NetBSD/sys/vm/vm_page.c

1916 lines
46 KiB
C
Raw Normal View History

/* $NetBSD: vm_page.c,v 1.47 1998/08/13 02:11:08 eeh Exp $ */
#define VM_PAGE_ALLOC_MEMORY_STATS
/*-
* Copyright (c) 1997 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
1993-03-21 12:45:37 +03:00
/*
1994-05-23 07:11:20 +04:00
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
1993-03-21 12:45:37 +03:00
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
1998-03-01 05:20:01 +03:00
* @(#)vm_page.c 8.4 (Berkeley) 1/9/95
1993-03-21 12:45:37 +03:00
*
*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*
* Resident memory management module.
*/
1993-12-17 10:56:32 +03:00
#include <sys/param.h>
1994-05-23 07:11:20 +04:00
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/malloc.h>
1993-03-21 12:45:37 +03:00
1993-12-17 10:56:32 +03:00
#include <vm/vm.h>
#include <vm/vm_page.h>
1994-05-23 07:11:20 +04:00
#include <vm/vm_map.h>
1993-12-17 10:56:32 +03:00
#include <vm/vm_pageout.h>
1993-03-21 12:45:37 +03:00
1993-12-20 15:39:55 +03:00
#include <machine/cpu.h>
#define VERY_LOW_MEM() (cnt.v_free_count <= vm_page_free_reserved)
#define KERN_OBJ(object) ((object) == kernel_object || (object) == kmem_object)
int vm_page_free_reserved = 10;
#if defined(MACHINE_NEW_NONCONTIG)
/*
* physical memory config is stored in vm_physmem.
*/
struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];
int vm_nphysseg = 0;
static int vm_page_lost_count = 0; /* XXXCDC: DEBUG DEBUG */
#endif
#if defined(MACHINE_NONCONTIG) || defined(MACHINE_NEW_NONCONTIG)
/*
* These variables record the values returned by vm_page_bootstrap,
* for debugging purposes.
*
* The implementation of vm_bootstrap_steal_memory here also uses
* them internally.
*/
static vaddr_t virtual_space_start;
static vaddr_t virtual_space_end;
vaddr_t vm_bootstrap_steal_memory __P((vsize_t));
#endif
1994-05-23 07:11:20 +04:00
/*
* Associated with page of user-allocatable memory is a
* page structure.
*/
struct pglist *vm_page_buckets; /* Array of buckets */
1993-03-21 12:45:37 +03:00
int vm_page_bucket_count = 0; /* How big is array? */
int vm_page_hash_mask; /* Mask for hash function */
simple_lock_data_t bucket_lock; /* lock for all buckets XXX */
#if defined(MACHINE_NEW_NONCONTIG)
struct pglist vm_page_bootbucket; /* bootstrap bucket */
#endif
1993-03-21 12:45:37 +03:00
struct pglist vm_page_queue_free;
struct pglist vm_page_queue_active;
struct pglist vm_page_queue_inactive;
1993-03-21 12:45:37 +03:00
simple_lock_data_t vm_page_queue_lock;
simple_lock_data_t vm_page_queue_free_lock;
1994-05-23 07:11:20 +04:00
/* has physical page allocation been initialized? */
boolean_t vm_page_startup_initialized;
1994-05-23 07:11:20 +04:00
vm_page_t vm_page_array;
#if defined(MACHINE_NEW_NONCONTIG)
/* NOTHING NEEDED HERE */
#elif defined(MACHINE_NONCONTIG)
/* OLD NONCONTIG CODE: NUKE NUKE NUKE ONCE CONVERTED */
u_long first_page;
int vm_page_count;
#else
/* OLD NCONTIG CODE: NUKE NUKE NUKE ONCE CONVERTED */
1993-03-21 12:45:37 +03:00
long first_page;
long last_page;
paddr_t first_phys_addr;
paddr_t last_phys_addr;
int vm_page_count;
#endif
vsize_t page_mask;
int page_shift;
1993-03-21 12:45:37 +03:00
#if defined(MACHINE_NEW_NONCONTIG)
/*
* local prototypes
*/
#if !defined(PMAP_STEAL_MEMORY)
static boolean_t vm_page_physget __P((paddr_t *));
#endif
#endif
/*
* macros
*/
/*
* vm_page_hash:
*
* Distributes the object/offset key pair among hash buckets.
*
* NOTE: This macro depends on vm_page_bucket_count being a power of 2.
*/
#define vm_page_hash(object, offset) \
(((unsigned long)object+(unsigned long)atop(offset))&vm_page_hash_mask)
1993-03-21 12:45:37 +03:00
/*
* vm_set_page_size:
*
* Sets the page size, perhaps based upon the memory
* size. Must be called before any use of page-size
* dependent functions.
*
1994-05-23 07:11:20 +04:00
* Sets page_shift and page_mask from cnt.v_page_size.
1993-03-21 12:45:37 +03:00
*/
1994-01-08 07:02:36 +03:00
void
vm_set_page_size()
1993-03-21 12:45:37 +03:00
{
if (cnt.v_page_size == 0)
cnt.v_page_size = DEFAULT_PAGE_SIZE;
page_mask = cnt.v_page_size - 1;
if ((page_mask & cnt.v_page_size) != 0)
1993-03-21 12:45:37 +03:00
panic("vm_set_page_size: page size not a power of two");
for (page_shift = 0; ; page_shift++)
if ((1 << page_shift) == cnt.v_page_size)
1993-03-21 12:45:37 +03:00
break;
}
#if defined(MACHINE_NEW_NONCONTIG)
/*
* vm_page_bootstrap: initialize the resident memory module (called
* from vm_mem_init()).
*
* - startp and endp are out params which return the boundaries of the
* free part of the kernel's virtual address space.
*/
void
vm_page_bootstrap(startp, endp)
vaddr_t *startp, *endp; /* OUT, OUT */
{
paddr_t paddr;
vm_page_t pagearray;
int lcv, freepages, pagecount, n, i;
/*
* first init all the locks and queues.
*/
simple_lock_init(&vm_page_queue_free_lock);
simple_lock_init(&vm_page_queue_lock);
TAILQ_INIT(&vm_page_queue_free);
TAILQ_INIT(&vm_page_queue_active);
TAILQ_INIT(&vm_page_queue_inactive);
/*
* init the <OBJ,OFFSET> => <PAGE> hash table buckets. for now
* we just have one bucket (the bootstrap bucket). later on we
* will malloc() new buckets as we dynamically resize the hash table.
*/
vm_page_bucket_count = 1;
vm_page_hash_mask = 0;
vm_page_buckets = &vm_page_bootbucket;
TAILQ_INIT(vm_page_buckets);
simple_lock_init(&bucket_lock);
/*
* before calling this function the MD code is expected to register
* some free RAM with the vm_page_physload() function. our job
* now is to allocate vm_page structures for this preloaded memory.
*/
if (vm_nphysseg == 0)
panic("vm_page_bootstrap: no memory pre-allocated");
/*
* first calculate the number of free pages... note that start/end
* are inclusive so you have to add one to get the number of pages.
