NetBSD/sys/kern/kern_resource.c

939 lines
22 KiB
C
Raw Normal View History

/* $NetBSD: kern_resource.c,v 1.98 2005/06/23 23:15:12 thorpej Exp $ */
1994-05-17 08:21:49 +04:00
/*-
* Copyright (c) 1982, 1986, 1991, 1993
* The Regents of the University of California. All rights reserved.
1994-05-17 08:21:49 +04:00
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
1994-05-17 08:21:49 +04:00
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
1998-03-01 05:20:01 +03:00
* @(#)kern_resource.c 8.8 (Berkeley) 2/14/95
1994-05-17 08:21:49 +04:00
*/
2001-11-12 18:25:01 +03:00
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_resource.c,v 1.98 2005/06/23 23:15:12 thorpej Exp $");
2001-11-12 18:25:01 +03:00
1994-05-17 08:21:49 +04:00
#include <sys/param.h>
#include <sys/systm.h>
1994-05-17 08:21:49 +04:00
#include <sys/kernel.h>
#include <sys/file.h>
1994-05-17 08:21:49 +04:00
#include <sys/resourcevar.h>
#include <sys/malloc.h>
#include <sys/pool.h>
1994-05-17 08:21:49 +04:00
#include <sys/proc.h>
#include <sys/sysctl.h>
1994-05-17 08:21:49 +04:00
#include <sys/mount.h>
2003-01-18 13:06:22 +03:00
#include <sys/sa.h>
#include <sys/syscallargs.h>
#include <uvm/uvm_extern.h>
/*
* Maximum process data and stack limits.
* They are variables so they are patchable.
*/
rlim_t maxdmap = MAXDSIZ;
rlim_t maxsmap = MAXSSIZ;
struct uihashhead *uihashtbl;
u_long uihash; /* size of hash table - 1 */
struct simplelock uihashtbl_slock = SIMPLELOCK_INITIALIZER;
1994-05-17 08:21:49 +04:00
/*
* Resource controls and accounting.
*/
int
sys_getpriority(struct lwp *l, void *v, register_t *retval)
{
2000-03-30 13:27:11 +04:00
struct sys_getpriority_args /* {
syscallarg(int) which;
syscallarg(id_t) who;
} */ *uap = v;
2003-01-18 13:06:22 +03:00
struct proc *curp = l->l_proc, *p;
2000-03-30 13:27:11 +04:00
int low = NZERO + PRIO_MAX + 1;
1994-05-17 08:21:49 +04:00
switch (SCARG(uap, which)) {
1994-05-17 08:21:49 +04:00
case PRIO_PROCESS:
if (SCARG(uap, who) == 0)
1994-05-17 08:21:49 +04:00
p = curp;
else
p = pfind(SCARG(uap, who));
1994-05-17 08:21:49 +04:00
if (p == 0)
break;
low = p->p_nice;
break;
case PRIO_PGRP: {
2000-03-30 13:27:11 +04:00
struct pgrp *pg;
1994-05-17 08:21:49 +04:00
if (SCARG(uap, who) == 0)
1994-05-17 08:21:49 +04:00
pg = curp->p_pgrp;
else if ((pg = pgfind(SCARG(uap, who))) == NULL)
1994-05-17 08:21:49 +04:00
break;
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1994-05-17 08:21:49 +04:00
if (p->p_nice < low)
low = p->p_nice;
}
break;
}
case PRIO_USER:
if (SCARG(uap, who) == 0)
SCARG(uap, who) = curp->p_ucred->cr_uid;
proclist_lock_read();
PROCLIST_FOREACH(p, &allproc) {
if (p->p_ucred->cr_uid == (uid_t) SCARG(uap, who) &&
p->p_nice < low)
1994-05-17 08:21:49 +04:00
low = p->p_nice;
}
proclist_unlock_read();
1994-05-17 08:21:49 +04:00
break;
default:
return (EINVAL);
}
if (low == NZERO + PRIO_MAX + 1)
1994-05-17 08:21:49 +04:00
return (ESRCH);
*retval = low - NZERO;
1994-05-17 08:21:49 +04:00
return (0);
}
/* ARGSUSED */
int
sys_setpriority(struct lwp *l, void *v, register_t *retval)
{
2000-03-30 13:27:11 +04:00
struct sys_setpriority_args /* {
syscallarg(int) which;
syscallarg(id_t) who;
syscallarg(int) prio;
