NetBSD/sys/uvm/pmap/pmap.c

1880 lines
50 KiB
C
Raw Normal View History

/* $NetBSD: pmap.c,v 1.3 2013/07/22 03:40:36 matt Exp $ */
2012-10-03 04:51:45 +04:00
/*-
* Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center and by Chris G. Demetriou.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department and Ralph Campbell.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)pmap.c 8.4 (Berkeley) 1/26/94
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.3 2013/07/22 03:40:36 matt Exp $");
2012-10-03 04:51:45 +04:00
/*
* Manages physical address maps.
*
* In addition to hardware address maps, this
* module is called upon to provide software-use-only
* maps which may or may not be stored in the same
* form as hardware maps. These pseudo-maps are
* used to store intermediate results from copy
* operations to and from address spaces.
*
* Since the information managed by this module is
* also stored by the logical address mapping module,
* this module may throw away valid virtual-to-physical
* mappings at almost any time. However, invalidations
* of virtual-to-physical mappings must be done as
* requested.
*
* In order to cope with hardware architectures which
* make virtual-to-physical map invalidates expensive,
* this module may delay invalidate or reduced protection
* operations until such time as they are actually
* necessary. This module is given full information as
* to which processors are currently using which maps,
* and to when physical maps must be made correct.
*/
#include "opt_modular.h"
#include "opt_multiprocessor.h"
#include "opt_sysv.h"
#define __PMAP_PRIVATE
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/buf.h>
#include <sys/pool.h>
#include <sys/atomic.h>
#include <sys/mutex.h>
#include <sys/atomic.h>
#ifdef SYSVSHM
#include <sys/shm.h>
#endif
#include <sys/socketvar.h> /* XXX: for sock_loan_thresh */
#include <uvm/uvm.h>
#define PMAP_COUNT(name) (pmap_evcnt_##name.ev_count++ + 0)
#define PMAP_COUNTER(name, desc) \
static struct evcnt pmap_evcnt_##name = \
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", desc); \
EVCNT_ATTACH_STATIC(pmap_evcnt_##name)
PMAP_COUNTER(remove_kernel_calls, "remove kernel calls");
PMAP_COUNTER(remove_kernel_pages, "kernel pages unmapped");
PMAP_COUNTER(remove_user_calls, "remove user calls");
PMAP_COUNTER(remove_user_pages, "user pages unmapped");
PMAP_COUNTER(remove_flushes, "remove cache flushes");
PMAP_COUNTER(remove_tlb_ops, "remove tlb ops");
PMAP_COUNTER(remove_pvfirst, "remove pv first");
PMAP_COUNTER(remove_pvsearch, "remove pv search");
PMAP_COUNTER(prefer_requests, "prefer requests");
PMAP_COUNTER(prefer_adjustments, "prefer adjustments");
PMAP_COUNTER(idlezeroed_pages, "pages idle zeroed");
PMAP_COUNTER(zeroed_pages, "pages zeroed");
PMAP_COUNTER(copied_pages, "pages copied");
PMAP_COUNTER(kenter_pa, "kernel fast mapped pages");
PMAP_COUNTER(kenter_pa_bad, "kernel fast mapped pages (bad color)");
PMAP_COUNTER(kenter_pa_unmanaged, "kernel fast mapped unmanaged pages");
PMAP_COUNTER(kremove_pages, "kernel fast unmapped pages");
PMAP_COUNTER(page_cache_evictions, "pages changed to uncacheable");
PMAP_COUNTER(page_cache_restorations, "pages changed to cacheable");
PMAP_COUNTER(kernel_mappings_bad, "kernel pages mapped (bad color)");
PMAP_COUNTER(user_mappings_bad, "user pages mapped (bad color)");
PMAP_COUNTER(kernel_mappings, "kernel pages mapped");
PMAP_COUNTER(user_mappings, "user pages mapped");
PMAP_COUNTER(user_mappings_changed, "user mapping changed");
PMAP_COUNTER(kernel_mappings_changed, "kernel mapping changed");
PMAP_COUNTER(uncached_mappings, "uncached pages mapped");
PMAP_COUNTER(unmanaged_mappings, "unmanaged pages mapped");
PMAP_COUNTER(managed_mappings, "managed pages mapped");
PMAP_COUNTER(mappings, "pages mapped");
PMAP_COUNTER(remappings, "pages remapped");
PMAP_COUNTER(unmappings, "pages unmapped");
PMAP_COUNTER(primary_mappings, "page initial mappings");
PMAP_COUNTER(primary_unmappings, "page final unmappings");
PMAP_COUNTER(tlb_hit, "page mapping");
PMAP_COUNTER(exec_mappings, "exec pages mapped");
PMAP_COUNTER(exec_synced_mappings, "exec pages synced");
PMAP_COUNTER(exec_synced_remove, "exec pages synced (PR)");
PMAP_COUNTER(exec_synced_clear_modify, "exec pages synced (CM)");
PMAP_COUNTER(exec_synced_page_protect, "exec pages synced (PP)");
PMAP_COUNTER(exec_synced_protect, "exec pages synced (P)");
PMAP_COUNTER(exec_uncached_page_protect, "exec pages uncached (PP)");
PMAP_COUNTER(exec_uncached_clear_modify, "exec pages uncached (CM)");
PMAP_COUNTER(exec_uncached_zero_page, "exec pages uncached (ZP)");
PMAP_COUNTER(exec_uncached_copy_page, "exec pages uncached (CP)");
PMAP_COUNTER(exec_uncached_remove, "exec pages uncached (PR)");
PMAP_COUNTER(create, "creates");
PMAP_COUNTER(reference, "references");
PMAP_COUNTER(dereference, "dereferences");
PMAP_COUNTER(destroy, "destroyed");
PMAP_COUNTER(activate, "activations");
PMAP_COUNTER(deactivate, "deactivations");
PMAP_COUNTER(update, "updates");
#ifdef MULTIPROCESSOR
PMAP_COUNTER(shootdown_ipis, "shootdown IPIs");
#endif
PMAP_COUNTER(unwire, "unwires");
PMAP_COUNTER(copy, "copies");
PMAP_COUNTER(clear_modify, "clear_modifies");
PMAP_COUNTER(protect, "protects");
PMAP_COUNTER(page_protect, "page_protects");
#define PMAP_ASID_RESERVED 0
CTASSERT(PMAP_ASID_RESERVED == 0);
/*
* Initialize the kernel pmap.
