This is an incompatible change, and will break all existing cgd images
encrypted with blowfish. Users will need to dump their data before
booting a kernel with this change, and recreate cgd's and restore data
afterwards.
I believe this affects a very small number of users other than myself;
indeed after several alert mails in an attempt to find them, only 2
such users have come forward. They have both agreed the requirement
for backwards compatibility does not warrant the effort nor the mess
in the code. This code does exist, if it should later prove to be
needed, but will not be in the tree.
Further, by the nature of the issue, I have strong reasons to believe
that, even if they missed these mails, there would be few other users
of blowfish who update their systems with any regularity; any such
users would have tripped over the problem in the same way I did when
it was first found over a year ago.
The problem stems from two issues with the underlying blowfish
encryption routines used by cgd:
- they take key length arguments counted in bytes, rather than bits
like all the opther ciphers.
- they silently truncate any keys longer than an internal limit,
rather than returning an error (which would have exposed the
previous discrepancy immediately).
As a result, the kernel reads too much data as the key from cgdconfig,
and then truncates most of it. This can easily be demonstrated/tested.
Currently, Blowfish users will find that if they mis-enter the cgd
passphrase on the first attempt, when validation fails and cgdconfig
prompts for the passphrase again, the cgd will not correctly configure
even when given a correct passphrase.
2004-03-18 13:42:08 +03:00
|
|
|
keybytes = ci->ci_keylen / 8 + 1;
|
|
|
|
if (keybytes > MAX_KEYSIZE) {
|
2002-10-04 22:22:35 +04:00
|
|
|
ret = EINVAL;
|
|
|
|
goto bail;
|
|
|
|
}
|
|
|
|
memset(inbuf, 0x0, sizeof(inbuf));
|
Fix a longstanding bug in key-handling for the blowfish cipher.
This is an incompatible change, and will break all existing cgd images
encrypted with blowfish. Users will need to dump their data before
booting a kernel with this change, and recreate cgd's and restore data
afterwards.
I believe this affects a very small number of users other than myself;
indeed after several alert mails in an attempt to find them, only 2
such users have come forward. They have both agreed the requirement
for backwards compatibility does not warrant the effort nor the mess
in the code. This code does exist, if it should later prove to be
needed, but will not be in the tree.
Further, by the nature of the issue, I have strong reasons to believe
that, even if they missed these mails, there would be few other users
of blowfish who update their systems with any regularity; any such
users would have tripped over the problem in the same way I did when
it was first found over a year ago.
The problem stems from two issues with the underlying blowfish
encryption routines used by cgd:
- they take key length arguments counted in bytes, rather than bits
like all the opther ciphers.
- they silently truncate any keys longer than an internal limit,
rather than returning an error (which would have exposed the
previous discrepancy immediately).
As a result, the kernel reads too much data as the key from cgdconfig,
and then truncates most of it. This can easily be demonstrated/tested.
Currently, Blowfish users will find that if they mis-enter the cgd
passphrase on the first attempt, when validation fails and cgdconfig
prompts for the passphrase again, the cgd will not correctly configure
even when given a correct passphrase.