} */ *uap = v;
2003-01-18 13:06:22 +03:00
struct proc *curp = l->l_proc, *p;
1994-05-17 08:21:49 +04:00
int found = 0, error = 0;
switch (SCARG(uap, which)) {
1994-05-17 08:21:49 +04:00
case PRIO_PROCESS:
if (SCARG(uap, who) == 0)
1994-05-17 08:21:49 +04:00
p = curp;
else
p = pfind(SCARG(uap, who));
1994-05-17 08:21:49 +04:00
if (p == 0)
break;
error = donice(curp, p, SCARG(uap, prio));
1994-05-17 08:21:49 +04:00
found++;
break;
case PRIO_PGRP: {
2000-03-30 13:27:11 +04:00
struct pgrp *pg;
2005-02-27 00:34:55 +03:00
if (SCARG(uap, who) == 0)
1994-05-17 08:21:49 +04:00
pg = curp->p_pgrp;
else if ((pg = pgfind(SCARG(uap, who))) == NULL)
1994-05-17 08:21:49 +04:00
break;
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
error = donice(curp, p, SCARG(uap, prio));
1994-05-17 08:21:49 +04:00
found++;
}
break;
}
case PRIO_USER:
if (SCARG(uap, who) == 0)
SCARG(uap, who) = curp->p_ucred->cr_uid;
proclist_lock_read();
PROCLIST_FOREACH(p, &allproc) {
if (p->p_ucred->cr_uid == (uid_t) SCARG(uap, who)) {
error = donice(curp, p, SCARG(uap, prio));
1994-05-17 08:21:49 +04:00
found++;
}
}
proclist_unlock_read();
1994-05-17 08:21:49 +04:00
break;
default:
return (EINVAL);
}
if (found == 0)
return (ESRCH);
return (error);
}
int
donice(struct proc *curp, struct proc *chgp, int n)
1994-05-17 08:21:49 +04:00
{
2000-03-30 13:27:11 +04:00
struct pcred *pcred = curp->p_cred;
int s;
1994-05-17 08:21:49 +04:00
if (pcred->pc_ucred->cr_uid && pcred->p_ruid &&
pcred->pc_ucred->cr_uid != chgp->p_ucred->cr_uid &&
pcred->p_ruid != chgp->p_ucred->cr_uid)
return (EPERM);
if (n > PRIO_MAX)
n = PRIO_MAX;
if (n < PRIO_MIN)
n = PRIO_MIN;
n += NZERO;
1994-05-17 08:21:49 +04:00
if (n < chgp->p_nice && suser(pcred->pc_ucred, &curp->p_acflag))
return (EACCES);
chgp->p_nice = n;
SCHED_LOCK(s);
2003-01-18 13:06:22 +03:00
(void)resetprocpriority(chgp);
SCHED_UNLOCK(s);
1994-05-17 08:21:49 +04:00
return (0);
}
/* ARGSUSED */
int
sys_setrlimit(struct lwp *l, void *v, register_t *retval)
{
2000-03-30 13:27:11 +04:00
struct sys_setrlimit_args /* {
syscallarg(int) which;
syscallarg(const struct rlimit *) rlp;
} */ *uap = v;
2003-01-18 13:06:22 +03:00
struct proc *p = l->l_proc;
int which = SCARG(uap, which);
struct rlimit alim;
1994-05-17 08:21:49 +04:00
int error;
error = copyin(SCARG(uap, rlp), &alim, sizeof(struct rlimit));
1996-02-04 05:15:01 +03:00
if (error)
1994-05-17 08:21:49 +04:00
return (error);
return (dosetrlimit(p, p->p_cred, which, &alim));
1994-05-17 08:21:49 +04:00
}
int
dosetrlimit(struct proc *p, struct pcred *cred, int which, struct rlimit *limp)
1994-05-17 08:21:49 +04:00
{
2000-03-30 13:27:11 +04:00
struct rlimit *alimp;
struct plimit *oldplim;
1994-05-17 08:21:49 +04:00
int error;
if ((u_int)which >= RLIM_NLIMITS)
1994-05-17 08:21:49 +04:00
return (EINVAL);
if (limp->rlim_cur < 0 || limp->rlim_max < 0)
return (EINVAL);
1994-05-17 08:21:49 +04:00
alimp = &p->p_rlimit[which];
/* if we don't change the value, no need to limcopy() */
if (limp->rlim_cur == alimp->rlim_cur &&
limp->rlim_max == alimp->rlim_max)
return 0;
if (limp->rlim_cur > limp->rlim_max) {
/*
* This is programming error. According to SUSv2, we should
* return error in this case.