*
* note that we use start/end rather than avail_start/avail_end.
* this allows us to allocate extra vm_page structures in case we
* want to return some memory to the pool after booting.
*/
freepages = 0;
for (lcv = 0; lcv < vm_nphysseg; lcv++) {
freepages = freepages +
(vm_physmem[lcv].end - vm_physmem[lcv].start);
}
/*
* we now know we have (PAGE_SIZE * freepages) bytes of memory we can
* use. for each page of memory we use we need a vm_page structure.
* thus, the total number of pages we can use is the total size of
* the memory divided by the PAGE_SIZE plus the size of the vm_page
* structure. we add one to freepages as a fudge factor to avoid
* truncation errors (since we can only allocate in terms of whole
* pages).
*/
pagecount = (PAGE_SIZE * (freepages + 1)) /
(PAGE_SIZE + sizeof(struct vm_page));
pagearray = (vm_page_t)
vm_bootstrap_steal_memory(pagecount * sizeof(struct vm_page));
memset(pagearray, 0, pagecount * sizeof(struct vm_page));
/*
* now init the page frames
*/
for (lcv = 0; lcv < vm_nphysseg; lcv++) {
n = vm_physmem[lcv].end - vm_physmem[lcv].start;
if (n > pagecount) {
printf("vm_init: lost %d page(s) in init\n",
n - pagecount);
vm_page_lost_count += (n - pagecount);
n = pagecount;
}
/* set up page array pointers */
vm_physmem[lcv].pgs = pagearray;
pagearray += n;
pagecount -= n;
vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
/* init and free vm_pages (we've already zeroed them) */
paddr = ptoa(vm_physmem[lcv].start);
for (i = 0; i < n; i++, paddr += PAGE_SIZE) {
vm_physmem[lcv].pgs[i].phys_addr = paddr;
if (atop(paddr) >= vm_physmem[lcv].avail_start &&
atop(paddr) <= vm_physmem[lcv].avail_end)
vm_page_free(&vm_physmem[lcv].pgs[i]);
}
}
/*
* pass up the values of virtual_space_start and virtual_space_end
* (obtained by vm_bootstrap_steal_memory) to the upper layers of
* the VM.
*/
*startp = round_page(virtual_space_start);
*endp = trunc_page(virtual_space_end);
/*
* init pagedaemon lock
*/
simple_lock_init(&vm_pages_needed_lock);
}
/*
* vm_bootstrap_steal_memory: steal memory from physmem for bootstrapping
*/
vaddr_t
vm_bootstrap_steal_memory(size)
vsize_t size;
{
#if defined(PMAP_STEAL_MEMORY)
vaddr_t addr;
/*
* Defer this to machine-dependent code; we may need to allocate
* from a direct-mapped segment.
*/
addr = pmap_steal_memory(size, &virtual_space_start,
&virtual_space_end);
/* round it the way we like it */
virtual_space_start = round_page(virtual_space_start);
virtual_space_end = trunc_page(virtual_space_end);
return (addr);
#else /* ! PMAP_STEAL_MEMORY */
vaddr_t addr, vaddr, paddr;
/* round to page size */
size = round_page(size);
/*
* on first call to this function init ourselves. we detect this
* by checking virtual_space_start/end which are in the zero'd BSS
* area.
*/
if (virtual_space_start == virtual_space_end) {
pmap_virtual_space(&virtual_space_start, &virtual_space_end);
/* round it the way we like it */
virtual_space_start = round_page(virtual_space_start);
virtual_space_end = trunc_page(virtual_space_end);
}
/*
* allocate virtual memory for this request
*/
addr = virtual_space_start;
virtual_space_start += size;
/*
* allocate and mapin physical pages to back new virtual pages
*/
for (vaddr = round_page(addr); vaddr < addr + size;
vaddr += PAGE_SIZE) {
if (!vm_page_physget(&paddr))
panic("vm_bootstrap_steal_memory: out of memory");
/* XXX: should be wired, but some pmaps don't like that ... */
pmap_enter(pmap_kernel(), vaddr, paddr,
VM_PROT_READ|VM_PROT_WRITE, FALSE);
}
return(addr);
#endif /* PMAP_STEAL_MEMORY */
}
#if !defined(PMAP_STEAL_MEMORY)
/*
* vm_page_physget: "steal" one page from the vm_physmem structure.
*
* - attempt to allocate it off the end of a segment in which the "avail"
* values match the start/end values. if we can't do that, then we
* will advance both values (making them equal, and removing some
* vm_page structures from the non-avail area).
* - return false if out of memory.
*/
static boolean_t
vm_page_physget(paddrp)
paddr_t *paddrp;
{
int lcv, x;
/* pass 1: try allocating from a matching end */
#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
#else
for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
#endif
{
if (vm_physmem[lcv].pgs)
panic("vm_page_physget: called _after_ bootstrap");
/* try from front */
if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
*paddrp = ptoa(vm_physmem[lcv].avail_start);
vm_physmem[lcv].avail_start++;
vm_physmem[lcv].start++;
/* nothing left? nuke it */
if (vm_physmem[lcv].avail_start ==
vm_physmem[lcv].end) {
if (vm_nphysseg == 1)
panic("vm_page_physget: out of memory!");
vm_nphysseg--;
for (x = lcv; x < vm_nphysseg; x++)
/* structure copy */
vm_physmem[x] = vm_physmem[x+1];
}
return(TRUE);
}
/* try from rear */
if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
vm_physmem[lcv].avail_end--;
vm_physmem[lcv].end--;
/* nothing left? nuke it */
if (vm_physmem[lcv].avail_end ==
vm_physmem[lcv].start) {
if (vm_nphysseg == 1)
panic("vm_page_physget: out of memory!");
vm_nphysseg--;
for (x = lcv; x < vm_nphysseg; x++)
/* structure copy */
vm_physmem[x] = vm_physmem[x+1];
}
return(TRUE);
}
}
/* pass2: forget about matching ends, just allocate something */
#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
#else
for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
#endif
{
/* any room in this bank? */
if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
continue; /* nope */
*paddrp = ptoa(vm_physmem[lcv].avail_start);
vm_physmem[lcv].avail_start++;
vm_physmem[lcv].start = vm_physmem[lcv].avail_start; /* truncate! */
/* nothing left? nuke it */
if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
if (vm_nphysseg == 1)
panic("vm_page_physget: out of memory!");
vm_nphysseg--;
for (x = lcv; x < vm_nphysseg; x++)
vm_physmem[x] = vm_physmem[x+1]; /* structure copy */
}
return(TRUE);
}
return(FALSE); /* whoops! */
}
#endif /* ! PMAP_STEAL_MEMORY */
/*
* vm_page_physload: load physical memory into VM system
*
* - all args are PFs
* - all pages in start/end get vm_page structures
* - areas marked by avail_start/avail_end get added to the free page pool
* - we are limited to VM_PHYSSEG_MAX physical memory segments
*/
void
vm_page_physload(start, end, avail_start, avail_end)
vaddr_t start, end, avail_start, avail_end;
{
struct vm_page *pgs;
struct vm_physseg *ps;
int preload, lcv, npages;
#if (VM_PHYSSEG_STRAT != VM_PSTRAT_RANDOM)
int x;
#endif
if (page_shift == 0)
panic("vm_page_physload: page size not set!");
/*
* do we have room?