2004-03-18 13:42:08 +03:00
|
|
|
ret = copyin(ci->ci_key, inbuf, keybytes);
|
2002-10-04 22:22:35 +04:00
|
|
|
if (ret)
|
|
|
|
goto bail;
|
|
|
|
|
|
|
|
cs->sc_cdata.cf_blocksize = ci->ci_blocksize;
|
|
|
|
cs->sc_cdata.cf_mode = CGD_CIPHER_CBC_ENCBLKNO;
|
|
|
|
cs->sc_cdata.cf_priv = cs->sc_cfuncs->cf_init(ci->ci_keylen, inbuf,
|
|
|
|
&cs->sc_cdata.cf_blocksize);
|
|
|
|
memset(inbuf, 0x0, sizeof(inbuf));
|
|
|
|
if (!cs->sc_cdata.cf_priv) {
|
|
|
|
printf("cgd: unable to initialize cipher\n");
|
|
|
|
ret = EINVAL; /* XXX is this the right error? */
|
|
|
|
goto bail;
|
|
|
|
}
|
|
|
|
|
2004-03-28 03:23:06 +04:00
|
|
|
bufq_alloc(&cs->sc_dksc.sc_bufq, BUFQ_FCFS);
|
|
|
|
|
|
|
|
cs->sc_data = malloc(MAXPHYS, M_DEVBUF, M_WAITOK);
|
|
|
|
cs->sc_data_used = 0;
|
|
|
|
|
2002-10-04 22:22:35 +04:00
|
|
|
cs->sc_dksc.sc_flags |= DKF_INITED;
|
|
|
|
|
|
|
|
/* Attach the disk. */
|
|
|
|
disk_attach(&cs->sc_dksc.sc_dkdev);
|
|
|
|
|
|
|
|
/* Try and read the disklabel. */
|
|
|
|
dk_getdisklabel(di, &cs->sc_dksc, 0 /* XXX ? */);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
bail:
|
2003-06-30 02:28:00 +04:00
|
|
|
(void)vn_close(vp, FREAD|FWRITE, p->p_ucred, p);
|
2002-10-04 22:22:35 +04:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* ARGSUSED */
|
|
|
|
static int
|
2003-06-30 02:28:00 +04:00
|
|
|
cgd_ioctl_clr(struct cgd_softc *cs, void *data, struct proc *p)
|
2002-10-04 22:22:35 +04:00
|
|
|
{
|
2004-03-28 03:23:06 +04:00
|
|
|
struct buf *bp;
|
|
|
|
int s;
|
|
|
|
|
|
|
|
/* Kill off any queued buffers. */
|
|
|
|
s = splbio();
|
|
|
|
while ((bp = BUFQ_GET(&cs->sc_dksc.sc_bufq)) != NULL) {
|
|
|
|
bp->b_error = EIO;
|
|
|
|
bp->b_flags |= B_ERROR;
|
|
|
|
bp->b_resid = bp->b_bcount;
|
|
|
|
biodone(bp);
|
|
|
|
}
|
|
|
|
splx(s);
|
|
|
|
bufq_free(&cs->sc_dksc.sc_bufq);
|
2002-10-04 22:22:35 +04:00
|
|
|
|
2003-06-30 02:28:00 +04:00
|
|
|
(void)vn_close(cs->sc_tvn, FREAD|FWRITE, p->p_ucred, p);
|
2002-10-04 22:22:35 +04:00
|
|
|
cs->sc_cfuncs->cf_destroy(cs->sc_cdata.cf_priv);
|
|
|
|
free(cs->sc_tpath, M_DEVBUF);
|
2004-03-28 03:23:06 +04:00
|
|
|
free(cs->sc_data, M_DEVBUF);
|
|
|
|
cs->sc_data_used = 0;
|
2002-10-04 22:22:35 +04:00
|
|
|
cs->sc_dksc.sc_flags &= ~DKF_INITED;
|
|
|
|
disk_detach(&cs->sc_dksc.sc_dkdev);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
cgdinit(struct cgd_softc *cs, char *cpath, struct vnode *vp,
|
2003-06-30 02:28:00 +04:00
|
|
|
struct proc *p)
|
2002-10-04 22:22:35 +04:00
|
|
|
{
|
|
|
|
struct dk_geom *pdg;
|
|
|
|
struct partinfo dpart;
|
|
|
|
struct vattr va;
|
|
|
|
size_t size;
|
|
|
|
int maxsecsize = 0;
|
|
|
|
int ret;
|
|
|
|
char tmppath[MAXPATHLEN];
|
|
|
|
|
|
|
|
cs->sc_dksc.sc_size = 0;
|
|
|
|
cs->sc_tvn = vp;
|
|
|
|
|
|
|
|
memset(tmppath, 0x0, sizeof(tmppath));
|
|
|
|
ret = copyinstr(cpath, tmppath, MAXPATHLEN, &cs->sc_tpathlen);
|
|
|
|
if (ret)
|
|
|
|
goto bail;
|
|
|
|
cs->sc_tpath = malloc(cs->sc_tpathlen, M_DEVBUF, M_WAITOK);
|
|
|
|
memcpy(cs->sc_tpath, tmppath, cs->sc_tpathlen);
|
|
|
|
|
2003-06-30 02:28:00 +04:00
|
|
|
if ((ret = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0)
|
2002-10-04 22:22:35 +04:00
|
|
|
goto bail;
|
|
|
|
|
|
|
|
cs->sc_tdev = va.va_rdev;
|
|
|
|
|
2003-06-30 02:28:00 +04:00
|
|
|
ret = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, p->p_ucred, p);
|
2002-10-04 22:22:35 +04:00
|
|
|
if (ret)
|
|
|
|
goto bail;
|
|
|
|
|
|
|
|
maxsecsize =
|
|
|
|
((dpart.disklab->d_secsize > maxsecsize) ?