*/
return (EINVAL);
}
if (limp->rlim_max > alimp->rlim_max
&& (error = suser(cred->pc_ucred, &p->p_acflag)) != 0)
1994-05-17 08:21:49 +04:00
return (error);
1994-05-17 08:21:49 +04:00
if (p->p_limit->p_refcnt > 1 &&
(p->p_limit->p_lflags & PL_SHAREMOD) == 0) {
p->p_limit = limcopy(oldplim = p->p_limit);
limfree(oldplim);
1994-05-17 08:21:49 +04:00
alimp = &p->p_rlimit[which];
}
switch (which) {
case RLIMIT_DATA:
if (limp->rlim_cur > maxdmap)
limp->rlim_cur = maxdmap;
if (limp->rlim_max > maxdmap)
limp->rlim_max = maxdmap;
1994-05-17 08:21:49 +04:00
break;
case RLIMIT_STACK:
if (limp->rlim_cur > maxsmap)
limp->rlim_cur = maxsmap;
if (limp->rlim_max > maxsmap)
limp->rlim_max = maxsmap;
/*
* Return EINVAL if the new stack size limit is lower than
* current usage. Otherwise, the process would get SIGSEGV the
* moment it would try to access anything on it's current stack.
* This conforms to SUSv2.
*/
if (limp->rlim_cur < p->p_vmspace->vm_ssize * PAGE_SIZE
|| limp->rlim_max < p->p_vmspace->vm_ssize * PAGE_SIZE)
return (EINVAL);
1994-05-17 08:21:49 +04:00
/*
* Stack is allocated to the max at exec time with
* only "rlim_cur" bytes accessible (In other words,
* allocates stack dividing two contiguous regions at
* "rlim_cur" bytes boundary).
*
* Since allocation is done in terms of page, roundup
* "rlim_cur" (otherwise, contiguous regions
* overlap). If stack limit is going up make more
* accessible, if going down make inaccessible.
