NetBSD/sys/dev/raidframe/rf_netbsdkintf.c

2037 lines
55 KiB
C
Raw Normal View History

/* $NetBSD: rf_netbsdkintf.c,v 1.4 1998/12/03 15:14:40 oster Exp $ */
/*-
* Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Greg Oster; Jason R. Thorpe.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1988 University of Utah.
* Copyright (c) 1990, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Utah $Hdr: cd.c 1.6 90/11/28$
*
* @(#)cd.c 8.2 (Berkeley) 11/16/93
*/
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
*
* Authors: Mark Holland, Jim Zelenka
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/***********************************************************
*
* rf_kintf.c -- the kernel interface routines for RAIDframe
*
***********************************************************/
/*
* :
* Log: rf_kintf.c,v
* Revision 1.57 1996/07/19 16:12:20 jimz
* remove addition of protectedSectors in InitBP- it's already
* done in the diskqueue code
*
* Revision 1.56 1996/07/17 21:00:58 jimz
* clean up timer interface, tracing
*
* Revision 1.55 1996/06/17 03:00:54 jimz
* Change RAIDFRAME_GET_INFO interface to do its own copyout()
* (because size of device config structure now exceeds 8k)
*
* Revision 1.54 1996/06/09 02:36:46 jimz
* lots of little crufty cleanup- fixup whitespace
* issues, comment #ifdefs, improve typing in some
* places (esp size-related)
*
* Revision 1.53 1996/06/07 21:33:04 jimz
* begin using consistent types for sector numbers,
* stripe numbers, row+col numbers, recon unit numbers
*
* Revision 1.52 1996/06/06 17:28:08 jimz
* track sector number of last I/O dequeued
*
* Revision 1.51 1996/06/05 18:06:02 jimz
* Major code cleanup. The Great Renaming is now done.
* Better modularity. Better typing. Fixed a bunch of
* synchronization bugs. Made a lot of global stuff
* per-desc or per-array. Removed dead code.
*
* Revision 1.50 1996/06/03 23:28:26 jimz
* more bugfixes
* check in tree to sync for IPDS runs with current bugfixes
* there still may be a problem with threads in the script test
* getting I/Os stuck- not trivially reproducible (runs ~50 times
* in a row without getting stuck)
*
* Revision 1.49 1996/06/02 17:31:48 jimz
* Moved a lot of global stuff into array structure, where it belongs.
* Fixed up paritylogging, pss modules in this manner. Some general
* code cleanup. Removed lots of dead code, some dead files.
*
* Revision 1.48 1996/05/31 22:26:54 jimz
* fix a lot of mapping problems, memory allocation problems
* found some weird lock issues, fixed 'em
* more code cleanup
*
* Revision 1.47 1996/05/30 12:59:18 jimz
* make etimer happier, more portable
*
* Revision 1.46 1996/05/30 11:29:41 jimz
* Numerous bug fixes. Stripe lock release code disagreed with the taking code
* about when stripes should be locked (I made it consistent: no parity, no lock)
* There was a lot of extra serialization of I/Os which I've removed- a lot of
* it was to calculate values for the cache code, which is no longer with us.
* More types, function, macro cleanup. Added code to properly quiesce the array
* on shutdown. Made a lot of stuff array-specific which was (bogusly) general
* before. Fixed memory allocation, freeing bugs.
*
* Revision 1.45 1996/05/27 18:56:37 jimz
* more code cleanup
* better typing
* compiles in all 3 environments
*
* Revision 1.44 1996/05/24 22:17:04 jimz
* continue code + namespace cleanup
* typed a bunch of flags
*
* Revision 1.43 1996/05/24 01:59:45 jimz
* another checkpoint in code cleanup for release
* time to sync kernel tree
*
* Revision 1.42 1996/05/23 22:17:54 jimz
* fix sector size hardcoding problems
*
* Revision 1.41 1996/05/23 21:46:35 jimz
* checkpoint in code cleanup (release prep)
* lots of types, function names have been fixed
*
* Revision 1.40 1996/05/23 13:18:07 jimz
* tracing_mutex -> rf_tracing_mutex
*
* Revision 1.39 1996/05/23 00:33:23 jimz
* code cleanup: move all debug decls to rf_options.c, all extern
* debug decls to rf_options.h, all debug vars preceded by rf_
*
* Revision 1.38 1996/05/20 16:15:32 jimz
* switch to rf_{mutex,cond}_{init,destroy}
*
* Revision 1.37 1996/05/10 16:23:47 jimz
* RF_offset -> RF_Offset
*
* Revision 1.36 1996/05/08 21:01:24 jimz
* fixed up enum type names that were conflicting with other
* enums and function names (ie, "panic")
* future naming trends will be towards RF_ and rf_ for
* everything raidframe-related
*
* Revision 1.35 1996/05/03 19:10:48 jimz
* change sanity checking for bogus I/Os to return more appropriate
* values (to make some user-level utilities happer with RAIDframe)
*
* Revision 1.34 1996/05/02 22:17:00 jimz
* When using DKUSAGE, send a bogus IO after configuring to let DKUSAGE know
* that we exist. This will let user-level programs doing group stats on the
* RF device function without error before RF gets its first IO
*
* Changed rf_device_config devs and spares fields to RF_RaidDisk_t
*
* Inc numOutstanding for the disk queue in rf_DispatchKernelIO if
* type is IO_TYPE_NOP. I'm not sure this is right, but it seems to be,
* because the disk IO completion routine wants to dec it, and doesn't
* care if there was no such IO.
*
* Revision 1.33 1996/05/02 15:05:44 jimz
* for now, rf_DoAccessKernel will reject non-sector-sized I/Os
* eventually, it should do something more clever...
* (and do it in DoAccess(), not just DoAccessKernel())
*
* Revision 1.32 1996/05/01 16:28:39 jimz
* get rid of uses of ccmn_ functions
*
* Revision 1.31 1996/05/01 15:42:17 jimz
* ccmn_* memory management is on the way out. This is an archival checkpoint-
* both the old and new code are in place (all the ccmn_ calls are #if 0). After
* this, the ccmn_ code will no longer appear.
*
* Revision 1.30 1996/04/22 15:53:13 jimz
* MAX_RAIDS -> NRAIDFRAME
*
* Revision 1.29 1995/12/12 18:10:06 jimz
* MIN -> RF_MIN, MAX -> RF_MAX, ASSERT -> RF_ASSERT
* fix 80-column brain damage in comments
*
* Revision 1.28 1995/12/01 19:11:01 root
* added copyright info
*
* Revision 1.27 1995/11/28 18:56:40 wvcii
* disabled buffer copy in rf_write
*
* Revision 1.26 1995/10/06 16:37:08 jimz
* get struct bufs from ubc, not cam
* copy all write data, and operate on copy
* (temporary hack to get around dags in PQ that want
* to Xor into user write buffers)
*
* Revision 1.25 1995/09/30 22:23:08 jimz
* do not require raid to be active to perform ACCTOTAL ioctl
*
* Revision 1.24 1995/09/30 20:39:08 jimz
* added new ioctls:
* RAIDFRAME_RESET_ACCTOTALS
* RAIDFRAME_GET_ACCTOTALS
* RAIDFRAME_KEEP_ACCTOTALS
*
* Revision 1.23 1995/09/20 21:11:59 jimz
* include dfstrace.h in KERNEL block
* (even though it's a kernel-only file, this makes the depend process
* at user-level happy. Why the user-level Makefile wants to depend
* kintf.c is less clear, but this is a workaround).