*/
if (vm_nphysseg == VM_PHYSSEG_MAX) {
printf("vm_page_physload: unable to load physical memory segment\n");
printf("\t%d segments allocated, ignoring 0x%lx -> 0x%lx\n",
VM_PHYSSEG_MAX, start, end);
return;
}
/*
* check to see if this is a "preload" (i.e. vm_mem_init hasn't been
* called yet, so malloc is not available).
*/
for (lcv = 0; lcv < vm_nphysseg; lcv++) {
if (vm_physmem[lcv].pgs)
break;
}
preload = (lcv == vm_nphysseg);
/*
* if VM is already running, attempt to malloc() vm_page structures
*/
if (!preload) {
#if defined(VM_PHYSSEG_NOADD)
panic("vm_page_physload: tried to add RAM after vm_mem_init");
#else
/* XXXCDC: need some sort of lockout for this case */
paddr_t paddr;
/* # of pages */
npages = end - start;
MALLOC(pgs, struct vm_page *, sizeof(struct vm_page) * npages,
M_VMPAGE, M_NOWAIT);
if (pgs == NULL) {
printf("vm_page_physload: can not malloc vm_page structs for segment\n");
printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
return;
}
/* zero data, init phys_addr, and free pages */
memset(pgs, 0, sizeof(struct vm_page) * npages);
for (lcv = 0, paddr = ptoa(start); lcv < npages;
lcv++, paddr += PAGE_SIZE) {
pgs[lcv].phys_addr = paddr;
if (atop(paddr) >= avail_start &&
atop(paddr) <= avail_end)
vm_page_free(&pgs[lcv]);
}
/* XXXCDC: incomplete: need to update v_free_count, what else? */
/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
#endif
} else {
/* XXX/gcc complains if these don't get init'd */
pgs = NULL;
npages = 0;
}
/*
* now insert us in the proper place in vm_physmem[]
*/
#if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
/* random: put it at the end (easy!) */
ps = &vm_physmem[vm_nphysseg];
#else
#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
/* sort by address for binary search */
for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
if (start < vm_physmem[lcv].start)
break;
ps = &vm_physmem[lcv];
/* move back other entries, if necessary ... */
1998-01-20 15:34:35 +03:00
for (x = vm_nphysseg ; x > lcv ; x--)
/* structure copy */
vm_physmem[x] = vm_physmem[x - 1];
#else
#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
/* sort by largest segment first */
for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
if ((end - start) >
(vm_physmem[lcv].end - vm_physmem[lcv].start))
break;
ps = &vm_physmem[lcv];
/* move back other entries, if necessary ... */
1998-01-20 15:34:35 +03:00
for (x = vm_nphysseg ; x > lcv ; x--)
/* structure copy */
vm_physmem[x] = vm_physmem[x - 1];
#else
panic("vm_page_physload: unknown physseg strategy selected!");
#endif
#endif
#endif
ps->start = start;
ps->end = end;
ps->avail_start = avail_start;
ps->avail_end = avail_end;
if (preload) {
ps->pgs = NULL;
} else {
ps->pgs = pgs;
ps->lastpg = pgs + npages - 1;
}
vm_nphysseg++;
/*
* done!
*/
return;
}
/*
* vm_page_physrehash: reallocate hash table based on number of
* free pages.
*/
void
vm_page_physrehash()
{
struct pglist *newbuckets, *oldbuckets;
struct vm_page *pg;
int freepages, lcv, bucketcount, s, oldcount;
/*
* compute number of pages that can go in the free pool
*/
freepages = 0;
for (lcv = 0; lcv < vm_nphysseg; lcv++)
freepages = freepages + (vm_physmem[lcv].avail_end -
vm_physmem[lcv].avail_start);
/*
* compute number of buckets needed for this number of pages
*/
bucketcount = 1;
while (bucketcount < freepages)
bucketcount = bucketcount * 2;
/*
* malloc new buckets
*/
MALLOC(newbuckets, struct pglist *, sizeof(struct pglist) * bucketcount,
M_VMPBUCKET, M_NOWAIT);
if (newbuckets == NULL) {
printf("vm_page_physrehash: WARNING: could not grow page hash table\n");
return;
}
for (lcv = 0; lcv < bucketcount; lcv++)
TAILQ_INIT(&newbuckets[lcv]);
/*
* now replace the old buckets with the new ones and rehash everything
*/
s = splimp();
simple_lock(&bucket_lock);
/* swap old for new ... */
oldbuckets = vm_page_buckets;
oldcount = vm_page_bucket_count;
vm_page_buckets = newbuckets;
vm_page_bucket_count = bucketcount;
vm_page_hash_mask = bucketcount - 1; /* power of 2 */
/* ... and rehash */
for (lcv = 0 ; lcv < oldcount ; lcv++) {
while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
TAILQ_INSERT_TAIL(&vm_page_buckets[
vm_page_hash(pg->object, pg->offset)], pg, hashq);
}
}
simple_unlock(&bucket_lock);
splx(s);
/*
* free old bucket array if we malloc'd it previously
*/
if (oldbuckets != &vm_page_bootbucket)
FREE(oldbuckets, M_VMPBUCKET);
/*
* done
*/
return;
}
#if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
void vm_page_physdump __P((void)); /* SHUT UP GCC */
/* call from DDB */
void
vm_page_physdump()
{
int lcv;
printf("rehash: physical memory config [segs=%d of %d]:\n",
vm_nphysseg, VM_PHYSSEG_MAX);
for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
printf("0x%lx->0x%lx [0x%lx->0x%lx]\n", vm_physmem[lcv].start,
vm_physmem[lcv].end, vm_physmem[lcv].avail_start,
vm_physmem[lcv].avail_end);
printf("STRATEGY = ");
switch (VM_PHYSSEG_STRAT) {
case VM_PSTRAT_RANDOM:
printf("RANDOM\n");
break;
case VM_PSTRAT_BSEARCH:
printf("BSEARCH\n");
break;
case VM_PSTRAT_BIGFIRST:
printf("BIGFIRST\n");
break;
default:
printf("<<UNKNOWN>>!!!!\n");
}
printf("number of buckets = %d\n", vm_page_bucket_count);
printf("number of lost pages = %d\n", vm_page_lost_count);
}
#endif
#elif defined(MACHINE_NONCONTIG)
/* OLD NONCONTIG CODE: NUKE NUKE NUKE ONCE CONVERTED */
1993-03-21 12:45:37 +03:00
/*
* We implement vm_page_bootstrap and vm_bootstrap_steal_memory with
* the help of two simpler functions:
*
* pmap_virtual_space and pmap_next_page
*/
/*
* vm_page_bootstrap:
*
* Initializes the resident memory module.