*/
#ifdef MULTIPROCESSOR
#define PMAP_SIZE offsetof(struct pmap, pm_pai[MAXCPUS])
#else
#define PMAP_SIZE sizeof(struct pmap)
kmutex_t pmap_pvlist_mutex __aligned(COHERENCY_UNIT);
#endif
struct pmap_kernel kernel_pmap_store = {
.kernel_pmap = {
.pm_count = 1,
.pm_segtab = PMAP_INVALID_SEGTAB_ADDRESS,
.pm_minaddr = VM_MIN_KERNEL_ADDRESS,
.pm_maxaddr = VM_MAX_KERNEL_ADDRESS,
},
};
struct pmap * const kernel_pmap_ptr = &kernel_pmap_store.kernel_pmap;
struct pmap_limits pmap_limits;
#ifdef UVMHIST
static struct kern_history_ent pmapexechistbuf[10000];
static struct kern_history_ent pmaphistbuf[10000];
#endif
/*
* The pools from which pmap structures and sub-structures are allocated.
*/
struct pool pmap_pmap_pool;
struct pool pmap_pv_pool;
#ifndef PMAP_PV_LOWAT
#define PMAP_PV_LOWAT 16
#endif
int pmap_pv_lowat = PMAP_PV_LOWAT;
bool pmap_initialized = false;
#define PMAP_PAGE_COLOROK_P(a, b) \
((((int)(a) ^ (int)(b)) & pmap_page_colormask) == 0)
u_int pmap_page_colormask;
#define PAGE_IS_MANAGED(pa) \
(pmap_initialized == true && vm_physseg_find(atop(pa), NULL) != -1)
#define PMAP_IS_ACTIVE(pm) \
((pm) == pmap_kernel() || \
(pm) == curlwp->l_proc->p_vmspace->vm_map.pmap)
/* Forward function declarations */
void pmap_remove_pv(pmap_t, vaddr_t, struct vm_page *, bool);
void pmap_enter_pv(pmap_t, vaddr_t, struct vm_page *, u_int *);
/*
* PV table management functions.
*/
void *pmap_pv_page_alloc(struct pool *, int);
void pmap_pv_page_free(struct pool *, void *);
struct pool_allocator pmap_pv_page_allocator = {
pmap_pv_page_alloc, pmap_pv_page_free, 0,
};
#define pmap_pv_alloc() pool_get(&pmap_pv_pool, PR_NOWAIT)
#define pmap_pv_free(pv) pool_put(&pmap_pv_pool, (pv))
/*
* Misc. functions.
*/
bool
pmap_page_clear_attributes(struct vm_page_md *mdpg, u_int clear_attributes)
{
volatile u_int * const attrp = &mdpg->mdpg_attrs;
#ifdef MULTIPROCESSOR
for (;;) {
u_int old_attr = *attrp;
if ((old_attr & clear_attributes) == 0)
return false;
u_int new_attr = old_attr & ~clear_attributes;
if (old_attr == atomic_cas_uint(attrp, old_attr, new_attr))
return true;
}
#else
u_int old_attr = *attrp;
if ((old_attr & clear_attributes) == 0)
return false;
*attrp &= ~clear_attributes;
return true;
#endif
}
void
pmap_page_set_attributes(struct vm_page_md *mdpg, u_int set_attributes)
{
#ifdef MULTIPROCESSOR
atomic_or_uint(&mdpg->mdpg_attrs, set_attributes);
#else
mdpg->mdpg_attrs |= set_attributes;
#endif
}
static void
pmap_page_syncicache(struct vm_page *pg)
{
#ifndef MULTIPROCESSOR
struct pmap * const curpmap = curcpu()->ci_curpm;
#endif
struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
pv_entry_t pv = &mdpg->mdpg_first;
kcpuset_t *onproc;
#ifdef MULTIPROCESSOR
kcpuset_create(&onproc, true);
#else
onproc = NULL;
#endif
2012-10-03 04:51:45 +04:00
(void)VM_PAGEMD_PVLIST_LOCK(mdpg, false);
2012-10-03 04:51:45 +04:00
if (pv->pv_pmap != NULL) {
for (; pv != NULL; pv = pv->pv_next) {
#ifdef MULTIPROCESSOR
kcpuset_merge(onproc, pv->pv_pmap->pm_onproc);
if (kcpuset_match(onproc, kcpuset_running)) {
2012-10-03 04:51:45 +04:00
break;
}
#else
if (pv->pv_pmap == curpmap) {
onproc = curcpu()->ci_data.cpu_kcpuset;
2012-10-03 04:51:45 +04:00
break;
}
#endif
}
}
VM_PAGEMD_PVLIST_UNLOCK(mdpg);
kpreempt_disable();
pmap_md_page_syncicache(pg, onproc);
#ifdef MULTIPROCESSOR
kcpuset_destroy(onproc);
#endif
2012-10-03 04:51:45 +04:00
kpreempt_enable();
}
/*
* Define the initial bounds of the kernel virtual address space.
*/
void
pmap_virtual_space(vaddr_t *vstartp, vaddr_t *vendp)
{
*vstartp = VM_MIN_KERNEL_ADDRESS;
*vendp = VM_MAX_KERNEL_ADDRESS;
}
vaddr_t
pmap_growkernel(vaddr_t maxkvaddr)
{
vaddr_t virtual_end = pmap_limits.virtual_end;
maxkvaddr = pmap_round_seg(maxkvaddr) - 1;
/*
* Reserve PTEs for the new KVA space.
*/
for (; virtual_end < maxkvaddr; virtual_end += NBSEG) {
pmap_pte_reserve(pmap_kernel(), virtual_end, 0);
}
/*
* Don't exceed VM_MAX_KERNEL_ADDRESS!
*/
if (virtual_end == 0 || virtual_end > VM_MAX_KERNEL_ADDRESS)
virtual_end = VM_MAX_KERNEL_ADDRESS;
/*
* Update new end.
*/
pmap_limits.virtual_end = virtual_end;
return virtual_end;
}
/*
* Bootstrap memory allocator (alternative to vm_bootstrap_steal_memory()).
* This function allows for early dynamic memory allocation until the virtual
* memory system has been bootstrapped. After that point, either kmem_alloc
* or malloc should be used. This function works by stealing pages from the
* (to be) managed page pool, then implicitly mapping the pages (by using
* their k0seg addresses) and zeroing them.
*
* It may be used once the physical memory segments have been pre-loaded
* into the vm_physmem[] array. Early memory allocation MUST use this
* interface! This cannot be used after vm_page_startup(), and will
* generate a panic if tried.
*
* Note that this memory will never be freed, and in essence it is wired
* down.
*
* We must adjust *vstartp and/or *vendp iff we use address space
* from the kernel virtual address range defined by pmap_virtual_space().