*
* Revision 1.22 1995/09/19 23:19:03 jimz
* added DKUSAGE support
*
*/
#ifdef _KERNEL
#define KERNEL
#endif
#ifdef KERNEL
#include <sys/errno.h>
#ifdef __NetBSD__
#include "raid.h"
#include <sys/param.h>
#include <sys/pool.h>
#include <sys/queue.h>
#include <sys/disk.h>
#include <sys/device.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <sys/fcntl.h>
#include <sys/systm.h>
#include <sys/namei.h>
#include <sys/vnode.h>
#endif
#include <sys/param.h>
#include <sys/types.h>
#include <machine/types.h>
#include <sys/disklabel.h>
#include <sys/conf.h>
#ifdef __NetBSD__
#include <sys/lock.h>
#endif /* __NetBSD__ */
#include <sys/buf.h>
#include <sys/user.h>
#include "rf_raid.h"
#include "rf_raidframe.h"
#include "rf_dag.h"
#include "rf_dagflags.h"
#include "rf_diskqueue.h"
#include "rf_acctrace.h"
#include "rf_etimer.h"
#include "rf_general.h"
#include "rf_debugMem.h"
#include "rf_kintf.h"
#include "rf_options.h"
#include "rf_driver.h"
#include "rf_parityscan.h"
#include "rf_debugprint.h"
#include "rf_threadstuff.h"
int rf_kdebug_level = 0;
#define RFK_BOOT_NONE 0
#define RFK_BOOT_GOOD 1
#define RFK_BOOT_BAD 2
static int rf_kbooted = RFK_BOOT_NONE;
#ifdef DEBUG
#define db0_printf(a) printf a
#define db_printf(a) if (rf_kdebug_level > 0) printf a
#define db1_printf(a) if (rf_kdebug_level > 0) printf a
#define db2_printf(a) if (rf_kdebug_level > 1) printf a
#define db3_printf(a) if (rf_kdebug_level > 2) printf a
#define db4_printf(a) if (rf_kdebug_level > 3) printf a
#define db5_printf(a) if (rf_kdebug_level > 4) printf a
#else /* DEBUG */
#define db0_printf(a) printf a
#define db1_printf(a) { }
#define db2_printf(a) { }
#define db3_printf(a) { }
#define db4_printf(a) { }
#define db5_printf(a) { }
#endif /* DEBUG */
static RF_Raid_t **raidPtrs; /* global raid device descriptors */
static int rf_pending_testaccs;
RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
RF_DECLARE_STATIC_MUTEX(rf_async_done_q_mutex)
static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a spare table */
static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from installation process */
static struct rf_test_acc *rf_async_done_qh, *rf_async_done_qt;
static struct rf_recon_req *recon_queue = NULL; /* used to communicate reconstruction requests */
decl_simple_lock_data(,recon_queue_mutex)
#define LOCK_RECON_Q_MUTEX() simple_lock(&recon_queue_mutex)
#define UNLOCK_RECON_Q_MUTEX() simple_unlock(&recon_queue_mutex)
/* prototypes */
static void KernelWakeupFunc(struct buf *bp);
static void InitBP(struct buf *bp, struct vnode *, unsigned rw_flag, dev_t dev,
RF_SectorNum_t startSect, RF_SectorCount_t numSect, caddr_t buf,
void (*cbFunc)(struct buf *), void *cbArg, int logBytesPerSector,
struct proc *b_proc);
#define Dprintf0(s) if (rf_queueDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
#define Dprintf1(s,a) if (rf_queueDebug) rf_debug_printf(s,a,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
#define Dprintf2(s,a,b) if (rf_queueDebug) rf_debug_printf(s,a,b,NULL,NULL,NULL,NULL,NULL,NULL)
#define Dprintf3(s,a,b,c) if (rf_queueDebug) rf_debug_printf(s,a,b,c,NULL,NULL,NULL,NULL,NULL)
/* this is so that we can compile under 2.0 as well as 3.2 */
#ifndef proc_to_task
#define proc_to_task(x) ((x)->task)
#endif /* !proc_to_task */
void raidattach __P((int));
int raidsize __P((dev_t));
1998-11-13 14:51:55 +03:00
void rf_DiskIOComplete(RF_DiskQueue_t *, RF_DiskQueueData_t *, int);
void rf_CopybackReconstructedData(RF_Raid_t *raidPtr);
static int raidinit __P((dev_t,RF_Raid_t *,int));
1998-11-13 14:51:55 +03:00
int raidopen __P((dev_t, int, int, struct proc *));
int raidclose __P((dev_t, int, int, struct proc *));
int raidioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
int raidwrite __P((dev_t, struct uio *, int));
int raidread __P((dev_t, struct uio *, int));
void raidstrategy __P((struct buf *));
int raiddump __P((dev_t, daddr_t, caddr_t, size_t));
/*
* Pilfered from ccd.c
*/
struct raidbuf {
struct buf rf_buf; /* new I/O buf. MUST BE FIRST!!! */
struct buf *rf_obp; /* ptr. to original I/O buf */
int rf_flags; /* misc. flags */
RF_DiskQueueData_t *req; /* the request that this was part of.. */
};
#define RAIDGETBUF(rs) pool_get(&(rs)->sc_cbufpool, PR_NOWAIT)
#define RAIDPUTBUF(rs, cbp) pool_put(&(rs)->sc_cbufpool, cbp)
/* XXX Not sure if the following should be replacing the raidPtrs above,
or if it should be used in conjunction with that... */
struct raid_softc {
int sc_unit; /* logical unit number */
int sc_flags; /* flags */
int sc_cflags; /* configuration flags */
size_t sc_size; /* size of the raid device */
dev_t sc_dev; /* our device..*/
char sc_xname[20]; /* XXX external name */
struct disk sc_dkdev; /* generic disk device info */
struct pool sc_cbufpool; /* component buffer pool */
};
/* sc_flags */
#define RAIDF_INITED 0x01 /* unit has been initialized */
#define RAIDF_WLABEL 0x02 /* label area is writable */
#define RAIDF_LABELLING 0x04 /* unit is currently being labelled */
#define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */
#define RAIDF_LOCKED 0x80 /* unit is locked */
#define raidunit(x) DISKUNIT(x)
static int numraid=0;
#define RAIDLABELDEV(dev) \
(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
/* declared here, and made public, for the benefit of KVM stuff.. */
struct raid_softc *raid_softc;
static void raidgetdefaultlabel __P((RF_Raid_t *, struct raid_softc *, struct disklabel *));
static void raidgetdisklabel __P((dev_t));
static void raidmakedisklabel __P((struct raid_softc *));
static int raidlock __P((struct raid_softc *));
static void raidunlock __P((struct raid_softc *));
int raidlookup __P((char *, struct proc *p, struct vnode **));
void
raidattach(num)
int num;
{
int raidID;
#ifdef DEBUG
printf("raidattach: Asked for %d units\n",num);
#endif
if (num <= 0) {
#ifdef DIAGNOSTIC
panic("raidattach: count <= 0");
#endif
return;
}
/*
This is where all the initialization stuff gets done.
*/
/* Make some space for requested number of units... */
RF_Calloc(raidPtrs, num, sizeof(RF_Raid_t *), (RF_Raid_t **));
if (raidPtrs == NULL) {
panic("raidPtrs is NULL!!\n");
}
rf_kbooted = rf_boot();
if (rf_kbooted) {
panic("Serious error booting RAID!!\n");
}
rf_kbooted = RFK_BOOT_GOOD;
/*
put together some datastructures like the CCD device does..