*
* Allocates memory for the page cells, and
* for the object/offset-to-page hash table headers.
* Each page cell is initialized and placed on the free list.
* Returns the range of available kernel virtual memory.
*/
1994-01-08 07:02:36 +03:00
void
vm_page_bootstrap(startp, endp)
vaddr_t *startp;
vaddr_t *endp;
{
unsigned int i, freepages;
register struct pglist *bucket;
paddr_t paddr;
extern vaddr_t kentry_data;
extern vsize_t kentry_data_size;
/*
* Initialize the locks
*/
simple_lock_init(&vm_page_queue_free_lock);
simple_lock_init(&vm_page_queue_lock);
/*
* Initialize the queue headers for the free queue,
* the active queue and the inactive queue.
*/
TAILQ_INIT(&vm_page_queue_free);
TAILQ_INIT(&vm_page_queue_active);
TAILQ_INIT(&vm_page_queue_inactive);
/*
* Pre-allocate maps and map entries that cannot be dynamically
* allocated via malloc(). The maps include the kernel_map and
* kmem_map which must be initialized before malloc() will
* work (obviously). Also could include pager maps which would
* be allocated before kmeminit.
*
* Allow some kernel map entries... this should be plenty
* since people shouldn't be cluttering up the kernel
* map (they should use their own maps).
*/
1996-01-31 06:11:16 +03:00
kentry_data_size = round_page(MAX_KMAP*sizeof(struct vm_map) +
MAX_KMAPENT*sizeof(struct vm_map_entry));
kentry_data = vm_bootstrap_steal_memory(kentry_data_size);
/*
* Validate these zone addresses.
*/
memset((caddr_t) kentry_data, 0, kentry_data_size);
/*
* Allocate (and initialize) the virtual-to-physical
* table hash buckets.
*
* The number of buckets MUST BE a power of 2, and
* the actual value is the next power of 2 greater
* than the number of physical pages in the system.
*
* Note:
* This computation can be tweaked if desired.
*/
if (vm_page_bucket_count == 0) {
unsigned int npages = pmap_free_pages();
vm_page_bucket_count = 1;
while (vm_page_bucket_count < npages)
vm_page_bucket_count <<= 1;
}
vm_page_hash_mask = vm_page_bucket_count - 1;
vm_page_buckets = (struct pglist *)
vm_bootstrap_steal_memory(vm_page_bucket_count *
sizeof(*vm_page_buckets));
bucket = vm_page_buckets;
for (i = vm_page_bucket_count; i--;) {
TAILQ_INIT(bucket);
bucket++;
}
simple_lock_init(&bucket_lock);
/*
* We calculate how many page frames we will have and
* then allocate the page structures in one chunk.
* The calculation is non-trivial. We want:
*
* vmpages > (freepages - (vmpages / sizeof(vm_page_t)))
*
* ...which, with some algebra, becomes:
*
* vmpages > (freepages * sizeof(...) / (1 + sizeof(...)))
*
* The value of vm_page_count need not be exact, but must
* be large enough so vm_page_array handles the index range.
*/
freepages = pmap_free_pages();
/* Fudge slightly to deal with truncation error. */
freepages += 1; /* fudge */
vm_page_count = (PAGE_SIZE * freepages) /
(PAGE_SIZE + sizeof(*vm_page_array));
vm_page_array = (vm_page_t)
vm_bootstrap_steal_memory(vm_page_count * sizeof(*vm_page_array));
memset(vm_page_array, 0, vm_page_count * sizeof(*vm_page_array));
#ifdef DIAGNOSTIC
/*
* Initialize everything in case the holes are stepped in,
* and set PA to something that will cause a panic...
*/
for (i = 0; i < vm_page_count; i++)
vm_page_array[i].phys_addr = 0xdeadbeef;
#endif
/*
* Initialize the page frames. Note that some page
* indices may not be usable when pmap_free_pages()
* counts pages in a hole.
*/
if (!pmap_next_page(&paddr))
panic("vm_page_bootstrap: can't get first page");
first_page = pmap_page_index(paddr);
for (i = 0;;) {
/*
* Initialize a page array element.
*/
VM_PAGE_INIT(&vm_page_array[i], NULL, NULL);
vm_page_array[i].phys_addr = paddr;
vm_page_free(&vm_page_array[i]);
/*
* Are there any more physical pages?
*/
if (!pmap_next_page(&paddr))
break;
i = pmap_page_index(paddr) - first_page;
/*
* Don't trust pmap_page_index()...
*/
if (
#if 0
i < 0 || /* can't happen, i is unsigned */
#endif
i >= vm_page_count)
panic("vm_page_bootstrap: bad i = 0x%x", i);
}
/*
* Make sure we have nice, round values.
*/
virtual_space_start = round_page(virtual_space_start);
virtual_space_end = trunc_page(virtual_space_end);
*startp = virtual_space_start;
*endp = virtual_space_end;
simple_lock_init(&vm_pages_needed_lock);
}
vaddr_t
vm_bootstrap_steal_memory(size)
vsize_t size;
{
vaddr_t addr, vaddr, paddr;
/*
* We round to page size.
*/
size = round_page(size);
/*
* If this is the first call to vm_bootstrap_steal_memory,
* we have to initialize ourself.
*/
if (virtual_space_start == virtual_space_end) {
pmap_virtual_space(&virtual_space_start, &virtual_space_end);
/*
* The initial values must be aligned properly, and
* we don't trust the pmap module to do it right.
*/
virtual_space_start = round_page(virtual_space_start);
virtual_space_end = trunc_page(virtual_space_end);
}
/*
* Allocate virtual memory for this request.
*/
addr = virtual_space_start;
virtual_space_start += size;
/*
* Allocate and map physical pages to back new virtual pages.
*/
for (vaddr = round_page(addr);
vaddr < addr + size;
vaddr += PAGE_SIZE) {
if (!pmap_next_page(&paddr))
panic("vm_bootstrap_steal_memory");
/*
* XXX Logically, these mappings should be wired,
* but some pmap modules barf if they are.
*/
pmap_enter(pmap_kernel(), vaddr, paddr,
VM_PROT_READ|VM_PROT_WRITE, FALSE);
}
return addr;
}
#else /* MACHINE_NONCONTIG */
/* OLD CONTIG CODE: NUKE NUKE NUKE ONCE CONVERTED */
1993-03-21 12:45:37 +03:00
/*
* vm_page_startup:
*
* Initializes the resident memory module.
*
* Allocates memory for the page cells, and
* for the object/offset-to-page hash table headers.
* Each page cell is initialized and placed on the free list.