*/
vaddr_t
pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
{
u_int npgs;
paddr_t pa;
vaddr_t va;
size = round_page(size);
npgs = atop(size);
for (u_int bank = 0; bank < vm_nphysseg; bank++) {
struct vm_physseg * const seg = VM_PHYSMEM_PTR(bank);
if (uvm.page_init_done == true)
panic("pmap_steal_memory: called _after_ bootstrap");
if (seg->avail_start != seg->start ||
seg->avail_start >= seg->avail_end)
continue;
if ((seg->avail_end - seg->avail_start) < npgs)
continue;
/*
* There are enough pages here; steal them!
*/
pa = ptoa(seg->avail_start);
seg->avail_start += npgs;
seg->start += npgs;
/*
* Have we used up this segment?
*/
if (seg->avail_start == seg->end) {
if (vm_nphysseg == 1)
panic("pmap_steal_memory: out of memory!");
/* Remove this segment from the list. */
vm_nphysseg--;
if (bank < vm_nphysseg)
memmove(seg, seg+1,
sizeof(*seg) * (vm_nphysseg - bank));
}
va = pmap_md_map_poolpage(pa, size);
memset((void *)va, 0, size);
return va;
}
/*
* If we got here, there was no memory left.
*/
panic("pmap_steal_memory: no memory to steal");
}
/*
* Initialize the pmap module.
* Called by vm_init, to initialize any structures that the pmap
* system needs to map virtual memory.
*/
void
pmap_init(void)
{
UVMHIST_INIT_STATIC(pmapexechist, pmapexechistbuf);
UVMHIST_INIT_STATIC(pmaphist, pmaphistbuf);
UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
/*
* Initialize the segtab lock.
*/
mutex_init(&pmap_segtab_lock, MUTEX_DEFAULT, IPL_HIGH);
/*
* Set a low water mark on the pv_entry pool, so that we are
* more likely to have these around even in extreme memory
* starvation.
*/
pool_setlowat(&pmap_pv_pool, pmap_pv_lowat);
pmap_md_init();
/*
* Now it is safe to enable pv entry recording.
*/
pmap_initialized = true;
}
/*
* Create and return a physical map.
*
* If the size specified for the map
* is zero, the map is an actual physical
* map, and may be referenced by the
* hardware.
*
* If the size specified is non-zero,
* the map will be used in software only, and
* is bounded by that size.
*/
pmap_t
pmap_create(void)
{
pmap_t pmap;
UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
PMAP_COUNT(create);
pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
memset(pmap, 0, PMAP_SIZE);
KASSERT(pmap->pm_pai[0].pai_link.le_prev == NULL);
pmap->pm_count = 1;
pmap->pm_minaddr = VM_MIN_ADDRESS;
pmap->pm_maxaddr = VM_MAXUSER_ADDRESS;
pmap_segtab_init(pmap);
UVMHIST_LOG(pmaphist, "<- pmap %p", pmap,0,0,0);
return pmap;
}
/*
* Retire the given physical map from service.
* Should only be called if the map contains
* no valid mappings.
*/
void
pmap_destroy(pmap_t pmap)
{
UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
UVMHIST_LOG(pmaphist, "(pmap=%p)", pmap, 0,0,0);
if (atomic_dec_uint_nv(&pmap->pm_count) > 0) {
PMAP_COUNT(dereference);
return;
}
KASSERT(pmap->pm_count == 0);
PMAP_COUNT(destroy);
kpreempt_disable();
pmap_tlb_asid_release_all(pmap);
pmap_segtab_destroy(pmap, NULL, 0);
pool_put(&pmap_pmap_pool, pmap);
kpreempt_enable();
UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
}
/*
* Add a reference to the specified pmap.
*/
void
pmap_reference(pmap_t pmap)
{
UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
UVMHIST_LOG(pmaphist, "(pmap=%p)", pmap, 0,0,0);
PMAP_COUNT(reference);
if (pmap != NULL) {
atomic_inc_uint(&pmap->pm_count);
}
UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
}
/*
* Make a new pmap (vmspace) active for the given process.
*/
void
pmap_activate(struct lwp *l)
{
pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
UVMHIST_LOG(pmaphist, "(l=%p (pmap=%p))", l, pmap, 0,0);
PMAP_COUNT(activate);
kpreempt_disable();
pmap_tlb_asid_acquire(pmap, l);
if (l == curlwp) {
pmap_segtab_activate(pmap, l);
}
kpreempt_enable();
UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
}
/*
* Make a previously active pmap (vmspace) inactive.
*/
void
pmap_deactivate(struct lwp *l)
{
pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
UVMHIST_LOG(pmaphist, "(l=%p (pmap=%p))", l, pmap, 0,0);
PMAP_COUNT(deactivate);
kpreempt_disable();
curcpu()->ci_pmap_user_segtab = PMAP_INVALID_SEGTAB_ADDRESS;
pmap_tlb_asid_deactivate(pmap);
kpreempt_enable();
UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
}
void
pmap_update(struct pmap *pmap)
{
UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
UVMHIST_LOG(pmaphist, "(pmap=%p)", pmap, 0,0,0);
PMAP_COUNT(update);
kpreempt_disable();
#if defined(MULTIPROCESSOR) && defined(PMAP_NEED_TLB_SHOOTDOWN)
u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
if (pending && pmap_tlb_shootdown_bystanders(pmap))
PMAP_COUNT(shootdown_ipis);
#endif
#ifdef DEBUG
pmap_tlb_check(pmap, pmap_md_tlb_check_entry);
#endif /* DEBUG */
/*
* If pmap_remove_all was called, we deactivated ourselves and nuked
* our ASID. Now we have to reactivate ourselves.
*/
if (__predict_false(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE)) {
pmap->pm_flags ^= PMAP_DEFERRED_ACTIVATE;
pmap_tlb_asid_acquire(pmap, curlwp);
pmap_segtab_activate(pmap, curlwp);
}
kpreempt_enable();
UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
}
/*
* Remove the given range of addresses from the specified map.
*
* It is assumed that the start and end are properly
* rounded to the page size.
*/
static bool
pmap_pte_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
uintptr_t flags)
{
const pt_entry_t npte = flags;
const bool is_kernel_pmap_p = (pmap == pmap_kernel());
UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
UVMHIST_LOG(pmaphist, "(pmap=%p %sva=%"PRIxVADDR"..%"PRIxVADDR,
pmap, (is_kernel_pmap_p ? "(kernel) " : ""), sva, eva);
UVMHIST_LOG(pmaphist, "ptep=%p, flags(npte)=%#"PRIxPTR")",
ptep, flags, 0, 0);
KASSERT(kpreempt_disabled());
for (; sva < eva; sva += NBPG, ptep++) {
pt_entry_t pt_entry = *ptep;
if (!pte_valid_p(pt_entry))
continue;
if (is_kernel_pmap_p)
PMAP_COUNT(remove_kernel_calls);
else
PMAP_COUNT(remove_user_pages);
if (pte_wired_p(pt_entry))
pmap->pm_stats.wired_count--;
pmap->pm_stats.resident_count--;
struct vm_page *pg = PHYS_TO_VM_PAGE(pte_to_paddr(pt_entry));
if (__predict_true(pg != NULL)) {
pmap_remove_pv(pmap, sva, pg,
pte_modified_p(pt_entry));
}
*ptep = npte;
/*
* Flush the TLB for the given address.