This lets us lock the device and what-not when it gets opened.
*/
raid_softc = (struct raid_softc *)
malloc(num * sizeof(struct raid_softc),
M_DEVBUF, M_NOWAIT);
if (raid_softc == NULL) {
printf("WARNING: no memory for RAIDframe driver\n");
return;
}
numraid = num;
bzero(raid_softc, num * sizeof(struct raid_softc));
for(raidID=0;raidID < num;raidID++) {
RF_Calloc(raidPtrs[raidID], 1, sizeof(RF_Raid_t),
(RF_Raid_t *));
if (raidPtrs[raidID]==NULL) {
printf("raidPtrs[%d] is NULL\n",raidID);
}
}
}
int
raidsize(dev)
dev_t dev;
{
struct raid_softc *rs;
struct disklabel *lp;
int part, unit, omask, size;
unit = raidunit(dev);
if (unit >= numraid)
return (-1);
rs = &raid_softc[unit];
if ((rs->sc_flags & RAIDF_INITED) == 0)
return (-1);
part = DISKPART(dev);
omask = rs->sc_dkdev.dk_openmask & (1 << part);
lp = rs->sc_dkdev.dk_label;
if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
return (-1);
if (lp->d_partitions[part].p_fstype != FS_SWAP)
size = -1;
else
size = lp->d_partitions[part].p_size *
(lp->d_secsize / DEV_BSIZE);
if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
return (-1);
return (size);
}
int
raiddump(dev, blkno, va, size)
dev_t dev;
daddr_t blkno;
caddr_t va;
size_t size;
{
/* Not implemented. */
return ENXIO;
}
/* ARGSUSED */
int
raidopen(dev, flags, fmt, p)
dev_t dev;
int flags, fmt;
struct proc *p;
{
int unit = raidunit(dev);
struct raid_softc *rs;
struct disklabel *lp;
int part,pmask;
unsigned int raidID;
int rc;
int error = 0;
/* This whole next chunk of code is somewhat suspect... Not sure
it's needed here at all... XXX */
if (rf_kbooted == RFK_BOOT_NONE) {
printf("Doing restart on raidopen.\n");
rf_kbooted = RFK_BOOT_GOOD;
rc = rf_boot();
if (rc) {
rf_kbooted = RFK_BOOT_BAD;
printf("Someone is unhappy...\n");
return(rc);
}
}
if (unit >= numraid)
return (ENXIO);
rs = &raid_softc[unit];
if ((error = raidlock(rs)) != 0)
return(error);
lp = rs->sc_dkdev.dk_label;
raidID = raidunit(dev);
part = DISKPART(dev);
pmask = (1 << part);
db1_printf(("Opening raid device number: %d partition: %d\n",
raidID,part));
if ((rs->sc_flags & RAIDF_INITED) &&
(rs->sc_dkdev.dk_openmask == 0))
raidgetdisklabel(dev);
/* make sure that this partition exists */
if (part != RAW_PART) {
db1_printf(("Not a raw partition..\n"));
if (((rs->sc_flags & RAIDF_INITED) == 0) ||
((part >= lp->d_npartitions) ||
(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
error = ENXIO;
raidunlock(rs);
db1_printf(("Bailing out...\n"));
return(error);
}
}
/* Prevent this unit from being unconfigured while open. */
switch (fmt) {
case S_IFCHR:
rs->sc_dkdev.dk_copenmask |= pmask;
break;
case S_IFBLK:
rs->sc_dkdev.dk_bopenmask |= pmask;
break;
}
rs->sc_dkdev.dk_openmask =
rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
raidunlock(rs);
return(error);
}
/* ARGSUSED */
int
raidclose(dev, flags, fmt, p)
dev_t dev;
int flags, fmt;
struct proc *p;
{
int unit = raidunit(dev);
struct raid_softc *rs;
int error = 0;
int part;
if (unit >= numraid)
return (ENXIO);
rs = &raid_softc[unit];
if ((error = raidlock(rs)) != 0)
return (error);
part = DISKPART(dev);
/* ...that much closer to allowing unconfiguration... */
switch (fmt) {
case S_IFCHR:
rs->sc_dkdev.dk_copenmask &= ~(1 << part);
break;
case S_IFBLK:
rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
break;
}
rs->sc_dkdev.dk_openmask =
rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
raidunlock(rs);
return (0);
}
void
raidstrategy(bp)
register struct buf *bp;
{
register int s;
unsigned int raidID = raidunit(bp->b_dev);
RF_Raid_t *raidPtr;
struct raid_softc *rs = &raid_softc[raidID];
struct disklabel *lp;
int wlabel;
db1_printf(("Strategy: 0x%x 0x%x\n",(int)bp,(int)bp->b_data));
db1_printf(("Strategy(2): bp->b_bufsize%d\n", (int)bp->b_bufsize));
db1_printf(("bp->b_count=%d\n",(int)bp->b_bcount));
db1_printf(("bp->b_resid=%d\n",(int)bp->b_resid));
db1_printf(("bp->b_blkno=%d\n",(int)bp->b_blkno));
#if 0
if (bp->b_flags&B_READ)
db1_printf(("READ\n"));
else
db1_printf(("WRITE\n"));
#endif
if (rf_kbooted != RFK_BOOT_GOOD)
return;
if (raidID >= numraid || !raidPtrs[raidID]) {
bp->b_error = ENODEV;
bp->b_flags |= B_ERROR;
bp->b_resid = bp->b_bcount;
biodone(bp);
return;
}
raidPtr = raidPtrs[raidID];
if (!raidPtr->valid) {
bp->b_error = ENODEV;
bp->b_flags |= B_ERROR;
bp->b_resid = bp->b_bcount;
biodone(bp);
return;
}
if (bp->b_bcount == 0) {
db1_printf(("b_bcount is zero..\n"));
biodone(bp);
return;
}
lp = rs->sc_dkdev.dk_label;
/*
* Do bounds checking and adjust transfer. If there's an
* error, the bounds check will flag that for us.