*/
void
1994-05-23 07:11:20 +04:00
vm_page_startup(start, end)
vaddr_t *start;
vaddr_t *end;
1993-03-21 12:45:37 +03:00
{
register vm_page_t m;
register struct pglist *bucket;
int npages;
1993-03-21 12:45:37 +03:00
int i;
paddr_t pa;
extern vaddr_t kentry_data;
extern vsize_t kentry_data_size;
1993-03-21 12:45:37 +03:00
/*
* Initialize the locks
*/
simple_lock_init(&vm_page_queue_free_lock);
simple_lock_init(&vm_page_queue_lock);
/*
* Initialize the queue headers for the free queue,
* the active queue and the inactive queue.
*/
TAILQ_INIT(&vm_page_queue_free);
TAILQ_INIT(&vm_page_queue_active);
TAILQ_INIT(&vm_page_queue_inactive);
1993-03-21 12:45:37 +03:00
/*
1994-05-23 07:11:20 +04:00
* Calculate the number of hash table buckets.
1993-03-21 12:45:37 +03:00
*
* The number of buckets MUST BE a power of 2, and
* the actual value is the next power of 2 greater
* than the number of physical pages in the system.
*
* Note:
* This computation can be tweaked if desired.
*/
if (vm_page_bucket_count == 0) {
vm_page_bucket_count = 1;
1994-05-23 07:11:20 +04:00
while (vm_page_bucket_count < atop(*end - *start))
1993-03-21 12:45:37 +03:00
vm_page_bucket_count <<= 1;
}
vm_page_hash_mask = vm_page_bucket_count - 1;
/*
1994-05-23 07:11:20 +04:00
* Allocate (and initialize) the hash table buckets.
1993-03-21 12:45:37 +03:00
*/
1994-05-23 07:11:20 +04:00
vm_page_buckets = (struct pglist *)
pmap_bootstrap_alloc(vm_page_bucket_count * sizeof(struct pglist));
bucket = vm_page_buckets;
1994-05-23 07:11:20 +04:00
1993-03-21 12:45:37 +03:00
for (i = vm_page_bucket_count; i--;) {
TAILQ_INIT(bucket);
1993-03-21 12:45:37 +03:00
bucket++;
}
simple_lock_init(&bucket_lock);
/*
1994-05-23 07:11:20 +04:00
* Truncate the remainder of physical memory to our page size.
1993-03-21 12:45:37 +03:00
*/
1994-05-23 07:11:20 +04:00
*end = trunc_page(*end);
1993-03-21 12:45:37 +03:00
/*
* Pre-allocate maps and map entries that cannot be dynamically
* allocated via malloc(). The maps include the kernel_map and
* kmem_map which must be initialized before malloc() will
* work (obviously). Also could include pager maps which would
* be allocated before kmeminit.
*
* Allow some kernel map entries... this should be plenty
* since people shouldn't be cluttering up the kernel
* map (they should use their own maps).
*/
1994-05-23 07:11:20 +04:00
kentry_data_size = round_page(MAX_KMAP*sizeof(struct vm_map) +
MAX_KMAPENT*sizeof(struct vm_map_entry));
kentry_data = (vaddr_t) pmap_bootstrap_alloc(kentry_data_size);
1993-03-21 12:45:37 +03:00
/*
* Compute the number of pages of memory that will be
* available for use (taking into account the overhead
* of a page structure per page).
*/
cnt.v_free_count = vm_page_count =
(*end - *start + sizeof(struct vm_page)) /
(PAGE_SIZE + sizeof(struct vm_page));
1993-03-21 12:45:37 +03:00
/*
1994-05-23 07:11:20 +04:00
* Record the extent of physical memory that the
* virtual memory system manages.
1993-03-21 12:45:37 +03:00
*/
1994-05-23 07:11:20 +04:00
first_page = *start;
first_page += vm_page_count * sizeof(struct vm_page);
1993-03-21 12:45:37 +03:00
first_page = atop(round_page(first_page));
last_page = first_page + vm_page_count - 1;
1993-03-21 12:45:37 +03:00
first_phys_addr = ptoa(first_page);
last_phys_addr = ptoa(last_page) + PAGE_MASK;
1993-03-21 12:45:37 +03:00
/*
1994-05-23 07:11:20 +04:00
* Allocate and clear the mem entry structures.
1993-03-21 12:45:37 +03:00
*/
1994-05-23 07:11:20 +04:00
m = vm_page_array = (vm_page_t)
pmap_bootstrap_alloc(vm_page_count * sizeof(struct vm_page));
memset(vm_page_array, 0, vm_page_count * sizeof(struct vm_page));
1993-03-21 12:45:37 +03:00
/*
1994-05-23 07:11:20 +04:00
* Initialize the mem entry structures now, and
* put them in the free queue.
1993-03-21 12:45:37 +03:00
*/
pa = first_phys_addr;
npages = vm_page_count;
1993-03-21 12:45:37 +03:00
while (npages--) {
m->flags = PG_FREE;
1994-05-23 07:11:20 +04:00
m->object = NULL;
1993-03-21 12:45:37 +03:00
m->phys_addr = pa;
TAILQ_INSERT_TAIL(&vm_page_queue_free, m, pageq);
1993-03-21 12:45:37 +03:00
m++;
pa += PAGE_SIZE;
}
/*
* Initialize vm_pages_needed lock here - don't wait for pageout
* daemon XXX
*/
simple_lock_init(&vm_pages_needed_lock);
1994-05-23 07:11:20 +04:00
/* from now on, pmap_bootstrap_alloc can't be used */
vm_page_startup_initialized = TRUE;
1993-03-21 12:45:37 +03:00
}
#endif /* MACHINE_NONCONTIG */
1993-03-21 12:45:37 +03:00
/*
* vm_page_insert: [ internal use only ]
*
* Inserts the given mem entry into the object/object-page
* table and object list.
*
* The object and page must be locked.
*/
1994-01-08 07:02:36 +03:00
void
vm_page_insert(mem, object, offset)
1993-03-21 12:45:37 +03:00
register vm_page_t mem;
register vm_object_t object;
register vaddr_t offset;
1993-03-21 12:45:37 +03:00
{
register struct pglist *bucket;
1993-03-21 12:45:37 +03:00
int spl;
VM_PAGE_CHECK(mem);
1993-12-20 15:39:55 +03:00
if (mem->flags & PG_TABLED)
1993-03-21 12:45:37 +03:00
panic("vm_page_insert: already inserted");
/*
* Record the object/offset pair in this page
*/
mem->object = object;
mem->offset = offset;
/*
* Insert it into the object_object/offset hash table
*/
bucket = &vm_page_buckets[vm_page_hash(object, offset)];
spl = splimp();
simple_lock(&bucket_lock);
TAILQ_INSERT_TAIL(bucket, mem, hashq);
1993-03-21 12:45:37 +03:00
simple_unlock(&bucket_lock);
(void) splx(spl);
/*
* Now link into the object's list of backed pages.
*/
TAILQ_INSERT_TAIL(&object->memq, mem, listq);
1993-12-20 15:39:55 +03:00
mem->flags |= PG_TABLED;
1993-03-21 12:45:37 +03:00
/*
* And show that the object has one more resident
* page.