*/
pmap_tlb_invalidate_addr(pmap, sva);
}
return false;
}
void
pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
{
const bool is_kernel_pmap_p = (pmap == pmap_kernel());
const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
UVMHIST_LOG(pmaphist, "(pmap=%p, va=%#"PRIxVADDR"..%#"PRIxVADDR")",
pmap, sva, eva, 0);
if (is_kernel_pmap_p)
PMAP_COUNT(remove_kernel_calls);
else
PMAP_COUNT(remove_user_calls);
#ifdef PARANOIADIAG
if (sva < pm->pm_minaddr || eva > pm->pm_maxaddr)
panic("%s: va range %#"PRIxVADDR"-%#"PRIxVADDR" not in range",
__func__, sva, eva - 1);
if (PMAP_IS_ACTIVE(pmap)) {
struct pmap_asid_info * const pai = PMAP_PAI(pmap, curcpu());
uint32_t asid = tlb_get_asid();
if (asid != pai->pai_asid) {
panic("%s: inconsistency for active TLB flush"
": %d <-> %d", __func__, asid, pai->pai_asid);
}
}
#endif
kpreempt_disable();
pmap_pte_process(pmap, sva, eva, pmap_pte_remove, npte);
kpreempt_enable();
UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
}
/*
* pmap_page_protect:
*
* Lower the permission for all mappings to a given page.
*/
void
pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
{
struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
pv_entry_t pv;
vaddr_t va;
UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
UVMHIST_LOG(pmaphist, "(pg=%p (pa %#"PRIxPADDR") prot=%#x)",
pg, VM_PAGE_TO_PHYS(pg), prot, 0);
PMAP_COUNT(page_protect);
switch (prot) {
case VM_PROT_READ|VM_PROT_WRITE:
case VM_PROT_ALL:
break;
/* copy_on_write */
case VM_PROT_READ:
case VM_PROT_READ|VM_PROT_EXECUTE:
(void)VM_PAGEMD_PVLIST_LOCK(mdpg, false);
pv = &mdpg->mdpg_first;
/*
* Loop over all current mappings setting/clearing as appropriate.
*/
if (pv->pv_pmap != NULL) {
while (pv != NULL) {
const pmap_t pmap = pv->pv_pmap;
const uint16_t gen = VM_PAGEMD_PVLIST_GEN(mdpg);
va = pv->pv_va;
VM_PAGEMD_PVLIST_UNLOCK(mdpg);
pmap_protect(pmap, va, va + PAGE_SIZE, prot);
KASSERT(pv->pv_pmap == pmap);
pmap_update(pmap);
if (gen != VM_PAGEMD_PVLIST_LOCK(mdpg, false)) {
pv = &mdpg->mdpg_first;
} else {
pv = pv->pv_next;
}
}
}
VM_PAGEMD_PVLIST_UNLOCK(mdpg);
break;
/* remove_all */
default:
/*
* Do this first so that for each unmapping, pmap_remove_pv
* won't try to sync the icache.
*/
if (pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE)) {
UVMHIST_LOG(pmapexechist, "pg %p (pa %#"PRIxPADDR
"): execpage cleared", pg, VM_PAGE_TO_PHYS(pg),0,0);
PMAP_COUNT(exec_uncached_page_protect);
}
(void)VM_PAGEMD_PVLIST_LOCK(mdpg, false);
pv = &mdpg->mdpg_first;
while (pv->pv_pmap != NULL) {
const pmap_t pmap = pv->pv_pmap;
va = pv->pv_va;
VM_PAGEMD_PVLIST_UNLOCK(mdpg);
pmap_remove(pmap, va, va + PAGE_SIZE);
pmap_update(pmap);
(void)VM_PAGEMD_PVLIST_LOCK(mdpg, false);
}
VM_PAGEMD_PVLIST_UNLOCK(mdpg);
}
UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
}
static bool
pmap_pte_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
uintptr_t flags)
{
const vm_prot_t prot = (flags & VM_PROT_ALL);
UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
UVMHIST_LOG(pmaphist, "(pmap=%p %sva=%"PRIxVADDR"..%"PRIxVADDR,
pmap, (pmap == pmap_kernel() ? "(kernel) " : ""), sva, eva);
UVMHIST_LOG(pmaphist, "ptep=%p, flags(npte)=%#"PRIxPTR")",
ptep, flags, 0, 0);
KASSERT(kpreempt_disabled());
/*
* Change protection on every valid mapping within this segment.
*/
for (; sva < eva; sva += NBPG, ptep++) {
pt_entry_t pt_entry = *ptep;
if (!pte_valid_p(pt_entry))
continue;
struct vm_page * const pg =
PHYS_TO_VM_PAGE(pte_to_paddr(pt_entry));
if (pg != NULL && pte_modified_p(pt_entry)) {
struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
pmap_md_vca_clean(pg, sva, PMAP_WBINV);
if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
KASSERT(mdpg->mdpg_first.pv_pmap != NULL);
if (pte_cached_p(pt_entry)) {
UVMHIST_LOG(pmapexechist,
"pg %p (pa %#"PRIxPADDR"): %s",
pg, VM_PAGE_TO_PHYS(pg),
"syncicached performed", 0);
pmap_page_syncicache(pg);
PMAP_COUNT(exec_synced_protect);
}
}
}
pt_entry = pte_prot_downgrade(pt_entry, prot);
if (*ptep != pt_entry) {
*ptep = pt_entry;
/*
* Update the TLB if needed.
*/
pmap_tlb_update_addr(pmap, sva, pt_entry,
PMAP_TLB_NEED_IPI);
}
}
return false;
}
/*
* Set the physical protection on the
* specified range of this map as requested.
*/
void
pmap_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
{
UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
UVMHIST_LOG(pmaphist,
" pmap=%p, va=%#"PRIxVADDR"..%#"PRIxVADDR" port=%#x)",
pmap, sva, eva, prot);
PMAP_COUNT(protect);
if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
pmap_remove(pmap, sva, eva);
UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
return;
}
#ifdef PARANOIADIAG
if (sva < pm->pm_minaddr || eva > pm->pm_maxaddr)
panic("%s: va range %#"PRIxVADDR"-%#"PRIxVADDR" not in range",
__func__, sva, eva - 1);
if (PMAP_IS_ACTIVE(pmap)) {
struct pmap_asid_info * const pai = PMAP_PAI(pmap, curcpu());
uint32_t asid = tlb_get_asid();
if (asid != pai->pai_asid) {
panic("%s: inconsistency for active TLB update"
": %d <-> %d", __func__, asid, pai->pai_asid);
}
}
#endif
/*
* Change protection on every valid mapping within this segment.