|
|
|
|
dpart.disklab->d_secsize : maxsecsize);
|
|
|
|
size = dpart.part->p_size;
|
|
|
|
|
|
|
|
if (!size) {
|
|
|
|
ret = ENODEV;
|
|
|
|
goto bail;
|
|
|
|
}
|
|
|
|
|
|
|
|
cs->sc_dksc.sc_size = size;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* XXX here we should probe the underlying device. If we
|
|
|
|
* are accessing a partition of type RAW_PART, then
|
|
|
|
* we should populate our initial geometry with the
|
|
|
|
* geometry that we discover from the device.
|
|
|
|
*/
|
|
|
|
pdg = &cs->sc_dksc.sc_geom;
|
|
|
|
pdg->pdg_secsize = DEV_BSIZE;
|
|
|
|
pdg->pdg_ntracks = 1;
|
|
|
|
pdg->pdg_nsectors = 1024 * (1024 / pdg->pdg_secsize);
|
|
|
|
pdg->pdg_ncylinders = cs->sc_dksc.sc_size / pdg->pdg_nsectors;
|
|
|
|
|
|
|
|
bail:
|
|
|
|
if (ret && cs->sc_tpath)
|
|
|
|
free(cs->sc_tpath, M_DEVBUF);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Our generic cipher entry point. This takes care of the
|
|
|
|
* IV mode and passes off the work to the specific cipher.
|
|
|
|
* We implement here the IV method ``encrypted block
|
|
|
|
* number''.
|
|
|
|
*
|
|
|
|
* For the encryption case, we accomplish this by setting
|
|
|
|
* up a struct uio where the first iovec of the source is
|
|
|
|
* the blocknumber and the first iovec of the dest is a
|
|
|
|
* sink. We then call the cipher with an IV of zero, and
|
|
|
|
* the right thing happens.
|
|
|
|
*
|
|
|
|
* For the decryption case, we use the same basic mechanism
|
|
|
|
* for symmetry, but we encrypt the block number in the
|
|
|
|
* first iovec.
|
|
|
|
*
|
|
|
|
* We mainly do this to avoid requiring the definition of
|
|
|
|
* an ECB mode.
|
|
|
|
*
|
|
|
|
* XXXrcd: for now we rely on our own crypto framework defined
|
|
|
|
* in dev/cgd_crypto.c. This will change when we
|
|
|
|
* get a generic kernel crypto framework.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static void
|
|
|
|
blkno2blkno_buf(char *buf, daddr_t blkno)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/* Set up the blkno in blkno_buf, here we do not care much
|
|
|
|
* about the final layout of the information as long as we
|
|
|
|
* can guarantee that each sector will have a different IV
|
|
|
|
* and that the endianness of the machine will not affect
|
|
|
|
* the representation that we have chosen.
|
|
|
|
*
|
|
|
|
* We choose this representation, because it does not rely
|
|
|
|
* on the size of buf (which is the blocksize of the cipher),
|
|
|
|
* but allows daddr_t to grow without breaking existing
|
|
|
|
* disks.
|
|
|
|
*
|
|
|
|
* Note that blkno2blkno_buf does not take a size as input,
|
|
|
|
* and hence must be called on a pre-zeroed buffer of length
|
|
|
|
* greater than or equal to sizeof(daddr_t).