*/
object->resident_page_count++;
}
/*
* vm_page_remove: [ internal use only ]
1997-01-03 21:00:25 +03:00
* XXX: used by device pager as well
1993-03-21 12:45:37 +03:00
*
* Removes the given mem entry from the object/offset-page
* table and the object page list.
*
* The object and page must be locked.
*/
1994-01-08 07:02:36 +03:00
void
vm_page_remove(mem)
1993-03-21 12:45:37 +03:00
register vm_page_t mem;
{
register struct pglist *bucket;
1993-03-21 12:45:37 +03:00
int spl;
VM_PAGE_CHECK(mem);
#ifdef DIAGNOSTIC
if (mem->flags & PG_FAULTING)
panic("vm_page_remove: page is faulting");
#endif
1993-12-20 15:39:55 +03:00
if (!(mem->flags & PG_TABLED))
1993-03-21 12:45:37 +03:00
return;
/*
* Remove from the object_object/offset hash table
*/
bucket = &vm_page_buckets[vm_page_hash(mem->object, mem->offset)];
spl = splimp();
simple_lock(&bucket_lock);
TAILQ_REMOVE(bucket, mem, hashq);
1993-03-21 12:45:37 +03:00
simple_unlock(&bucket_lock);
(void) splx(spl);
/*
* Now remove from the object's list of backed pages.
*/
TAILQ_REMOVE(&mem->object->memq, mem, listq);
1993-03-21 12:45:37 +03:00
/*
* And show that the object has one fewer resident
* page.
*/
mem->object->resident_page_count--;
1993-12-20 15:39:55 +03:00
mem->flags &= ~PG_TABLED;
1993-03-21 12:45:37 +03:00
}
/*
* vm_page_lookup:
*
* Returns the page associated with the object/offset
* pair specified; if none is found, NULL is returned.
*
* The object must be locked. No side effects.
*/
1994-01-08 07:02:36 +03:00
vm_page_t
vm_page_lookup(object, offset)
1993-03-21 12:45:37 +03:00
register vm_object_t object;
register vaddr_t offset;
1993-03-21 12:45:37 +03:00
{
register vm_page_t mem;
register struct pglist *bucket;
1993-03-21 12:45:37 +03:00
int spl;
/*
* Search the hash table for this object/offset pair
*/
bucket = &vm_page_buckets[vm_page_hash(object, offset)];
spl = splimp();
simple_lock(&bucket_lock);
for (mem = bucket->tqh_first; mem != NULL; mem = mem->hashq.tqe_next) {
1993-03-21 12:45:37 +03:00
VM_PAGE_CHECK(mem);
if ((mem->object == object) && (mem->offset == offset)) {
simple_unlock(&bucket_lock);
splx(spl);
return(mem);
}
}
simple_unlock(&bucket_lock);
splx(spl);
return(NULL);
}
/*
* vm_page_rename:
*
* Move the given memory entry from its
* current object to the specified target object/offset.
*
* The object must be locked.
*/
1994-01-08 07:02:36 +03:00
void
vm_page_rename(mem, new_object, new_offset)
1993-03-21 12:45:37 +03:00
register vm_page_t mem;
register vm_object_t new_object;
vaddr_t new_offset;
1993-03-21 12:45:37 +03:00
{
1997-01-03 21:00:25 +03:00
1993-03-21 12:45:37 +03:00
if (mem->object == new_object)
return;
vm_page_lock_queues(); /* keep page from moving out from
1993-03-21 12:45:37 +03:00
under pageout daemon */
vm_page_remove(mem);
vm_page_insert(mem, new_object, new_offset);
vm_page_unlock_queues();
1993-03-21 12:45:37 +03:00
}
/*
* vm_page_alloc:
*
* Allocate and return a memory cell associated
* with this VM object/offset pair.
*
* Object must be locked.
*/
1994-01-08 07:02:36 +03:00
vm_page_t
vm_page_alloc(object, offset)
1993-03-21 12:45:37 +03:00
vm_object_t object;
vaddr_t offset;
1993-03-21 12:45:37 +03:00
{
register vm_page_t mem;
int spl;
spl = splimp(); /* XXX */
simple_lock(&vm_page_queue_free_lock);
mem = vm_page_queue_free.tqh_first;
if (VERY_LOW_MEM()) {
if ((!KERN_OBJ(object) && curproc != pageout_daemon)
|| mem == NULL) {
simple_unlock(&vm_page_queue_free_lock);
splx(spl);
return(NULL);
}
}
#ifdef DIAGNOSTIC
if (mem == NULL) /* because we now depend on VERY_LOW_MEM() */
panic("vm_page_alloc");
#endif
TAILQ_REMOVE(&vm_page_queue_free, mem, pageq);
1993-03-21 12:45:37 +03:00
cnt.v_free_count--;
1993-03-21 12:45:37 +03:00
simple_unlock(&vm_page_queue_free_lock);
splx(spl);
1993-12-20 15:39:55 +03:00
VM_PAGE_INIT(mem, object, offset);
1993-03-21 12:45:37 +03:00
/*
* Decide if we should poke the pageout daemon.
* We do this if the free count is less than the low
* water mark, or if the free count is less than the high
* water mark (but above the low water mark) and the inactive
* count is less than its target.
*
* We don't have the counts locked ... if they change a little,
* it doesn't really matter.
*/
1994-05-23 07:11:20 +04:00
if (cnt.v_free_count < cnt.v_free_min ||
(cnt.v_free_count < cnt.v_free_target &&
cnt.v_inactive_count < cnt.v_inactive_target))
thread_wakeup(&vm_pages_needed);
1994-05-23 07:11:20 +04:00
return (mem);
1993-03-21 12:45:37 +03:00
}
/*
* vm_page_free:
*
* Returns the given page to the free list,
* disassociating it with any VM object.
*
* Object and page must be locked prior to entry.
*/
1994-01-08 07:02:36 +03:00
void
vm_page_free(mem)
1993-03-21 12:45:37 +03:00
register vm_page_t mem;
{
1997-01-03 21:00:25 +03:00
1993-03-21 12:45:37 +03:00
vm_page_remove(mem);
vm_page_free1(mem);
}
/*
* vm_page_alloc1:
*
* Allocate and return a memory cell with no associated object.
*/
vm_page_t
vm_page_alloc1()
{
vm_page_t mem;
int spl;
spl = splimp();
simple_lock(&vm_page_queue_free_lock);
if (vm_page_queue_free.tqh_first == NULL) {
simple_unlock(&vm_page_queue_free_lock);
splx(spl);
return (NULL);
}
mem = vm_page_queue_free.tqh_first;
TAILQ_REMOVE(&vm_page_queue_free, mem, pageq);
cnt.v_free_count--;
simple_unlock(&vm_page_queue_free_lock);
splx(spl);
mem->flags = PG_BUSY | PG_CLEAN | PG_FAKE;
mem->wire_count = 0;
/*
* Decide if we should poke the pageout daemon.
* We do this if the free count is less than the low
* water mark, or if the free count is less than the high
* water mark (but above the low water mark) and the inactive
* count is less than its target.