*/
kpreempt_disable();
pmap_pte_process(pmap, sva, eva, pmap_pte_protect, prot);
kpreempt_enable();
UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
}
#if defined(__PMAP_VIRTUAL_CACHE_ALIASES)
/*
* pmap_page_cache:
*
* Change all mappings of a managed page to cached/uncached.
*/
static void
pmap_page_cache(struct vm_page *pg, bool cached)
{
struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
UVMHIST_LOG(pmaphist, "(pg=%p (pa %#"PRIxPADDR") cached=%s)",
pg, VM_PAGE_TO_PHYS(pg), cached ? "true" : "false", 0);
KASSERT(kpreempt_disabled());
if (cached) {
pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
PMAP_COUNT(page_cache_restorations);
} else {
pmap_page_set_attributes(mdpg, VM_PAGEMD_UNCACHED);
PMAP_COUNT(page_cache_evictions);
}
KASSERT(VM_PAGEMD_PVLIST_LOCKED_P(mdpg));
KASSERT(kpreempt_disabled());
for (pv_entry_t pv = &mdpg->mdpg_first;
pv != NULL;
pv = pv->pv_next) {
pmap_t pmap = pv->pv_pmap;
vaddr_t va = pv->pv_va;
KASSERT(pmap != NULL);
KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
if (ptep == NULL)
continue;
pt_entry_t pt_entry = *ptep;
if (pte_valid_p(pt_entry)) {
pt_entry = pte_cached_change(pt_entry, cached);
*ptep = pt_entry;
pmap_tlb_update_addr(pmap, va, pt_entry,
PMAP_TLB_NEED_IPI);
}
}
UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
}
#endif /* __PMAP_VIRTUAL_CACHE_ALIASES */
/*
* Insert the given physical page (p) at
* the specified virtual address (v) in the
* target physical map with the protection requested.
*
* If specified, the page will be wired down, meaning
* that the related pte can not be reclaimed.
*
* NB: This is the only routine which MAY NOT lazy-evaluate
* or lose information. That is, this routine must actually
* insert this page into the given map NOW.
*/
int
pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
{
pt_entry_t npte;
const bool wired = (flags & PMAP_WIRED) != 0;
const bool is_kernel_pmap_p = (pmap == pmap_kernel());
#ifdef UVMHIST
struct kern_history * const histp =
((prot & VM_PROT_EXECUTE) ? &pmapexechist : &pmaphist);
#endif
UVMHIST_FUNC(__func__);
#define VM_PROT_STRING(prot) \
&"\0 (R)\0 (W)\0 (RW)\0 (X)\0 (RX)\0 (WX)\0 (RWX)\0"[UVM_PROTECTION(prot)*6]
UVMHIST_CALLED(*histp);
UVMHIST_LOG(*histp, "(pmap=%p, va=%#"PRIxVADDR", pa=%#"PRIxPADDR,
pmap, va, pa, 0);
UVMHIST_LOG(*histp, "prot=%#x%s flags=%#x%s)",
prot, VM_PROT_STRING(prot), flags, VM_PROT_STRING(flags));
const bool good_color = PMAP_PAGE_COLOROK_P(pa, va);
if (is_kernel_pmap_p) {
PMAP_COUNT(kernel_mappings);
if (!good_color)
PMAP_COUNT(kernel_mappings_bad);
} else {
PMAP_COUNT(user_mappings);
if (!good_color)
PMAP_COUNT(user_mappings_bad);
}
#if defined(DEBUG) || defined(DIAGNOSTIC) || defined(PARANOIADIAG)
if (va < pmap->pm_minaddr || va >= pmap->pm_maxaddr)
panic("%s: %s %#"PRIxVADDR" too big",
__func__, is_kernel_pmap_p ? "kva" : "uva", va);
#endif
KASSERTMSG(prot & VM_PROT_READ,
"%s: no READ (%#x) in prot %#x", __func__, VM_PROT_READ, prot);
struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
struct vm_page_md *mdpg;
if (pg) {
mdpg = VM_PAGE_TO_MD(pg);
/* Set page referenced/modified status based on flags */
if (flags & VM_PROT_WRITE)
pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
else if (flags & VM_PROT_ALL)
pmap_page_set_attributes(mdpg, VM_PAGEMD_REFERENCED);
#ifdef __PMAP_VIRTUAL_CACHE_ALIASES
if (!VM_PAGEMD_CACHED(pg))
flags |= PMAP_NOCACHE;
#endif
PMAP_COUNT(managed_mappings);
} else {
/*
* Assumption: if it is not part of our managed memory
* then it must be device memory which may be volatile.
*/
mdpg = NULL;
flags |= PMAP_NOCACHE;
PMAP_COUNT(unmanaged_mappings);
}
npte = pte_make_enter(pa, mdpg, prot, flags, is_kernel_pmap_p);
kpreempt_disable();
pt_entry_t * const ptep = pmap_pte_reserve(pmap, va, flags);
if (__predict_false(ptep == NULL)) {
kpreempt_enable();
UVMHIST_LOG(*histp, "<- ENOMEM", 0,0,0,0);
return ENOMEM;
}
pt_entry_t opte = *ptep;
/* Done after case that may sleep/return. */
if (pg)
pmap_enter_pv(pmap, va, pg, &npte);
/*
* Now validate mapping with desired protection/wiring.
* Assume uniform modified and referenced status for all
* MIPS pages in a MACH page.