1994-05-17 08:21:49 +04:00
*/
limp->rlim_cur = round_page(limp->rlim_cur);
1994-05-17 08:21:49 +04:00
if (limp->rlim_cur != alimp->rlim_cur) {
vaddr_t addr;
vsize_t size;
1994-05-17 08:21:49 +04:00
vm_prot_t prot;
if (limp->rlim_cur > alimp->rlim_cur) {
prot = VM_PROT_READ | VM_PROT_WRITE;
1994-05-17 08:21:49 +04:00
size = limp->rlim_cur - alimp->rlim_cur;
addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
limp->rlim_cur;
1994-05-17 08:21:49 +04:00
} else {
prot = VM_PROT_NONE;
size = alimp->rlim_cur - limp->rlim_cur;
addr = (vaddr_t)p->p_vmspace->vm_minsaddr -
alimp->rlim_cur;
1994-05-17 08:21:49 +04:00
}
(void) uvm_map_protect(&p->p_vmspace->vm_map,
addr, addr+size, prot, FALSE);
1994-05-17 08:21:49 +04:00
}
break;
case RLIMIT_NOFILE:
if (limp->rlim_cur > maxfiles)
limp->rlim_cur = maxfiles;
if (limp->rlim_max > maxfiles)
limp->rlim_max = maxfiles;
break;
case RLIMIT_NPROC:
if (limp->rlim_cur > maxproc)
limp->rlim_cur = maxproc;
if (limp->rlim_max > maxproc)
limp->rlim_max = maxproc;
break;
1994-05-17 08:21:49 +04:00
}
*alimp = *limp;
return (0);
}
/* ARGSUSED */
int
sys_getrlimit(struct lwp *l, void *v, register_t *retval)
{
2000-03-30 13:27:11 +04:00
struct sys_getrlimit_args /* {
syscallarg(int) which;
syscallarg(struct rlimit *) rlp;
} */ *uap = v;
2003-01-18 13:06:22 +03:00
struct proc *p = l->l_proc;
int which = SCARG(uap, which);
1994-05-17 08:21:49 +04:00
if ((u_int)which >= RLIM_NLIMITS)
1994-05-17 08:21:49 +04:00
return (EINVAL);
return (copyout(&p->p_rlimit[which], SCARG(uap, rlp),
sizeof(struct rlimit)));
1994-05-17 08:21:49 +04:00
}
/*
* Transform the running time and tick information in proc p into user,
* system, and interrupt time usage.
*/
void
calcru(struct proc *p, struct timeval *up, struct timeval *sp,
struct timeval *ip)
1994-05-17 08:21:49 +04:00
{
2000-03-30 13:27:11 +04:00
u_quad_t u, st, ut, it, tot;
unsigned long sec;
long usec;
2000-03-30 13:27:11 +04:00
int s;
1994-05-17 08:21:49 +04:00
struct timeval tv;
2003-01-18 13:06:22 +03:00
struct lwp *l;
1994-05-17 08:21:49 +04:00
s = splstatclock();
st = p->p_sticks;
ut = p->p_uticks;
it = p->p_iticks;
splx(s);
sec = p->p_rtime.tv_sec;
usec = p->p_rtime.tv_usec;
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2003-01-18 13:06:22 +03:00
if (l->l_stat == LSONPROC) {
struct schedstate_percpu *spc;
2005-02-27 00:34:55 +03:00
2003-01-18 13:06:22 +03:00
KDASSERT(l->l_cpu != NULL);
spc = &l->l_cpu->ci_schedstate;
2005-02-27 00:34:55 +03:00
2003-01-18 13:06:22 +03:00
/*
* Adjust for the current time slice. This is
* actually fairly important since the error
* here is on the order of a time quantum,
* which is much greater than the sampling
2005-02-27 00:34:55 +03:00
* error.