*
* We don't have the counts locked ... if they change a little,
* it doesn't really matter.
*/
if (cnt.v_free_count < cnt.v_free_min ||
(cnt.v_free_count < cnt.v_free_target &&
cnt.v_inactive_count < cnt.v_inactive_target))
thread_wakeup((void *)&vm_pages_needed);
return (mem);
}
/*
* vm_page_free1:
*
* Returns the given page to the free list.
*
* The page must already be disassociated with
* any objects.
*/
void
vm_page_free1(mem)
vm_page_t mem;
{
1993-12-20 15:39:55 +03:00
if (mem->flags & PG_ACTIVE) {
TAILQ_REMOVE(&vm_page_queue_active, mem, pageq);
1993-12-20 15:39:55 +03:00
mem->flags &= ~PG_ACTIVE;
cnt.v_active_count--;
1993-03-21 12:45:37 +03:00
}
1994-05-23 07:11:20 +04:00
1993-12-20 15:39:55 +03:00
if (mem->flags & PG_INACTIVE) {
TAILQ_REMOVE(&vm_page_queue_inactive, mem, pageq);
1993-12-20 15:39:55 +03:00
mem->flags &= ~PG_INACTIVE;
cnt.v_inactive_count--;
1993-03-21 12:45:37 +03:00
}
1993-12-20 15:39:55 +03:00
if (!(mem->flags & PG_FICTITIOUS)) {
1993-03-21 12:45:37 +03:00
int spl;
spl = splimp();
simple_lock(&vm_page_queue_free_lock);
mem->flags |= PG_FREE;
TAILQ_INSERT_TAIL(&vm_page_queue_free, mem, pageq);
1993-03-21 12:45:37 +03:00
cnt.v_free_count++;
1993-03-21 12:45:37 +03:00
simple_unlock(&vm_page_queue_free_lock);
splx(spl);
}
}
/*
* vm_page_wire:
*
* Mark this page as wired down by yet
* another map, removing it from paging queues
* as necessary.
*
* The page queues must be locked.
*/
1994-01-08 07:02:36 +03:00
void
vm_page_wire(mem)
1993-03-21 12:45:37 +03:00
register vm_page_t mem;
{
1997-01-03 21:00:25 +03:00
1993-03-21 12:45:37 +03:00
VM_PAGE_CHECK(mem);
if (mem->wire_count == 0) {
1993-12-20 15:39:55 +03:00
if (mem->flags & PG_ACTIVE) {
TAILQ_REMOVE(&vm_page_queue_active, mem, pageq);
cnt.v_active_count--;
1993-12-20 15:39:55 +03:00
mem->flags &= ~PG_ACTIVE;
1993-03-21 12:45:37 +03:00
}
1993-12-20 15:39:55 +03:00
if (mem->flags & PG_INACTIVE) {
TAILQ_REMOVE(&vm_page_queue_inactive, mem, pageq);
cnt.v_inactive_count--;
1993-12-20 15:39:55 +03:00
mem->flags &= ~PG_INACTIVE;
1993-03-21 12:45:37 +03:00
}
cnt.v_wire_count++;
1993-03-21 12:45:37 +03:00
}
mem->wire_count++;
}
/*
* vm_page_unwire:
*
* Release one wiring of this page, potentially
* enabling it to be paged again.
*
* The page queues must be locked.
*/
1994-01-08 07:02:36 +03:00
void
vm_page_unwire(mem)
1993-03-21 12:45:37 +03:00
register vm_page_t mem;
{
1997-01-03 21:00:25 +03:00
1993-03-21 12:45:37 +03:00
VM_PAGE_CHECK(mem);
mem->wire_count--;
if (mem->wire_count == 0) {
TAILQ_INSERT_TAIL(&vm_page_queue_active, mem, pageq);
cnt.v_active_count++;
1993-12-20 15:39:55 +03:00
mem->flags |= PG_ACTIVE;
cnt.v_wire_count--;
1993-03-21 12:45:37 +03:00
}
}
/*
* vm_page_deactivate:
*
* Returns the given page to the inactive list,
* indicating that no physical maps have access
* to this page. [Used by the physical mapping system.]
*
* The page queues must be locked.
*/
1994-01-08 07:02:36 +03:00
void
vm_page_deactivate(m)
1993-03-21 12:45:37 +03:00
register vm_page_t m;
{
1997-01-03 21:00:25 +03:00
1993-03-21 12:45:37 +03:00
VM_PAGE_CHECK(m);
/*
* Only move active pages -- ignore locked or already
* inactive ones.
*/
1994-05-23 07:11:20 +04:00
if (m->flags & PG_ACTIVE) {
TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
m->flags &= ~PG_ACTIVE;
cnt.v_active_count--;
goto deact;
}
if ((m->flags & PG_INACTIVE) == 0) {
deact:
TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
m->flags |= PG_INACTIVE;
cnt.v_inactive_count++;
pmap_clear_reference(VM_PAGE_TO_PHYS(m));
1993-03-21 12:45:37 +03:00
if (pmap_is_modified(VM_PAGE_TO_PHYS(m)))
1993-12-20 15:39:55 +03:00
m->flags &= ~PG_CLEAN;
if (m->flags & PG_CLEAN)
m->flags &= ~PG_LAUNDRY;
else
m->flags |= PG_LAUNDRY;
1993-03-21 12:45:37 +03:00
}
}
/*
* vm_page_activate:
*
* Put the specified page on the active list (if appropriate).
*
* The page queues must be locked.
*/
1994-01-08 07:02:36 +03:00
void
vm_page_activate(m)
1993-03-21 12:45:37 +03:00
register vm_page_t m;
{
1997-01-03 21:00:25 +03:00
1993-03-21 12:45:37 +03:00
VM_PAGE_CHECK(m);
1993-12-20 15:39:55 +03:00
if (m->flags & PG_INACTIVE) {
TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
1993-12-20 15:39:55 +03:00
m->flags &= ~PG_INACTIVE;
cnt.v_inactive_count--;
1993-03-21 12:45:37 +03:00
}
if (m->wire_count == 0) {
1993-12-20 15:39:55 +03:00
if (m->flags & PG_ACTIVE)
1993-03-21 12:45:37 +03:00
panic("vm_page_activate: already active");
TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
1993-12-20 15:39:55 +03:00
m->flags |= PG_ACTIVE;
cnt.v_active_count++;
1993-03-21 12:45:37 +03:00
}
}
/*
* vm_page_zero_fill:
*
* Zero-fill the specified page.
* Written as a standard pagein routine, to
* be used by the zero-fill object.