*/
wlabel = rs->sc_flags & (RAIDF_WLABEL|RAIDF_LABELLING);
if (DISKPART(bp->b_dev) != RAW_PART)
if (bounds_check_with_label(bp, lp, wlabel) <= 0) {
db1_printf(("Bounds check failed!!:%d %d\n",
(int)bp->b_blkno,(int)wlabel));
biodone(bp);
return;
}
s = splbio(); /* XXX Needed? */
db1_printf(("Beginning strategy...\n"));
bp->b_resid = 0;
bp->b_error = rf_DoAccessKernel(raidPtrs[raidID], bp,
NULL, NULL, NULL);
if (bp->b_error) {
bp->b_flags |= B_ERROR;
db1_printf(("bp->b_flags HAS B_ERROR SET!!!: %d\n",
bp->b_error));
}
splx(s);
db1_printf(("Strategy exiting: 0x%x 0x%x %d %d\n",
(int)bp,(int)bp->b_data,
(int)bp->b_bcount,(int)bp->b_resid));
}
/* ARGSUSED */
int
raidread(dev, uio, flags)
dev_t dev;
struct uio *uio;
int flags;
{
int unit = raidunit(dev);
struct raid_softc *rs;
int result;
int part;
if (unit >= numraid)
return (ENXIO);
rs = &raid_softc[unit];
if ((rs->sc_flags & RAIDF_INITED) == 0)
return (ENXIO);
part = DISKPART(dev);
db1_printf(("raidread: unit: %d partition: %d\n",unit,part));
#if 0
return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
#endif
result=physio(raidstrategy, NULL, dev, B_READ, minphys, uio);
db1_printf(("raidread done. Result is %d %d\n",
result,uio->uio_resid));
return(result);
}
/* ARGSUSED */
int
raidwrite(dev, uio, flags)
dev_t dev;
struct uio *uio;
int flags;
{
int unit = raidunit(dev);
struct raid_softc *rs;
if (unit >= numraid)
return (ENXIO);
rs = &raid_softc[unit];
if ((rs->sc_flags & RAIDF_INITED) == 0)
return (ENXIO);
db1_printf(("raidwrite\n"));
return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
}
int
raidioctl(dev, cmd, data, flag, p)
dev_t dev;
u_long cmd;
caddr_t data;
int flag;
struct proc *p;
{
int unit = raidunit(dev);
int error = 0;
int part, pmask;
struct raid_softc *rs;
#if 0
int r,c;
#endif
/* struct raid_ioctl *ccio = (struct ccd_ioctl *)data; */
/* struct ccdbuf *cbp; */
/* struct raidbuf *raidbp; */
RF_Config_t *k_cfg, *u_cfg;
u_char *specific_buf;
int retcode = 0;
int row;
struct rf_recon_req *rrcopy, *rr;
#if 0
int nbytes, spl, rw, row;
struct rf_test_acc *ta;
struct buf *bp;
RF_SparetWait_t *waitreq;
struct rf_test_acc *ta_p, *ta_copy;
#endif
if (unit >= numraid)
return (ENXIO);
rs = &raid_softc[unit];
db1_printf(("raidioctl: %d %d %d %d\n",(int)dev,
(int)DISKPART(dev),(int)unit,(int)cmd));
/* Must be open for writes for these commands... */
switch (cmd) {
case DIOCSDINFO:
case DIOCWDINFO:
case DIOCWLABEL:
if ((flag & FWRITE) == 0)
return (EBADF);
}
/* Must be initialized for these... */
switch (cmd) {
case DIOCGDINFO:
case DIOCSDINFO:
case DIOCWDINFO:
case DIOCGPART:
case DIOCWLABEL:
case DIOCGDEFLABEL:
case RAIDFRAME_SHUTDOWN:
case RAIDFRAME_REWRITEPARITY:
case RAIDFRAME_GET_INFO:
case RAIDFRAME_RESET_ACCTOTALS:
case RAIDFRAME_GET_ACCTOTALS:
case RAIDFRAME_KEEP_ACCTOTALS:
case RAIDFRAME_GET_SIZE:
case RAIDFRAME_FAIL_DISK:
case RAIDFRAME_COPYBACK:
case RAIDFRAME_CHECKRECON:
if ((rs->sc_flags & RAIDF_INITED) == 0)
return (ENXIO);
}
switch (cmd) {
/* configure the system */
case RAIDFRAME_CONFIGURE:
db3_printf(("rf_ioctl: RAIDFRAME_CONFIGURE\n"));
/* copy-in the configuration information */
/* data points to a pointer to the configuration structure */
u_cfg = *((RF_Config_t **) data);
RF_Malloc(k_cfg,sizeof(RF_Config_t),(RF_Config_t *));
if (k_cfg == NULL) {
db3_printf(("rf_ioctl: ENOMEM for config. Code is %d\n", retcode));
return(ENOMEM);
}
retcode = copyin((caddr_t) u_cfg, (caddr_t) k_cfg,
sizeof(RF_Config_t));
if (retcode) {
db3_printf(("rf_ioctl: retcode=%d copyin.1\n",
retcode));
return(retcode);
}
/* allocate a buffer for the layout-specific data,
and copy it in */
if (k_cfg->layoutSpecificSize) {
if (k_cfg->layoutSpecificSize > 10000) {
/* sanity check */
db3_printf(("rf_ioctl: EINVAL %d\n", retcode));
return(EINVAL);
}
RF_Malloc(specific_buf,k_cfg->layoutSpecificSize,
(u_char *));
if (specific_buf == NULL) {
RF_Free(k_cfg,sizeof(RF_Config_t));
db3_printf(("rf_ioctl: ENOMEM %d\n", retcode));
return(ENOMEM);
}
retcode = copyin(k_cfg->layoutSpecific,
(caddr_t) specific_buf,
k_cfg->layoutSpecificSize);
if (retcode) {
db3_printf(("rf_ioctl: retcode=%d copyin.2\n",
retcode));
return(retcode);
}
} else specific_buf = NULL;
k_cfg->layoutSpecific = specific_buf;
/* should do some kind of sanity check on the configuration.
Store the sum of all the bytes in the last byte?
*/
db1_printf(("Considering configuring the system.:%d 0x%x\n",
unit,(int)p));
/* We need the pointer to this a little deeper, so
stash it here... */
raidPtrs[unit]->proc = p;
/* configure the system */
rf_pending_testaccs = 0;
raidPtrs[unit]->raidid = unit;
retcode = rf_Configure(raidPtrs[unit], k_cfg);
if (retcode == 0) {
retcode = raidinit(dev, raidPtrs[unit],unit);
}
/* free the buffers. No return code here. */
if (k_cfg->layoutSpecificSize) {
RF_Free(specific_buf,k_cfg->layoutSpecificSize);
}
RF_Free(k_cfg,sizeof(RF_Config_t));
db3_printf(("rf_ioctl: retcode=%d RAIDFRAME_CONFIGURE\n",
retcode));
return(retcode);
/* shutdown the system */
case RAIDFRAME_SHUTDOWN:
if ((error = raidlock(rs)) != 0)
return(error);
/*
* If somebody has a partition mounted, we shouldn't
* shutdown.