2003-01-18 13:06:22 +03:00
*/
microtime(&tv);
sec += tv.tv_sec - spc->spc_runtime.tv_sec;
usec += tv.tv_usec - spc->spc_runtime.tv_usec;
}
1994-05-17 08:21:49 +04:00
}
tot = st + ut + it;
u = sec * 1000000ull + usec;
if (tot == 0) {
/* No ticks, so can't use to share time out, split 50-50 */
st = ut = u / 2;
} else {
st = (u * st) / tot;
ut = (u * ut) / tot;
}
1994-05-17 08:21:49 +04:00
sp->tv_sec = st / 1000000;
sp->tv_usec = st % 1000000;
up->tv_sec = ut / 1000000;
up->tv_usec = ut % 1000000;
if (ip != NULL) {
if (it != 0)
it = (u * it) / tot;
1994-05-17 08:21:49 +04:00
ip->tv_sec = it / 1000000;
ip->tv_usec = it % 1000000;
}
}
/* ARGSUSED */
int
sys_getrusage(struct lwp *l, void *v, register_t *retval)
{
2000-03-30 13:27:11 +04:00
struct sys_getrusage_args /* {
syscallarg(int) who;
syscallarg(struct rusage *) rusage;
} */ *uap = v;
2000-03-30 13:27:11 +04:00
struct rusage *rup;
2003-01-18 13:06:22 +03:00
struct proc *p = l->l_proc;
1994-05-17 08:21:49 +04:00
switch (SCARG(uap, who)) {
1994-05-17 08:21:49 +04:00
case RUSAGE_SELF:
1994-05-17 08:21:49 +04:00
rup = &p->p_stats->p_ru;
calcru(p, &rup->ru_utime, &rup->ru_stime, NULL);
break;
case RUSAGE_CHILDREN:
rup = &p->p_stats->p_cru;
break;
default:
return (EINVAL);
}
return (copyout(rup, SCARG(uap, rusage), sizeof(struct rusage)));
1994-05-17 08:21:49 +04:00
}
void
ruadd(struct rusage *ru, struct rusage *ru2)
1994-05-17 08:21:49 +04:00
{
2000-03-30 13:27:11 +04:00
long *ip, *ip2;
int i;
1994-05-17 08:21:49 +04:00
1995-03-21 16:33:34 +03:00
timeradd(&ru->ru_utime, &ru2->ru_utime, &ru->ru_utime);
timeradd(&ru->ru_stime, &ru2->ru_stime, &ru->ru_stime);
1994-05-17 08:21:49 +04:00
if (ru->ru_maxrss < ru2->ru_maxrss)
ru->ru_maxrss = ru2->ru_maxrss;
ip = &ru->ru_first; ip2 = &ru2->ru_first;
for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
*ip++ += *ip2++;
}
/*
* Make a copy of the plimit structure.
* We share these structures copy-on-write after fork,
* and copy when a limit is changed.
*/
struct plimit *
limcopy(struct plimit *lim)
1994-05-17 08:21:49 +04:00
{
2000-03-30 13:27:11 +04:00
struct plimit *newlim;
size_t l = 0;
simple_lock(&lim->p_slock);
if (lim->pl_corename != defcorename)
l = strlen(lim->pl_corename) + 1;
simple_unlock(&lim->p_slock);
1994-05-17 08:21:49 +04:00
newlim = pool_get(&plimit_pool, PR_WAITOK);
simple_lock_init(&newlim->p_slock);
newlim->p_lflags = 0;
newlim->p_refcnt = 1;
newlim->pl_corename = (l != 0)
? malloc(l, M_TEMP, M_WAITOK)
: defcorename;
simple_lock(&lim->p_slock);
memcpy(newlim->pl_rlimit, lim->pl_rlimit,
1994-05-17 08:21:49 +04:00
sizeof(struct rlimit) * RLIM_NLIMITS);
if (l != 0)
strlcpy(newlim->pl_corename, lim->pl_corename, l);
simple_unlock(&lim->p_slock);
1995-12-09 07:09:32 +03:00
return (newlim);
}
void
limfree(struct plimit *lim)
1995-12-09 07:09:32 +03:00
{
2004-05-13 21:43:11 +04:00
int n;
2004-05-13 21:56:14 +04:00
simple_lock(&lim->p_slock);
2004-05-13 21:43:11 +04:00
n = --lim->p_refcnt;
simple_unlock(&lim->p_slock);
if (n > 0)
1995-12-09 07:09:32 +03:00
return;
#ifdef DIAGNOSTIC
if (n < 0)
panic("limfree");
#endif
if (lim->pl_corename != defcorename)
free(lim->pl_corename, M_TEMP);
pool_put(&plimit_pool, lim);
1994-05-17 08:21:49 +04:00
}
2003-01-18 13:06:22 +03:00
struct pstats *
pstatscopy(struct pstats *ps)
2003-01-18 13:06:22 +03:00
{
2005-02-27 00:34:55 +03:00
2003-01-18 13:06:22 +03:00
struct pstats *newps;
newps = pool_get(&pstats_pool, PR_WAITOK);
memset(&newps->pstat_startzero, 0,
(unsigned) ((caddr_t)&newps->pstat_endzero -
(caddr_t)&newps->pstat_startzero));
memcpy(&newps->pstat_startcopy, &ps->pstat_startcopy,
((caddr_t)&newps->pstat_endcopy -
(caddr_t)&newps->pstat_startcopy));
return (newps);
}
void
pstatsfree(struct pstats *ps)
2003-01-18 13:06:22 +03:00
{
pool_put(&pstats_pool, ps);
}
/*
* sysctl interface in five parts
*/
/*
* a routine for sysctl proc subtree helpers that need to pick a valid
* process by pid.