*/
1994-01-08 07:02:36 +03:00
boolean_t
vm_page_zero_fill(m)
1993-03-21 12:45:37 +03:00
vm_page_t m;
{
1997-01-03 21:00:25 +03:00
1993-03-21 12:45:37 +03:00
VM_PAGE_CHECK(m);
1994-05-23 07:11:20 +04:00
m->flags &= ~PG_CLEAN;
1993-03-21 12:45:37 +03:00
pmap_zero_page(VM_PAGE_TO_PHYS(m));
return(TRUE);
}
/*
* vm_page_copy:
*
* Copy one page to another
*/
1994-01-08 07:02:36 +03:00
void
vm_page_copy(src_m, dest_m)
1993-03-21 12:45:37 +03:00
vm_page_t src_m;
vm_page_t dest_m;
{
1997-01-03 21:00:25 +03:00
1993-03-21 12:45:37 +03:00
VM_PAGE_CHECK(src_m);
VM_PAGE_CHECK(dest_m);
1994-05-23 07:11:20 +04:00
dest_m->flags &= ~PG_CLEAN;
1993-03-21 12:45:37 +03:00
pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m));
}
#ifdef VM_PAGE_ALLOC_MEMORY_STATS
#define STAT_INCR(v) (v)++
#define STAT_DECR(v) do { \
if ((v) == 0) \
printf("%s:%d -- Already 0!\n", __FILE__, __LINE__); \
else \
(v)--; \
} while (0)
u_long vm_page_alloc_memory_npages;
#else
#define STAT_INCR(v)
#define STAT_DECR(v)
#endif
/*
* vm_page_alloc_memory:
*
* Allocate physical pages conforming to the restrictions
* provided:
*
* size The size of the allocation,
* rounded to page size.
*
* low The low address of the allowed
* allocation range.
*
* high The high address of the allowed
* allocation range.
*
* alignment Allocation must be aligned to this
* power-of-two boundary.
*
* boundary No segment in the allocation may
* cross this power-of-two boundary
* (relative to zero).
*
* The allocated pages are placed at the tail of `rlist'; `rlist'
* is assumed to be properly initialized by the caller. The
* number of memory segments that the allocated memory may
* occupy is specified in the `nsegs' arguement.
*
* Returns 0 on success or an errno value to indicate mode
* of failure.
*
* XXX This implementation could be improved. It only
* XXX allocates a single segment.
*/
int
vm_page_alloc_memory(size, low, high, alignment, boundary,
rlist, nsegs, waitok)
vsize_t size;
vaddr_t low, high, alignment, boundary;
struct pglist *rlist;
int nsegs, waitok;
{
paddr_t try, idxpa, lastidxpa;
#if defined(MACHINE_NEW_NONCONTIG)
int psi;
struct vm_page *vm_page_array;
#endif
int s, tryidx, idx, end, error;
vm_page_t m;
u_long pagemask;
#ifdef DEBUG
vm_page_t tp;
#endif
#ifdef DIAGNOSTIC
if ((alignment & (alignment - 1)) != 0)
panic("vm_page_alloc_memory: alignment must be power of 2");
if ((boundary & (boundary - 1)) != 0)
panic("vm_page_alloc_memory: boundary must be power of 2");
#endif
/*
* Our allocations are always page granularity, so our alignment
* must be, too.
*/
if (alignment < PAGE_SIZE)
alignment = PAGE_SIZE;
size = round_page(size);
try = roundup(low, alignment);
if (boundary != 0 && boundary < size)
return (EINVAL);
pagemask = ~(boundary - 1);
/* Default to "lose". */
error = ENOMEM;
/*
* Block all memory allocation and lock the free list.
*/
s = splimp();
simple_lock(&vm_page_queue_free_lock);
/* Are there even any free pages? */
if (vm_page_queue_free.tqh_first == NULL)
goto out;
for (;; try += alignment) {
if (try + size > high) {
/*
* We've run past the allowable range.
*/
goto out;
}
/*
* Make sure this is a managed physical page.
*/
#if defined(MACHINE_NEW_NONCONTIG)
if ((psi = vm_physseg_find(atop(try), &idx)) == -1)
continue; /* managed? */
if (vm_physseg_find(atop(try + size), NULL) != psi)
continue; /* end must be in this segment */
tryidx = idx;
end = idx + (size / PAGE_SIZE);
vm_page_array = vm_physmem[psi].pgs;
/* XXX: emulates old global vm_page_array */
#else
if (IS_VM_PHYSADDR(try) == 0)
continue;
tryidx = idx = VM_PAGE_INDEX(try);
end = idx + (size / PAGE_SIZE);
if (end > vm_page_count) {
/*
* No more physical memory.
*/
goto out;
}
#endif
/*
* Found a suitable starting page. See of the range
* is free.
*/
for (; idx < end; idx++) {
if (VM_PAGE_IS_FREE(&vm_page_array[idx]) == 0) {
/*
* Page not available.
*/
break;
}
idxpa = VM_PAGE_TO_PHYS(&vm_page_array[idx]);
#if !defined(MACHINE_NEW_NONCONTIG)
/*
* Make sure this is a managed physical page.
* XXX Necessary? I guess only if there
* XXX are holes in the vm_page_array[].
*/
if (IS_VM_PHYSADDR(idxpa) == 0)
break;
#endif
if (idx > tryidx) {
lastidxpa =
VM_PAGE_TO_PHYS(&vm_page_array[idx - 1]);
if ((lastidxpa + PAGE_SIZE) != idxpa) {
/*
* Region not contiguous.
*/
break;
}
if (boundary != 0 &&
((lastidxpa ^ idxpa) & pagemask) != 0) {
/*
* Region crosses boundary.
*/
break;
}
}
}
if (idx == end) {
/*
* Woo hoo! Found one.
*/
break;
}
}
/*
* Okay, we have a chunk of memory that conforms to
* the requested constraints.
*/
idx = tryidx;
while (idx < end) {
m = &vm_page_array[idx];
#ifdef DEBUG
for (tp = vm_page_queue_free.tqh_first; tp != NULL;
tp = tp->pageq.tqe_next) {
if (tp == m)
break;
}
if (tp == NULL)
panic("vm_page_alloc_memory: page not on freelist");
#endif
TAILQ_REMOVE(&vm_page_queue_free, m, pageq);
cnt.v_free_count--;
m->flags = PG_CLEAN;
m->object = NULL;
m->wire_count = 0;
TAILQ_INSERT_TAIL(rlist, m, pageq);
idx++;
STAT_INCR(vm_page_alloc_memory_npages);
}
error = 0;
out:
simple_unlock(&vm_page_queue_free_lock);
splx(s);
return (error);
}
/*
* vm_page_free_memory:
*
* Free a list of pages previously allocated by vm_page_alloc_memory().
* The pages are assumed to have no mappings.
*/
void
vm_page_free_memory(list)
struct pglist *list;
{
vm_page_t m;
int s;
/*
* Block all memory allocation and lock the free list.
*/
s = splimp();
simple_lock(&vm_page_queue_free_lock);
while ((m = list->tqh_first) != NULL) {
TAILQ_REMOVE(list, m, pageq);
m->flags = PG_FREE;
TAILQ_INSERT_TAIL(&vm_page_queue_free, m, pageq);
cnt.v_free_count++;
STAT_DECR(vm_page_alloc_memory_npages);
}
simple_unlock(&vm_page_queue_free_lock);
splx(s);
}