*/
part = DISKPART(dev);
pmask = (1 << part);
if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
((rs->sc_dkdev.dk_bopenmask & pmask) &&
(rs->sc_dkdev.dk_copenmask & pmask))) {
raidunlock(rs);
return (EBUSY);
}
/* the intention here was to disallow shutdowns while
raidframe is mounted, but it doesn't work because the
shutdown ioctl calls rf_open
*/
if (rf_pending_testaccs > 0) {
printf("RAIDFRAME: Can't shutdown because there are %d pending test accs\n",
rf_pending_testaccs);
return(EINVAL);
}
if (rf_debugKernelAccess) {
printf("call shutdown\n");
}
raidPtrs[unit]->proc = p; /* XXX necessary evil */
retcode = rf_Shutdown(raidPtrs[unit]);
1998-11-15 03:01:24 +03:00
db1_printf(("Done main shutdown\n"));
pool_destroy(&rs->sc_cbufpool);
1998-11-15 03:01:24 +03:00
db1_printf(("Done freeing component buffer freelist\n"));
/* It's no longer initialized... */
rs->sc_flags &= ~RAIDF_INITED;
/* Detach the disk. */
disk_detach(&rs->sc_dkdev);
raidunlock(rs);
return(retcode);
/* initialize all parity */
case RAIDFRAME_REWRITEPARITY:
if (raidPtrs[unit]->Layout.map->faultsTolerated == 0)
return(EINVAL);
/* borrow the thread of the requesting process */
raidPtrs[unit]->proc = p; /* Blah... :-p GO */
retcode = rf_RewriteParity(raidPtrs[unit]);
/* return I/O Error if the parity rewrite fails */
if (retcode)
retcode = EIO;
return(retcode);
/* issue a test-unit-ready through raidframe to the
indicated device */
#if 0 /* XXX not supported yet (ever?) */
case RAIDFRAME_TUR:
/* debug only */
retcode = rf_SCSI_DoTUR(0, 0, 0, 0, *(dev_t *) data);
return(retcode);
#endif
case RAIDFRAME_GET_INFO:
{
RF_Raid_t *raid = raidPtrs[unit];
RF_DeviceConfig_t *cfg, **ucfgp;
int i, j, d;
if (!raid->valid)
return(ENODEV);
ucfgp = (RF_DeviceConfig_t **)data;
RF_Malloc(cfg,sizeof(RF_DeviceConfig_t),
(RF_DeviceConfig_t *));
if (cfg == NULL)
return(ENOMEM);
bzero((char *)cfg, sizeof(RF_DeviceConfig_t));
cfg->rows = raid->numRow;
cfg->cols = raid->numCol;
cfg->ndevs = raid->numRow * raid->numCol;
if (cfg->ndevs >= RF_MAX_DISKS) {
cfg->ndevs = 0;
return(ENOMEM);
}
cfg->nspares = raid->numSpare;
if (cfg->nspares >= RF_MAX_DISKS) {
cfg->nspares = 0;
return(ENOMEM);
}
cfg->maxqdepth = raid->maxQueueDepth;
d = 0;
for(i=0;i<cfg->rows;i++) {
for(j=0;j<cfg->cols;j++) {
cfg->devs[d] = raid->Disks[i][j];
d++;
}
}
for(j=cfg->cols,i=0;i<cfg->nspares;i++,j++) {
cfg->spares[i] = raid->Disks[0][j];
}
retcode = copyout((caddr_t)cfg, (caddr_t)*ucfgp,
sizeof(RF_DeviceConfig_t));
RF_Free(cfg,sizeof(RF_DeviceConfig_t));
return(retcode);
}
break;
case RAIDFRAME_RESET_ACCTOTALS:
{
RF_Raid_t *raid = raidPtrs[unit];
bzero(&raid->acc_totals, sizeof(raid->acc_totals));
return(0);
}
break;
case RAIDFRAME_GET_ACCTOTALS:
{
RF_AccTotals_t *totals = (RF_AccTotals_t *)data;
RF_Raid_t *raid = raidPtrs[unit];
*totals = raid->acc_totals;
return(0);
}
break;
case RAIDFRAME_KEEP_ACCTOTALS:
{
RF_Raid_t *raid = raidPtrs[unit];
int *keep = (int *)data;
raid->keep_acc_totals = *keep;
return(0);
}
break;
case RAIDFRAME_GET_SIZE:
*(int *) data = raidPtrs[unit]->totalSectors;
return(0);
#define RAIDFRAME_RECON 1
/* XXX The above should probably be set somewhere else!! GO */
#if RAIDFRAME_RECON > 0
/* fail a disk & optionally start reconstruction */
case RAIDFRAME_FAIL_DISK:
rr = (struct rf_recon_req *) data;
if (rr->row < 0 || rr->row >= raidPtrs[unit]->numRow
|| rr->col < 0 || rr->col >= raidPtrs[unit]->numCol)
return(EINVAL);
printf("Failing the disk: row: %d col: %d\n",rr->row,rr->col);
/* make a copy of the recon request so that we don't
rely on the user's buffer */
RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
bcopy(rr, rrcopy, sizeof(*rr));
rrcopy->raidPtr = (void *) raidPtrs[unit];
LOCK_RECON_Q_MUTEX();
rrcopy->next = recon_queue;
recon_queue = rrcopy;
wakeup(&recon_queue);
UNLOCK_RECON_Q_MUTEX();
return(0);
/* invoke a copyback operation after recon on whatever
disk needs it, if any */
case RAIDFRAME_COPYBACK:
/* borrow the current thread to get this done */
raidPtrs[unit]->proc = p; /* ICK.. but needed :-p GO */
rf_CopybackReconstructedData(raidPtrs[unit]);
return(0);
/* return the percentage completion of reconstruction */
case RAIDFRAME_CHECKRECON:
row = *(int *) data;
if (row < 0 || row >= raidPtrs[unit]->numRow)
return(EINVAL);
if (raidPtrs[unit]->status[row] != rf_rs_reconstructing)
*(int *) data = 100;
else
*(int *) data = raidPtrs[unit]->reconControl[row]->percentComplete;
return(0);
/* the sparetable daemon calls this to wait for the
kernel to need a spare table.
* this ioctl does not return until a spare table is needed.
* XXX -- calling mpsleep here in the ioctl code is almost
certainly wrong and evil. -- XXX
* XXX -- I should either compute the spare table in the
kernel, or have a different -- XXX
* XXX -- interface (a different character device) for
delivering the table -- XXX
*/
#if 0
case RAIDFRAME_SPARET_WAIT:
RF_LOCK_MUTEX(rf_sparet_wait_mutex);
while (!rf_sparet_wait_queue) mpsleep(&rf_sparet_wait_queue, (PZERO+1)|PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
waitreq = rf_sparet_wait_queue;
rf_sparet_wait_queue = rf_sparet_wait_queue->next;
RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
*((RF_SparetWait_t *) data) = *waitreq; /* structure assignment */
RF_Free(waitreq, sizeof(*waitreq));
return(0);
/* wakes up a process waiting on SPARET_WAIT and puts an
error code in it that will cause the dameon to exit */
case RAIDFRAME_ABORT_SPARET_WAIT:
RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
waitreq->fcol = -1;
RF_LOCK_MUTEX(rf_sparet_wait_mutex);
waitreq->next = rf_sparet_wait_queue;
rf_sparet_wait_queue = waitreq;
RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
wakeup(&rf_sparet_wait_queue);
return(0);
/* used by the spare table daemon to deliver a spare table
into the kernel */
case RAIDFRAME_SEND_SPARET:
/* install the spare table */
retcode = rf_SetSpareTable(raidPtrs[unit],*(void **) data);
/* respond to the requestor. the return status of the
spare table installation is passed in the "fcol" field */
RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
waitreq->fcol = retcode;
RF_LOCK_MUTEX(rf_sparet_wait_mutex);
waitreq->next = rf_sparet_resp_queue;
rf_sparet_resp_queue = waitreq;
wakeup(&rf_sparet_resp_queue);
RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
return(retcode);
#endif
#endif /* RAIDFRAME_RECON > 0 */
default: break; /* fall through to the os-specific code below */
}
if (!raidPtrs[unit]->valid)
return(EINVAL);
/*
* Add support for "regular" device ioctls here.