*/
if (wired) {
pmap->pm_stats.wired_count++;
npte = pte_wire_entry(npte);
}
UVMHIST_LOG(*histp, "new pte %#x (pa %#"PRIxPADDR")", npte, pa, 0,0);
if (pte_valid_p(opte) && pte_to_paddr(opte) != pa) {
pmap_remove(pmap, va, va + NBPG);
PMAP_COUNT(user_mappings_changed);
}
KASSERT(pte_valid_p(npte));
bool resident = pte_valid_p(opte);
if (!resident)
pmap->pm_stats.resident_count++;
*ptep = npte;
pmap_tlb_update_addr(pmap, va, npte,
((flags & VM_PROT_ALL) ? PMAP_TLB_INSERT : 0)
| (resident ? PMAP_TLB_NEED_IPI : 0));
kpreempt_enable();
if (pg != NULL && (prot == (VM_PROT_READ | VM_PROT_EXECUTE))) {
KASSERT(mdpg != NULL);
PMAP_COUNT(exec_mappings);
if (!VM_PAGEMD_EXECPAGE_P(mdpg) && pte_cached_p(npte)) {
if (!pte_deferred_exec_p(npte)) {
UVMHIST_LOG(*histp,
"va=%#"PRIxVADDR" pg %p: %s syncicache%s",
va, pg, "immediate", "");
pmap_page_syncicache(pg);
pmap_page_set_attributes(mdpg,
VM_PAGEMD_EXECPAGE);
PMAP_COUNT(exec_synced_mappings);
} else {
UVMHIST_LOG(*histp, "va=%#"PRIxVADDR
" pg %p: %s syncicache: pte %#x",
va, pg, "defer", npte);
}
} else {
UVMHIST_LOG(*histp,
"va=%#"PRIxVADDR" pg %p: %s syncicache%s",
va, pg, "no",
(pte_cached_p(npte)
? " (already exec)"
: " (uncached)"));
}
} else if (pg != NULL && (prot & VM_PROT_EXECUTE)) {
KASSERT(mdpg != NULL);
KASSERT(prot & VM_PROT_WRITE);
PMAP_COUNT(exec_mappings);
pmap_page_syncicache(pg);
pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
UVMHIST_LOG(pmapexechist,
"va=%#"PRIxVADDR" pg %p: %s syncicache%s",
va, pg, "immediate", " (writeable)");
}
if (prot & VM_PROT_EXECUTE) {
UVMHIST_LOG(pmapexechist, "<- 0 (OK)", 0,0,0,0);
} else {
UVMHIST_LOG(pmaphist, "<- 0 (OK)", 0,0,0,0);
}
return 0;
}
void
pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
{
struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
struct vm_page_md *mdpg;
UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
UVMHIST_LOG(pmaphist, "(va=%#"PRIxVADDR" pa=%#"PRIxPADDR
", prot=%#x, flags=%#x)", va, pa, prot, flags);
PMAP_COUNT(kenter_pa);
if (pg == NULL) {
mdpg = NULL;
PMAP_COUNT(kenter_pa_unmanaged);
flags |= PMAP_NOCACHE;
} else {
mdpg = VM_PAGE_TO_MD(pg);
}
if ((flags & PMAP_NOCACHE) == 0 && !PMAP_PAGE_COLOROK_P(pa, va))
PMAP_COUNT(kenter_pa_bad);
const pt_entry_t npte = pte_make_kenter_pa(pa, mdpg, prot, flags);
kpreempt_disable();
pt_entry_t * const ptep = pmap_pte_reserve(pmap_kernel(), va, 0);
KASSERT(ptep != NULL);
KASSERT(!pte_valid_p(*ptep));
*ptep = npte;
/*
* We have the option to force this mapping into the TLB but we
* don't. Instead let the next reference to the page do it.
*/
pmap_tlb_update_addr(pmap_kernel(), va, npte, 0);
kpreempt_enable();
#if DEBUG > 1
for (u_int i = 0; i < PAGE_SIZE / sizeof(long); i++) {
if (((long *)va)[i] != ((long *)pa)[i])
panic("%s: contents (%lx) of va %#"PRIxVADDR
" != contents (%lx) of pa %#"PRIxPADDR, __func__,
((long *)va)[i], va, ((long *)pa)[i], pa);
}
#endif
UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
}
static bool
pmap_pte_kremove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
uintptr_t flags)
{
const pt_entry_t new_pt_entry = pte_nv_entry(true);
KASSERT(kpreempt_disabled());
/*
* Set every pt on every valid mapping within this segment.
*/
for (; sva < eva; sva += NBPG, ptep++) {
pt_entry_t pt_entry = *ptep;
if (!pte_valid_p(pt_entry)) {
continue;
}
PMAP_COUNT(kremove_pages);
struct vm_page * const pg =
PHYS_TO_VM_PAGE(pte_to_paddr(pt_entry));
if (pg != NULL)
pmap_md_vca_clean(pg, sva, PMAP_WBINV);
*ptep = new_pt_entry;
pmap_tlb_invalidate_addr(pmap_kernel(), sva);
}
return false;
}
void
pmap_kremove(vaddr_t va, vsize_t len)
{
const vaddr_t sva = trunc_page(va);
const vaddr_t eva = round_page(va + len);
UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
UVMHIST_LOG(pmaphist, "(va=%#"PRIxVADDR" len=%#"PRIxVSIZE")",
va, len, 0,0);
kpreempt_disable();
pmap_pte_process(pmap_kernel(), sva, eva, pmap_pte_kremove, 0);
kpreempt_enable();
UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
}
void
pmap_remove_all(struct pmap *pmap)
{
KASSERT(pmap != pmap_kernel());
kpreempt_disable();
/*
* Free all of our ASIDs which means we can skip doing all the
* tlb_invalidate_addrs().
*/
pmap_tlb_asid_deactivate(pmap);
pmap_tlb_asid_release_all(pmap);
pmap->pm_flags |= PMAP_DEFERRED_ACTIVATE;
kpreempt_enable();
}
/*
* Routine: pmap_unwire
* Function: Clear the wired attribute for a map/virtual-address
* pair.
* In/out conditions:
* The mapping must already exist in the pmap.
*/
void
pmap_unwire(pmap_t pmap, vaddr_t va)
{
UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
UVMHIST_LOG(pmaphist, "(pmap=%p va=%#"PRIxVADDR")", pmap, va, 0,0);
PMAP_COUNT(unwire);
/*
* Don't need to flush the TLB since PG_WIRED is only in software.
*/
#ifdef PARANOIADIAG
if (va < pmap->pm_minaddr || pmap->pm_maxaddr <= va)
panic("pmap_unwire");
#endif
kpreempt_disable();
pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
pt_entry_t pt_entry = *ptep;
#ifdef DIAGNOSTIC
if (ptep == NULL)
panic("%s: pmap %p va %#"PRIxVADDR" invalid STE",
__func__, pmap, va);
#endif
#ifdef DIAGNOSTIC
if (!pte_valid_p(pt_entry))
panic("pmap_unwire: pmap %p va %#"PRIxVADDR" invalid PTE",
pmap, va);
#endif
if (pte_wired_p(pt_entry)) {
*ptep = pte_unwire_entry(*ptep);
pmap->pm_stats.wired_count--;
}
#ifdef DIAGNOSTIC
else {
printf("%s: wiring for pmap %p va %#"PRIxVADDR" unchanged!\n",
__func__, pmap, va);
}
#endif
kpreempt_enable();
}
/*
* Routine: pmap_extract
* Function:
* Extract the physical page address associated
* with the given map/virtual_address pair.