*/
static int
sysctl_proc_findproc(struct proc *p, struct proc **p2, pid_t pid)
{
struct proc *ptmp;
int i, error = 0;
if (pid == PROC_CURPROC)
ptmp = p;
else if ((ptmp = pfind(pid)) == NULL)
error = ESRCH;
else {
/*
* suid proc of ours or proc not ours
*/
if (p->p_cred->p_ruid != ptmp->p_cred->p_ruid ||
p->p_cred->p_ruid != ptmp->p_cred->p_svuid)
error = suser(p->p_ucred, &p->p_acflag);
/*
* sgid proc has sgid back to us temporarily
*/
else if (ptmp->p_cred->p_rgid != ptmp->p_cred->p_svgid)
error = suser(p->p_ucred, &p->p_acflag);
/*
* our rgid must be in target's group list (ie,
* sub-processes started by a sgid process)
*/
else {
for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
if (p->p_ucred->cr_groups[i] ==
ptmp->p_cred->p_rgid)
break;
}
if (i == p->p_ucred->cr_ngroups)
error = suser(p->p_ucred, &p->p_acflag);
}
}
*p2 = ptmp;
return (error);
}
/*
* sysctl helper routine for setting a process's specific corefile
* name. picks the process based on the given pid and checks the
* correctness of the new value.
*/
static int
sysctl_proc_corename(SYSCTLFN_ARGS)
{
struct proc *ptmp, *p;
struct plimit *lim;
int error = 0, len;
char cname[MAXPATHLEN], *tmp;
struct sysctlnode node;
/*
* is this all correct?
*/
if (namelen != 0)
return (EINVAL);
if (name[-1] != PROC_PID_CORENAME)
return (EINVAL);
/*
* whom are we tweaking?
*/
p = l->l_proc;
error = sysctl_proc_findproc(p, &ptmp, (pid_t)name[-2]);
if (error)
return (error);
/*
* let them modify a temporary copy of the core name
*/
node = *rnode;
strlcpy(cname, ptmp->p_limit->pl_corename, sizeof(cname));
node.sysctl_data = cname;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
/*
* if that failed, or they have nothing new to say, or we've
* heard it before...
*/
if (error || newp == NULL ||
strcmp(cname, ptmp->p_limit->pl_corename) == 0)
return (error);
/*
* no error yet and cname now has the new core name in it.
* let's see if it looks acceptable. it must be either "core"
* or end in ".core" or "/core".
*/
len = strlen(cname);
if (len < 4)
return (EINVAL);
if (strcmp(cname + len - 4, "core") != 0)
return (EINVAL);
if (len > 4 && cname[len - 5] != '/' && cname[len - 5] != '.')
return (EINVAL);
/*
* hmm...looks good. now...where do we put it?
*/
tmp = malloc(len + 1, M_TEMP, M_WAITOK|M_CANFAIL);
if (tmp == NULL)
return (ENOMEM);
strlcpy(tmp, cname, len + 1);
lim = ptmp->p_limit;
if (lim->p_refcnt > 1 && (lim->p_lflags & PL_SHAREMOD) == 0) {
ptmp->p_limit = limcopy(lim);
limfree(lim);
lim = ptmp->p_limit;
}
if (lim->pl_corename != defcorename)
free(lim->pl_corename, M_TEMP);
lim->pl_corename = tmp;
return (error);
}
/*
* sysctl helper routine for checking/setting a process's stop flags,
* one for fork and one for exec.