*/
switch (cmd) {
case DIOCGDINFO:
db1_printf(("DIOCGDINFO %d %d\n",(int)dev,(int)DISKPART(dev)));
*(struct disklabel *)data = *(rs->sc_dkdev.dk_label);
break;
case DIOCGPART:
db1_printf(("DIOCGPART: %d %d\n",(int)dev,(int)DISKPART(dev)));
((struct partinfo *)data)->disklab = rs->sc_dkdev.dk_label;
((struct partinfo *)data)->part =
&rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
break;
case DIOCWDINFO:
db1_printf(("DIOCWDINFO\n"));
case DIOCSDINFO:
db1_printf(("DIOCSDINFO\n"));
if ((error = raidlock(rs)) != 0)
return (error);
rs->sc_flags |= RAIDF_LABELLING;
error = setdisklabel(rs->sc_dkdev.dk_label,
(struct disklabel *)data, 0, rs->sc_dkdev.dk_cpulabel);
if (error == 0) {
if (cmd == DIOCWDINFO)
error = writedisklabel(RAIDLABELDEV(dev),
raidstrategy, rs->sc_dkdev.dk_label,
rs->sc_dkdev.dk_cpulabel);
}
rs->sc_flags &= ~RAIDF_LABELLING;
raidunlock(rs);
if (error)
return (error);
break;
case DIOCWLABEL:
db1_printf(("DIOCWLABEL\n"));
if (*(int *)data != 0)
rs->sc_flags |= RAIDF_WLABEL;
else
rs->sc_flags &= ~RAIDF_WLABEL;
break;
case DIOCGDEFLABEL:
db1_printf(("DIOCGDEFLABEL\n"));
raidgetdefaultlabel(raidPtrs[unit], rs,
(struct disklabel *)data);
break;
default:
retcode = ENOTTY; /* XXXX ?? OR EINVAL ? */
}
return(retcode);
}
/* raidinit -- complete the rest of the initialization for the
RAIDframe device. */
static int
raidinit(dev, raidPtr,unit)
dev_t dev;
RF_Raid_t *raidPtr;
int unit;
{
int retcode;
/* int ix; */
/* struct raidbuf *raidbp; */
struct raid_softc *rs;
retcode = 0;
rs = &raid_softc[unit];
pool_init(&rs->sc_cbufpool, sizeof(struct raidbuf), 0,
0, 0, "raidpl", 0, NULL, NULL, M_DEVBUF);
/* XXX should check return code first... */
rs->sc_flags |= RAIDF_INITED;
sprintf(rs->sc_xname, "raid%d", unit); /* XXX doesn't check bounds.*/
rs->sc_dkdev.dk_name = rs->sc_xname;
/* disk_attach actually creates space for the CPU disklabel, among
other things, so it's critical to call this *BEFORE* we
try putzing with disklabels. */
disk_attach(&rs->sc_dkdev);
/* XXX There may be a weird interaction here between this, and
protectedSectors, as used in RAIDframe. */
rs->sc_size = raidPtr->totalSectors;
rs->sc_dev = dev;
return(retcode);
}
/*********************************************************
*
* initialization code called at boot time (startup.c)
*
********************************************************/
int rf_boot()
{
int i, rc;
rc = rf_mutex_init(&rf_sparet_wait_mutex);
if (rc) {
RF_PANIC();
}
rc = rf_mutex_init(&rf_async_done_q_mutex);
if (rc) {
RF_PANIC();
}
rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
recon_queue = NULL;
rf_async_done_qh = rf_async_done_qt = NULL;
for (i=0; i<numraid; i++)
raidPtrs[i] = NULL;
rc = rf_BootRaidframe();
if (rc == 0)
printf("Kernelized RAIDframe activated\n");
else
rf_kbooted = RFK_BOOT_BAD;
return(rc);
}
/*
* This kernel thread never exits. It is created once, and persists
* until the system reboots.
*/
void rf_ReconKernelThread()
{
struct rf_recon_req *req;
int s;
/* XXX not sure what spl() level we should be at here... probably splbio() */
s=splbio();
while (1) {
/* grab the next reconstruction request from the queue */
LOCK_RECON_Q_MUTEX();
while (!recon_queue) {
UNLOCK_RECON_Q_MUTEX();
tsleep(&recon_queue, PRIBIO | PCATCH, "raidframe recon", 0);
LOCK_RECON_Q_MUTEX();
}
req = recon_queue;
recon_queue = recon_queue->next;
UNLOCK_RECON_Q_MUTEX();
/*
* If flags specifies that we should start recon, this call
* will not return until reconstruction completes, fails, or is aborted.
*/
rf_FailDisk((RF_Raid_t *) req->raidPtr, req->row, req->col,
((req->flags&RF_FDFLAGS_RECON) ? 1 : 0));
RF_Free(req, sizeof(*req));
}
}
/* wake up the daemon & tell it to get us a spare table
* XXX
* the entries in the queues should be tagged with the raidPtr
* so that in the extremely rare case that two recons happen at once, we know for
* which device were requesting a spare table
* XXX
*/
int rf_GetSpareTableFromDaemon(req)
RF_SparetWait_t *req;
{
int retcode;
RF_LOCK_MUTEX(rf_sparet_wait_mutex);
req->next = rf_sparet_wait_queue;
rf_sparet_wait_queue = req;
wakeup(&rf_sparet_wait_queue);
/* mpsleep unlocks the mutex */
while (!rf_sparet_resp_queue) {
tsleep(&rf_sparet_resp_queue, PRIBIO | PCATCH,
"raidframe getsparetable", 0);
#if 0
mpsleep(&rf_sparet_resp_queue, PZERO, "sparet resp", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
#endif
}
req = rf_sparet_resp_queue;
rf_sparet_resp_queue = req->next;
RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
retcode = req->fcol;
RF_Free(req, sizeof(*req)); /* this is not the same req as we alloc'd */
return(retcode);
}
/* a wrapper around rf_DoAccess that extracts appropriate info from the bp & passes it down.
* any calls originating in the kernel must use non-blocking I/O
* do some extra sanity checking to return "appropriate" error values for
* certain conditions (to make some standard utilities work)
*/
int rf_DoAccessKernel(raidPtr, bp, flags, cbFunc, cbArg)
RF_Raid_t *raidPtr;
struct buf *bp;
RF_RaidAccessFlags_t flags;
void (*cbFunc)(struct buf *);
void *cbArg;
{
RF_SectorCount_t num_blocks, pb, sum;
RF_RaidAddr_t raid_addr;
int retcode;
struct partition *pp;
daddr_t blocknum;
int unit;
struct raid_softc *rs;
/* XXX The dev_t used here should be for /dev/[r]raid* !!! */
unit = raidPtr->raidid;
rs = &raid_softc[unit];
/* Ok, for the bp we have here, bp->b_blkno is relative to the
partition.. Need to make it absolute to the underlying
device.. */
blocknum = bp->b_blkno;
if (DISKPART(bp->b_dev) != RAW_PART) {
pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
blocknum += pp->p_offset;
db1_printf(("updated: %d %d\n",DISKPART(bp->b_dev),
pp->p_offset));
} else {
db1_printf(("Is raw..\n"));
}
db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno, (int) blocknum));
db1_printf(("bp->b_bcount = %d\n",(int)bp->b_bcount));
db1_printf(("bp->b_resid = %d\n",(int)bp->b_resid));
/* *THIS* is where we adjust what block we're going to... but
DO NOT TOUCH bp->b_blkno!!! */
raid_addr = blocknum;
num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
pb = (bp->b_bcount&raidPtr->sectorMask) ? 1 : 0;
sum = raid_addr + num_blocks + pb;
if (1 || rf_debugKernelAccess) {
db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
(int)raid_addr, (int)sum,(int)num_blocks,
(int)pb,(int)bp->b_resid));
}
if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
|| (sum < num_blocks) || (sum < pb))
{
bp->b_error = ENOSPC;
bp->b_flags |= B_ERROR;
bp->b_resid = bp->b_bcount;
biodone(bp);
return(bp->b_error);
}
/*
* XXX rf_DoAccess() should do this, not just DoAccessKernel()
*/
if (bp->b_bcount & raidPtr->sectorMask) {
bp->b_error = EINVAL;
bp->b_flags |= B_ERROR;
bp->b_resid = bp->b_bcount;
biodone(bp);
return(bp->b_error);
}
db1_printf(("Calling DoAccess..\n"));
/* don't ever condition on bp->b_flags & B_WRITE.