*/
bool
pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
{
paddr_t pa;
//UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
//UVMHIST_LOG(pmaphist, "(pmap=%p va=%#"PRIxVADDR")", pmap, va, 0,0);
if (pmap == pmap_kernel()) {
if (pmap_md_direct_mapped_vaddr_p(va)) {
pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
goto done;
}
if (pmap_md_io_vaddr_p(va))
panic("pmap_extract: io address %#"PRIxVADDR"", va);
}
kpreempt_disable();
pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
if (ptep == NULL) {
//UVMHIST_LOG(pmaphist, "<- false (not in segmap)", 0,0,0,0);
kpreempt_enable();
return false;
}
if (!pte_valid_p(*ptep)) {
//UVMHIST_LOG(pmaphist, "<- false (PTE not valid)", 0,0,0,0);
kpreempt_enable();
return false;
}
pa = pte_to_paddr(*ptep) | (va & PGOFSET);
kpreempt_enable();
done:
if (pap != NULL) {
*pap = pa;
}
//UVMHIST_LOG(pmaphist, "<- true (pa %#"PRIxPADDR")", pa, 0,0,0);
return true;
}
/*
* Copy the range specified by src_addr/len
* from the source map to the range dst_addr/len
* in the destination map.
*
* This routine is only advisory and need not do anything.
*/
void
pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr, vsize_t len,
vaddr_t src_addr)
{
UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
PMAP_COUNT(copy);
}
/*
* pmap_clear_reference:
*
* Clear the reference bit on the specified physical page.
*/
bool
pmap_clear_reference(struct vm_page *pg)
{
struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
UVMHIST_LOG(pmaphist, "(pg=%p (pa %#"PRIxPADDR"))",
pg, VM_PAGE_TO_PHYS(pg), 0,0);
bool rv = pmap_page_clear_attributes(mdpg, VM_PAGEMD_REFERENCED);
UVMHIST_LOG(pmaphist, "<- %s", rv ? "true" : "false", 0,0,0);
return rv;
}
/*
* pmap_is_referenced:
*
* Return whether or not the specified physical page is referenced
* by any physical maps.
*/
bool
pmap_is_referenced(struct vm_page *pg)
{
return VM_PAGEMD_REFERENCED_P(VM_PAGE_TO_MD(pg));
}
/*
* Clear the modify bits on the specified physical page.
*/
bool
pmap_clear_modify(struct vm_page *pg)
{
struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
pv_entry_t pv = &mdpg->mdpg_first;
pv_entry_t pv_next;
uint16_t gen;
UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
UVMHIST_LOG(pmaphist, "(pg=%p (%#"PRIxPADDR"))",
pg, VM_PAGE_TO_PHYS(pg), 0,0);
PMAP_COUNT(clear_modify);
if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
if (pv->pv_pmap == NULL) {
UVMHIST_LOG(pmapexechist,
"pg %p (pa %#"PRIxPADDR"): %s",
pg, VM_PAGE_TO_PHYS(pg), "execpage cleared", 0);
pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
PMAP_COUNT(exec_uncached_clear_modify);
} else {
UVMHIST_LOG(pmapexechist,
"pg %p (pa %#"PRIxPADDR"): %s",
pg, VM_PAGE_TO_PHYS(pg), "syncicache performed", 0);
pmap_page_syncicache(pg);
PMAP_COUNT(exec_synced_clear_modify);
}
}
if (!pmap_page_clear_attributes(mdpg, VM_PAGEMD_MODIFIED)) {
UVMHIST_LOG(pmaphist, "<- false", 0,0,0,0);
return false;
}
if (pv->pv_pmap == NULL) {
UVMHIST_LOG(pmaphist, "<- true (no mappings)", 0,0,0,0);
return true;
}
/*
* remove write access from any pages that are dirty
* so we can tell if they are written to again later.
* flush the VAC first if there is one.
*/
kpreempt_disable();
gen = VM_PAGEMD_PVLIST_LOCK(mdpg, false);
for (; pv != NULL; pv = pv_next) {
pmap_t pmap = pv->pv_pmap;
vaddr_t va = pv->pv_va;
pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
KASSERT(ptep);
pv_next = pv->pv_next;
pt_entry_t pt_entry = pte_prot_nowrite(*ptep);
if (*ptep == pt_entry) {
continue;
}
pmap_md_vca_clean(pg, va, PMAP_WBINV);
*ptep = pt_entry;
VM_PAGEMD_PVLIST_UNLOCK(mdpg);
pmap_tlb_invalidate_addr(pmap, va);
pmap_update(pmap);
if (__predict_false(gen != VM_PAGEMD_PVLIST_LOCK(mdpg, false))) {
/*
* The list changed! So restart from the beginning.
*/
pv_next = &mdpg->mdpg_first;
}
}
VM_PAGEMD_PVLIST_UNLOCK(mdpg);
kpreempt_enable();
UVMHIST_LOG(pmaphist, "<- true (mappings changed)", 0,0,0,0);
return true;
}
/*
* pmap_is_modified:
*
* Return whether or not the specified physical page is modified
* by any physical maps.
*/
bool
pmap_is_modified(struct vm_page *pg)
{
return VM_PAGEMD_MODIFIED_P(VM_PAGE_TO_MD(pg));
}
/*
* pmap_set_modified:
*
* Sets the page modified reference bit for the specified page.
*/
void
pmap_set_modified(paddr_t pa)
{
struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
}
/******************** pv_entry management ********************/
static void
pmap_check_pvlist(struct vm_page *pg)
{
#ifdef PARANOIADIAG
struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
pt_entry_t pv = &mdpg->mdpg_first;
if (pv->pv_pmap != NULL) {
for (; pv != NULL; pv = pv->pv_next) {
KASSERT(!pmap_md_direct_mapped_vaddr_p(pv->pv_va));
}
}
#endif /* PARANOIADIAG */
}
/*
* Enter the pmap and virtual address into the
* physical to virtual map table.
*/
void
pmap_enter_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, u_int *npte)
{
struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
pv_entry_t pv, npv, apv;
int16_t gen;
bool first = false;
UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
UVMHIST_LOG(pmaphist,
"(pmap=%p va=%#"PRIxVADDR" pg=%p (%#"PRIxPADDR")",
pmap, va, pg, VM_PAGE_TO_PHYS(pg));
UVMHIST_LOG(pmaphist, "nptep=%p (%#x))", npte, *npte, 0, 0);
KASSERT(kpreempt_disabled());
KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
apv = NULL;
pv = &mdpg->mdpg_first;
gen = VM_PAGEMD_PVLIST_LOCK(mdpg, true);
pmap_check_pvlist(pg);
again:
if (pv->pv_pmap == NULL) {
KASSERT(pv->pv_next == NULL);
/*
* No entries yet, use header as the first entry
*/
PMAP_COUNT(primary_mappings);
PMAP_COUNT(mappings);
first = true;
#ifdef __PMAP_VIRTUAL_CACHE_ALIASES
pmap_page_clear_attributes(pg, VM_PAGEMD_UNCACHED);
#endif
pv->pv_pmap = pmap;
pv->pv_va = va;
} else {
if (pmap_md_vca_add(pg, va, npte))
goto again;
/*
* There is at least one other VA mapping this page.