|
|
|
|
*/
|
|
|
|
for (i=0; i < sizeof(daddr_t); i++) {
|
|
|
|
*buf++ = blkno & 0xff;
|
|
|
|
blkno >>= 8;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
cgd_cipher(struct cgd_softc *cs, caddr_t dst, caddr_t src,
|
|
|
|
size_t len, daddr_t blkno, size_t secsize, int dir)
|
|
|
|
{
|
|
|
|
cfunc_cipher *cipher = cs->sc_cfuncs->cf_cipher;
|
|
|
|
struct uio dstuio;
|
|
|
|
struct uio srcuio;
|
|
|
|
struct iovec dstiov[2];
|
|
|
|
struct iovec srciov[2];
|
|
|
|
int blocksize = cs->sc_cdata.cf_blocksize;
|
|
|
|
char sink[blocksize];
|
|
|
|
char zero_iv[blocksize];
|
|
|
|
char blkno_buf[blocksize];
|
|
|
|
|
|
|
|
DPRINTF_FOLLOW(("cgd_cipher() dir=%d\n", dir));
|
|
|
|
|
|
|
|
DIAGCONDPANIC(len % blocksize != 0,
|
|
|
|
("cgd_cipher: len %% blocksize != 0"));
|
|
|
|
|
|
|
|
/* ensure that sizeof(daddr_t) <= blocksize (for encblkno IVing) */
|
|
|
|
DIAGCONDPANIC(sizeof(daddr_t) > blocksize,
|
|
|
|
("cgd_cipher: sizeof(daddr_t) > blocksize"));
|
|
|
|
|
|
|
|
memset(zero_iv, 0x0, sizeof(zero_iv));
|
|
|
|
|
|
|
|
dstuio.uio_iov = dstiov;
|
|
|
|
dstuio.uio_iovcnt = 2;
|
|
|
|
|
|
|
|
srcuio.uio_iov = srciov;
|
|
|
|
srcuio.uio_iovcnt = 2;
|
|
|
|
|
|
|
|
dstiov[0].iov_base = sink;
|
|
|
|
dstiov[0].iov_len = blocksize;
|
|
|
|
srciov[0].iov_base = blkno_buf;
|
|
|
|
srciov[0].iov_len = blocksize;
|
|
|
|
dstiov[1].iov_len = secsize;
|
|
|
|
srciov[1].iov_len = secsize;
|
|
|
|
|
|
|
|
for (; len > 0; len -= secsize) {
|
|
|
|
dstiov[1].iov_base = dst;
|
|
|
|
srciov[1].iov_base = src;
|
|
|
|
|
|
|
|
memset(blkno_buf, 0x0, sizeof(blkno_buf));
|
|
|
|
blkno2blkno_buf(blkno_buf, blkno);
|
|
|
|
if (dir == CGD_CIPHER_DECRYPT) {
|
|
|
|
dstuio.uio_iovcnt = 1;
|
|
|
|
srcuio.uio_iovcnt = 1;
|
|
|
|
IFDEBUG(CGDB_CRYPTO, hexprint("step 0: blkno_buf",
|
|
|
|
blkno_buf, sizeof(blkno_buf)));
|
|
|
|
cipher(cs->sc_cdata.cf_priv, &dstuio, &srcuio,
|
|
|
|
zero_iv, CGD_CIPHER_ENCRYPT);
|
|
|
|
memcpy(blkno_buf, sink, blocksize);
|
|
|
|
dstuio.uio_iovcnt = 2;
|
|
|
|
srcuio.uio_iovcnt = 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
IFDEBUG(CGDB_CRYPTO, hexprint("step 1: blkno_buf",
|
|
|
|
blkno_buf, sizeof(blkno_buf)));
|
|
|
|
cipher(cs->sc_cdata.cf_priv, &dstuio, &srcuio, zero_iv, dir);
|
|
|
|
IFDEBUG(CGDB_CRYPTO, hexprint("step 2: sink",
|
|
|
|
sink, sizeof(sink)));
|
|
|
|
|
|
|
|
dst += secsize;
|
|
|
|
src += secsize;
|
|
|
|
blkno++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
static void
|
|
|
|
hexprint(char *start, void *buf, int len)
|
|
|
|
{
|
|
|
|
char *c = buf;
|
|
|
|
|
|
|
|
DIAGCONDPANIC(len < 0, ("hexprint: called with len < 0"));
|
|
|
|
printf("%s: len=%06d 0x", start, len);
|
|
|
|
while (len--)
|
|
|
|
printf("%02x", (unsigned) *c++);
|
|
|
|
}
|
|
|
|
#endif
|