always condition on B_READ instead */
retcode = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
0, raid_addr, num_blocks, bp->b_un.b_addr,
bp, NULL, NULL, RF_DAG_NONBLOCKING_IO|flags,
NULL, cbFunc, cbArg);
db1_printf(("After call to DoAccess: 0x%x 0x%x %d\n",(int)bp,
(int)bp->b_data,(int)bp->b_resid));
return(retcode);
}
/* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
int rf_DispatchKernelIO(queue, req)
RF_DiskQueue_t *queue;
RF_DiskQueueData_t *req;
{
int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
struct buf *bp;
struct raidbuf *raidbp=NULL;
struct raid_softc *rs;
int unit;
/* XXX along with the vnode, we also need the softc associated with
this device.. */
req->queue = queue;
unit = queue->raidPtr->raidid;
db1_printf(("DispatchKernelIO unit: %d\n",unit));
if (unit >= numraid) {
printf("Invalid unit number: %d %d\n",unit,numraid);
panic("Invalid Unit number in rf_DispatchKernelIO\n");
}
rs = &raid_softc[unit];
/* XXX is this the right place? */
disk_busy(&rs->sc_dkdev);
bp = req->bp;
/*
XXX when there is a physical disk failure, someone is passing
us a buffer that contains old stuff!! Attempt to deal with
this problem without taking a performance hit...
(not sure where the real bug is. It's buried in RAIDframe
somewhere) :-( GO )
*/
if (bp->b_flags & B_ERROR) {
bp->b_flags &= ~B_ERROR;
}
if (bp->b_error!=0) {
bp->b_error = 0;
}
raidbp = RAIDGETBUF(rs);
raidbp->rf_flags = 0; /* XXX not really used anywhere... */
/*
* context for raidiodone
*/
raidbp->rf_obp = bp;
raidbp->req = req;
switch (req->type) {
case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
/*
Dprintf2("rf_DispatchKernelIO: NOP to r %d c %d\n",
queue->row, queue->col);
*/
/* XXX need to do something extra here.. */
/* I'm leaving this in, as I've never actually seen it
used, and I'd like folks to report it... GO */
printf(("WAKEUP CALLED\n"));
queue->numOutstanding++;
/* XXX need to glue the original buffer into this?? */
KernelWakeupFunc(&raidbp->rf_buf);
break;
case RF_IO_TYPE_READ:
case RF_IO_TYPE_WRITE:
if (req->tracerec) {
RF_ETIMER_START(req->tracerec->timer);
}
InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
op | bp->b_flags, queue->rf_cinfo->ci_dev,
req->sectorOffset, req->numSector,
req->buf, KernelWakeupFunc, (void *) req,
queue->raidPtr->logBytesPerSector, req->b_proc);
if (rf_debugKernelAccess) {
db1_printf(("dispatch: bp->b_blkno = %ld\n",
(long) bp->b_blkno));
}
queue->numOutstanding++;
queue->last_deq_sector = req->sectorOffset;
/* acc wouldn't have been let in if there were any
pending reqs at any other priority */
queue->curPriority = req->priority;
/*
Dprintf3("rf_DispatchKernelIO: %c to row %d col %d\n",
req->type, queue->row, queue->col);
*/
db1_printf(("Going for %c to unit %d row %d col %d\n",
req->type, unit, queue->row, queue->col));
db1_printf(("sector %d count %d (%d bytes) %d\n",
(int) req->sectorOffset, (int) req->numSector,
(int) (req->numSector <<
queue->raidPtr->logBytesPerSector),
(int) queue->raidPtr->logBytesPerSector));
if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
raidbp->rf_buf.b_vp->v_numoutput++;
}
VOP_STRATEGY(&raidbp->rf_buf);
break;
default:
panic("bad req->type in rf_DispatchKernelIO");
}
db1_printf(("Exiting from DispatchKernelIO\n"));
return(0);
}
/* this is the callback function associated with a I/O invoked from
kernel code.
*/
static void KernelWakeupFunc(vbp)
struct buf *vbp;
{
RF_DiskQueueData_t *req = NULL;
RF_DiskQueue_t *queue;
struct raidbuf *raidbp = (struct raidbuf *)vbp;
struct buf *bp;
struct raid_softc *rs;
int unit;
register int s;
s=splbio(); /* XXX */
db1_printf(("recovering the request queue:\n"));
req = raidbp->req;
bp = raidbp->rf_obp;
db1_printf(("bp=0x%x\n",(int)bp));
queue = (RF_DiskQueue_t *) req->queue;
if (raidbp->rf_buf.b_flags & B_ERROR) {
#if 0
printf("Setting bp->b_flags!!! %d\n",raidbp->rf_buf.b_error);
#endif
bp->b_flags |= B_ERROR;
bp->b_error = raidbp->rf_buf.b_error ?
raidbp->rf_buf.b_error : EIO;
}
db1_printf(("raidbp->rf_buf.b_bcount=%d\n",(int)raidbp->rf_buf.b_bcount));
db1_printf(("raidbp->rf_buf.b_bufsize=%d\n",(int)raidbp->rf_buf.b_bufsize));
db1_printf(("raidbp->rf_buf.b_resid=%d\n",(int)raidbp->rf_buf.b_resid));
db1_printf(("raidbp->rf_buf.b_data=0x%x\n",(int)raidbp->rf_buf.b_data));
/* XXX methinks this could be wrong... */
#if 1
bp->b_resid = raidbp->rf_buf.b_resid;
#endif
if (req->tracerec) {
RF_ETIMER_STOP(req->tracerec->timer);
RF_ETIMER_EVAL(req->tracerec->timer);
RF_LOCK_MUTEX(rf_tracing_mutex);
req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
req->tracerec->num_phys_ios++;
RF_UNLOCK_MUTEX(rf_tracing_mutex);
}
bp->b_bcount = raidbp->rf_buf.b_bcount;/* XXXX ?? */
unit = queue->raidPtr->raidid; /* *Much* simpler :-> */
/* XXX Ok, let's get aggressive... If B_ERROR is set, let's go ballistic,
and mark the component as hosed... */
#if 1
if (bp->b_flags&B_ERROR) {
/* Mark the disk as dead */
/* but only mark it once... */
if (queue->raidPtr->Disks[queue->row][queue->col].status ==
rf_ds_optimal) {
printf("raid%d: IO Error. Marking %s as failed.\n",
unit, queue->raidPtr->Disks[queue->row][queue->col].devname );
queue->raidPtr->Disks[queue->row][queue->col].status =
rf_ds_failed;
queue->raidPtr->status[queue->row] = rf_rs_degraded;
queue->raidPtr->numFailures++;
} else { /* Disk is already dead... */
/* printf("Disk already marked as dead!\n"); */
}
}
#endif
rs = &raid_softc[unit];
RAIDPUTBUF(rs,raidbp);
if (bp->b_resid==0) {
db1_printf(("Disk is no longer busy for this buffer... %d %ld %ld\n",
unit, bp->b_resid, bp->b_bcount));
/* XXX is this the right place for a disk_unbusy()??!??!?!? */
disk_unbusy(&rs->sc_dkdev, (bp->b_bcount - bp->b_resid));
} else {
db1_printf(("b_resid is still %ld\n",bp->b_resid));
}
rf_DiskIOComplete(queue, req, (bp->b_flags & B_ERROR) ? 1 : 0);
(req->CompleteFunc)(req->argument, (bp->b_flags & B_ERROR) ? 1 : 0);
/* printf("Exiting KernelWakeupFunc\n"); */
splx(s); /* XXX */
}
/*
* initialize a buf structure for doing an I/O in the kernel.