*/
static int
sysctl_proc_stop(SYSCTLFN_ARGS)
{
struct proc *p, *ptmp;
int i, f, error = 0;
struct sysctlnode node;
if (namelen != 0)
return (EINVAL);
p = l->l_proc;
error = sysctl_proc_findproc(p, &ptmp, (pid_t)name[-2]);
if (error)
return (error);
switch (rnode->sysctl_num) {
case PROC_PID_STOPFORK:
f = P_STOPFORK;
break;
case PROC_PID_STOPEXEC:
f = P_STOPEXEC;
break;
case PROC_PID_STOPEXIT:
f = P_STOPEXIT;
break;
default:
return (EINVAL);
}
i = (ptmp->p_flag & f) ? 1 : 0;
node = *rnode;
node.sysctl_data = &i;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return (error);
if (i)
ptmp->p_flag |= f;
else
ptmp->p_flag &= ~f;
return (0);
}
/*
* sysctl helper routine for a process's rlimits as exposed by sysctl.
*/
static int
sysctl_proc_plimit(SYSCTLFN_ARGS)
{
struct proc *ptmp, *p;
u_int limitno;
int which, error = 0;
struct rlimit alim;
struct sysctlnode node;
if (namelen != 0)
return (EINVAL);
which = name[-1];
if (which != PROC_PID_LIMIT_TYPE_SOFT &&
which != PROC_PID_LIMIT_TYPE_HARD)
return (EINVAL);
limitno = name[-2] - 1;
if (limitno >= RLIM_NLIMITS)
return (EINVAL);
if (name[-3] != PROC_PID_LIMIT)
return (EINVAL);
p = l->l_proc;
error = sysctl_proc_findproc(p, &ptmp, (pid_t)name[-4]);
if (error)
return (error);
node = *rnode;
memcpy(&alim, &ptmp->p_rlimit[limitno], sizeof(alim));
if (which == PROC_PID_LIMIT_TYPE_HARD)
node.sysctl_data = &alim.rlim_max;
else
node.sysctl_data = &alim.rlim_cur;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return (error);
return (dosetrlimit(ptmp, p->p_cred, limitno, &alim));
}
/*
* and finally, the actually glue that sticks it to the tree
*/
SYSCTL_SETUP(sysctl_proc_setup, "sysctl proc subtree setup")
{
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "proc", NULL,
NULL, 0, NULL, 0,
CTL_PROC, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_ANYNUMBER,
CTLTYPE_NODE, "curproc",
SYSCTL_DESCR("Per-process settings"),
NULL, 0, NULL, 0,
CTL_PROC, PROC_CURPROC, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READONLY2|CTLFLAG_ANYWRITE,
CTLTYPE_STRING, "corename",
SYSCTL_DESCR("Core file name"),
sysctl_proc_corename, 0, NULL, MAXPATHLEN,
CTL_PROC, PROC_CURPROC, PROC_PID_CORENAME, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "rlimit",
SYSCTL_DESCR("Process limits"),
NULL, 0, NULL, 0,
CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, CTL_EOL);
#define create_proc_plimit(s, n) do { \
sysctl_createv(clog, 0, NULL, NULL, \
CTLFLAG_PERMANENT, \
CTLTYPE_NODE, s, \
SYSCTL_DESCR("Process " s " limits"), \
NULL, 0, NULL, 0, \
CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
CTL_EOL); \
sysctl_createv(clog, 0, NULL, NULL, \
CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
CTLTYPE_QUAD, "soft", \
SYSCTL_DESCR("Process soft " s " limit"), \
sysctl_proc_plimit, 0, NULL, 0, \
CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
PROC_PID_LIMIT_TYPE_SOFT, CTL_EOL); \
sysctl_createv(clog, 0, NULL, NULL, \
CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE, \
CTLTYPE_QUAD, "hard", \
SYSCTL_DESCR("Process hard " s " limit"), \
sysctl_proc_plimit, 0, NULL, 0, \
CTL_PROC, PROC_CURPROC, PROC_PID_LIMIT, n, \
PROC_PID_LIMIT_TYPE_HARD, CTL_EOL); \
} while (0/*CONSTCOND*/)
create_proc_plimit("cputime", PROC_PID_LIMIT_CPU);
create_proc_plimit("filesize", PROC_PID_LIMIT_FSIZE);
create_proc_plimit("datasize", PROC_PID_LIMIT_DATA);
create_proc_plimit("stacksize", PROC_PID_LIMIT_STACK);
create_proc_plimit("coredumpsize", PROC_PID_LIMIT_CORE);
create_proc_plimit("memoryuse", PROC_PID_LIMIT_RSS);
create_proc_plimit("memorylocked", PROC_PID_LIMIT_MEMLOCK);
create_proc_plimit("maxproc", PROC_PID_LIMIT_NPROC);
create_proc_plimit("descriptors", PROC_PID_LIMIT_NOFILE);
create_proc_plimit("sbsize", PROC_PID_LIMIT_SBSIZE);
#undef create_proc_plimit
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
CTLTYPE_INT, "stopfork",
SYSCTL_DESCR("Stop process at fork(2)"),
sysctl_proc_stop, 0, NULL, 0,
CTL_PROC, PROC_CURPROC, PROC_PID_STOPFORK, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
CTLTYPE_INT, "stopexec",
SYSCTL_DESCR("Stop process at execve(2)"),
sysctl_proc_stop, 0, NULL, 0,
CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXEC, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_ANYWRITE,
CTLTYPE_INT, "stopexit",
SYSCTL_DESCR("Stop process before completing exit"),
sysctl_proc_stop, 0, NULL, 0,
CTL_PROC, PROC_CURPROC, PROC_PID_STOPEXIT, CTL_EOL);
}
struct uidinfo *
uid_find(uid_t uid)
{
struct uidinfo *uip;
struct uidinfo *newuip = NULL;
struct uihashhead *uipp;
uipp = UIHASH(uid);
again:
simple_lock(&uihashtbl_slock);
LIST_FOREACH(uip, uipp, ui_hash)
if (uip->ui_uid == uid) {
simple_unlock(&uihashtbl_slock);
if (newuip)
free(newuip, M_PROC);
return uip;
}
if (newuip == NULL) {
simple_unlock(&uihashtbl_slock);
newuip = malloc(sizeof(*uip), M_PROC, M_WAITOK | M_ZERO);
goto again;
}
uip = newuip;
LIST_INSERT_HEAD(uipp, uip, ui_hash);
uip->ui_uid = uid;
simple_lock_init(&uip->ui_slock);
simple_unlock(&uihashtbl_slock);
return uip;
}
/*
* Change the count associated with number of processes
* a given user is using.
*/
int
chgproccnt(uid_t uid, int diff)
{
struct uidinfo *uip;
int s;
if (diff == 0)
return 0;
uip = uid_find(uid);
UILOCK(uip, s);
uip->ui_proccnt += diff;
KASSERT(uip->ui_proccnt >= 0);
UIUNLOCK(uip, s);
return uip->ui_proccnt;
}
int
chgsbsize(struct uidinfo *uip, u_long *hiwat, u_long to, rlim_t xmax)
{
rlim_t nsb;
int s;
UILOCK(uip, s);
nsb = uip->ui_sbsize + to - *hiwat;
if (to > *hiwat && nsb > xmax) {
UIUNLOCK(uip, s);
splx(s);
return 0;
}
*hiwat = to;
uip->ui_sbsize = nsb;
KASSERT(uip->ui_sbsize >= 0);
UIUNLOCK(uip, s);
return 1;
}