*/
static void InitBP(
struct buf *bp,
struct vnode *b_vp,
unsigned rw_flag,
dev_t dev,
RF_SectorNum_t startSect,
RF_SectorCount_t numSect,
caddr_t buf,
void (*cbFunc)(struct buf *),
void *cbArg,
int logBytesPerSector,
struct proc *b_proc)
{
/* bp->b_flags = B_PHYS | rw_flag; */
bp->b_flags = B_CALL | rw_flag; /* XXX need B_PHYS here too??? */
bp->b_bcount = numSect << logBytesPerSector;
bp->b_bufsize = bp->b_bcount;
bp->b_error = 0;
bp->b_dev = dev;
db1_printf(("bp->b_dev is %d\n", dev));
bp->b_un.b_addr = buf;
db1_printf(("bp->b_data=0x%x\n",(int)bp->b_data));
bp->b_blkno = startSect;
bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
db1_printf(("b_bcount is: %d\n",(int)bp->b_bcount));
if (bp->b_bcount == 0) {
panic("bp->b_bcount is zero in InitBP!!\n");
}
bp->b_proc = b_proc;
bp->b_iodone = cbFunc;
bp->b_vp = b_vp;
}
#endif /* KERNEL */
/* Extras... */
unsigned int rpcc()
{
/* XXX no clue what this is supposed to do.. my guess is
that it's supposed to read the CPU cycle counter... */
/* db1_printf("this is supposed to do something useful too!??\n"); */
return(0);
}
#if 0
int rf_GetSpareTableFromDaemon(req)
RF_SparetWait_t *req;
{
int retcode=1;
printf("This is supposed to do something useful!!\n"); /* XXX */
return(retcode);
}
#endif
static void
raidgetdefaultlabel(raidPtr, rs, lp)
RF_Raid_t *raidPtr;
struct raid_softc *rs;
struct disklabel *lp;
{
db1_printf(("Building a default label...\n"));
bzero(lp, sizeof(*lp));
/* fabricate a label... */
lp->d_secperunit = raidPtr->totalSectors;
lp->d_secsize = raidPtr->bytesPerSector;
lp->d_nsectors = 1024 * (1024 / raidPtr->bytesPerSector);
lp->d_ntracks = 1;
lp->d_ncylinders = raidPtr->totalSectors / lp->d_nsectors;
lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
lp->d_type = DTYPE_RAID;
strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
lp->d_rpm = 3600;
lp->d_interleave = 1;
lp->d_flags = 0;
lp->d_partitions[RAW_PART].p_offset = 0;
lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
lp->d_npartitions = RAW_PART + 1;
lp->d_magic = DISKMAGIC;
lp->d_magic2 = DISKMAGIC;
lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
}
/*
* Read the disklabel from the raid device. If one is not present, fake one
* up.
*/
static void
raidgetdisklabel(dev)
dev_t dev;
{
int unit = raidunit(dev);
struct raid_softc *rs = &raid_softc[unit];
char *errstring;
struct disklabel *lp = rs->sc_dkdev.dk_label;
struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
RF_Raid_t *raidPtr;
db1_printf(("Getting the disklabel...\n"));
bzero(clp, sizeof(*clp));
raidPtr = raidPtrs[unit];
raidgetdefaultlabel(raidPtr, rs, lp);
/*
* Call the generic disklabel extraction routine.
*/
errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
if (errstring)
raidmakedisklabel(rs);
else {
int i;
struct partition *pp;
/*
* Sanity check whether the found disklabel is valid.
*
* This is necessary since total size of the raid device
* may vary when an interleave is changed even though exactly
* same componets are used, and old disklabel may used
* if that is found.
*/
if (lp->d_secperunit != rs->sc_size)
printf("WARNING: %s: "
"total sector size in disklabel (%d) != "
"the size of raid (%d)\n", rs->sc_xname,
lp->d_secperunit, rs->sc_size);
for (i = 0; i < lp->d_npartitions; i++) {
pp = &lp->d_partitions[i];
if (pp->p_offset + pp->p_size > rs->sc_size)
printf("WARNING: %s: end of partition `%c' "
"exceeds the size of raid (%d)\n",
rs->sc_xname, 'a' + i, rs->sc_size);
}
}
}
/*
* Take care of things one might want to take care of in the event
* that a disklabel isn't present.
*/
static void
raidmakedisklabel(rs)
struct raid_softc *rs;
{
struct disklabel *lp = rs->sc_dkdev.dk_label;
db1_printf(("Making a label..\n"));
/*
* For historical reasons, if there's no disklabel present
* the raw partition must be marked FS_BSDFFS.
*/
lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
lp->d_checksum = dkcksum(lp);
}
/*
* Lookup the provided name in the filesystem. If the file exists,
* is a valid block device, and isn't being used by anyone else,
* set *vpp to the file's vnode.
* You'll find the original of this in ccd.c
*/
int
raidlookup(path, p, vpp)
char *path;
struct proc *p;
struct vnode **vpp; /* result */
{
struct nameidata nd;
struct vnode *vp;
struct vattr va;
int error;
db1_printf(("Doing raidlookup...: %s 0x%x\n",path,(int)p));
NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
if ((error = vn_open(&nd, FREAD|FWRITE, 0)) != 0) {
#ifdef DEBUG
printf("RAIDframe: vn_open returned %d\n",error);
#endif
return (error);
}
vp = nd.ni_vp;
if (vp->v_usecount > 1) {
VOP_UNLOCK(vp, 0);
(void)vn_close(vp, FREAD|FWRITE, p->p_ucred, p);
return (EBUSY);
}
if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
VOP_UNLOCK(vp, 0);
(void)vn_close(vp, FREAD|FWRITE, p->p_ucred, p);
return (error);
}
/* XXX: eventually we should handle VREG, too. */
if (va.va_type != VBLK) {
VOP_UNLOCK(vp, 0);
(void)vn_close(vp, FREAD|FWRITE, p->p_ucred, p);
return (ENOTBLK);
}
VOP_UNLOCK(vp, 0);
*vpp = vp;
return (0);
}
/*
* Wait interruptibly for an exclusive lock.
*
* XXX
* Several drivers do this; it should be abstracted and made MP-safe.
* (Hmm... where have we seen this warning before :-> GO )
*/
static int
raidlock(rs)
struct raid_softc *rs;
{
int error;
while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
rs->sc_flags |= RAIDF_WANTED;
if ((error =
tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
return (error);
}
rs->sc_flags |= RAIDF_LOCKED;
return (0);
}
/*
* Unlock and wake up any waiters.
*/
static void
raidunlock(rs)
struct raid_softc *rs;
{
rs->sc_flags &= ~RAIDF_LOCKED;
if ((rs->sc_flags & RAIDF_WANTED) != 0) {
rs->sc_flags &= ~RAIDF_WANTED;
wakeup(rs);
}
}