* Place this entry after the header.
*
* Note: the entry may already be in the table if
* we are only changing the protection bits.
*/
#ifdef PARANOIADIAG
const paddr_t pa = VM_PAGE_TO_PHYS(pg);
#endif
for (npv = pv; npv; npv = npv->pv_next) {
if (pmap == npv->pv_pmap && va == npv->pv_va) {
#ifdef PARANOIADIAG
pt_entry_t *ptep = pmap_pte_lookup(pmap, va);
pt_entry_t pt_entry = (ptep ? *ptep : 0);
if (!pte_valid_p(pt_entry)
|| pte_to_paddr(pt_entry) != pa)
printf(
"pmap_enter_pv: found va %#"PRIxVADDR" pa %#"PRIxPADDR" in pv_table but != %x\n",
va, pa, pt_entry);
#endif
PMAP_COUNT(remappings);
VM_PAGEMD_PVLIST_UNLOCK(mdpg);
if (__predict_false(apv != NULL))
pmap_pv_free(apv);
return;
}
}
if (__predict_true(apv == NULL)) {
/*
* To allocate a PV, we have to release the PVLIST lock
* so get the page generation. We allocate the PV, and
* then reacquire the lock.
*/
VM_PAGEMD_PVLIST_UNLOCK(mdpg);
apv = (pv_entry_t)pmap_pv_alloc();
if (apv == NULL)
panic("pmap_enter_pv: pmap_pv_alloc() failed");
/*
* If the generation has changed, then someone else
* tinkered with this page so we should
* start over.
*/
uint16_t oldgen = gen;
gen = VM_PAGEMD_PVLIST_LOCK(mdpg, true);
if (gen != oldgen)
goto again;
}
npv = apv;
apv = NULL;
npv->pv_va = va;
npv->pv_pmap = pmap;
npv->pv_next = pv->pv_next;
pv->pv_next = npv;
PMAP_COUNT(mappings);
}
pmap_check_pvlist(pg);
VM_PAGEMD_PVLIST_UNLOCK(mdpg);
if (__predict_false(apv != NULL))
pmap_pv_free(apv);
UVMHIST_LOG(pmaphist, "<- done pv=%p%s",
pv, first ? " (first pv)" : "",0,0);
}
/*
* Remove a physical to virtual address translation.
* If cache was inhibited on this page, and there are no more cache
* conflicts, restore caching.
* Flush the cache if the last page is removed (should always be cached
* at this point).
*/
void
pmap_remove_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, bool dirty)
{
struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
pv_entry_t pv, npv;
bool last;
UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
UVMHIST_LOG(pmaphist,
"(pmap=%p va=%#"PRIxVADDR" pg=%p (pa %#"PRIxPADDR")\n",
pmap, va, pg, VM_PAGE_TO_PHYS(pg));
UVMHIST_LOG(pmaphist, "dirty=%s)", dirty ? "true" : "false", 0,0,0);
KASSERT(kpreempt_disabled());
pv = &mdpg->mdpg_first;
(void)VM_PAGEMD_PVLIST_LOCK(mdpg, true);
pmap_check_pvlist(pg);
/*
* If it is the first entry on the list, it is actually
* in the header and we must copy the following entry up
* to the header. Otherwise we must search the list for
* the entry. In either case we free the now unused entry.
*/
last = false;
if (pmap == pv->pv_pmap && va == pv->pv_va) {
npv = pv->pv_next;
if (npv) {
*pv = *npv;
KASSERT(pv->pv_pmap != NULL);
} else {
#ifdef __PMAP_VIRTUAL_CACHE_ALIASES
pmap_page_clear_attributes(pg, VM_PAGEMD_UNCACHED);
#endif
pv->pv_pmap = NULL;
last = true; /* Last mapping removed */
}
PMAP_COUNT(remove_pvfirst);
} else {
for (npv = pv->pv_next; npv; pv = npv, npv = npv->pv_next) {
PMAP_COUNT(remove_pvsearch);
if (pmap == npv->pv_pmap && va == npv->pv_va)
break;
}
if (npv) {
pv->pv_next = npv->pv_next;
}
}
pmap_md_vca_remove(pg, va);
pmap_check_pvlist(pg);
VM_PAGEMD_PVLIST_UNLOCK(mdpg);
/*
* Free the pv_entry if needed.
*/
if (npv)
pmap_pv_free(npv);
if (VM_PAGEMD_EXECPAGE_P(mdpg) && dirty) {
if (last) {
/*
* If this was the page's last mapping, we no longer
* care about its execness.
*/
UVMHIST_LOG(pmapexechist,
"pg %p (pa %#"PRIxPADDR")%s: %s",
pg, VM_PAGE_TO_PHYS(pg),
last ? " [last mapping]" : "",
"execpage cleared");
pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
PMAP_COUNT(exec_uncached_remove);
} else {
/*
* Someone still has it mapped as an executable page
* so we must sync it.
*/
UVMHIST_LOG(pmapexechist,
"pg %p (pa %#"PRIxPADDR")%s: %s",
pg, VM_PAGE_TO_PHYS(pg),
last ? " [last mapping]" : "",
"performed syncicache");
pmap_page_syncicache(pg);
PMAP_COUNT(exec_synced_remove);
}
}
UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
}
#if defined(MULTIPROCESSOR)
struct pmap_pvlist_info {
kmutex_t *pli_locks[PAGE_SIZE / 32];
volatile u_int pli_lock_refs[PAGE_SIZE / 32];
volatile u_int pli_lock_index;
u_int pli_lock_mask;
} pmap_pvlist_info;
void
pmap_pvlist_lock_init(size_t cache_line_size)
{
struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
const vaddr_t lock_page = uvm_pageboot_alloc(PAGE_SIZE);
vaddr_t lock_va = lock_page;
if (sizeof(kmutex_t) > cache_line_size) {
cache_line_size = roundup2(sizeof(kmutex_t), cache_line_size);
}
const size_t nlocks = PAGE_SIZE / cache_line_size;
KASSERT((nlocks & (nlocks - 1)) == 0);
/*
* Now divide the page into a number of mutexes, one per cacheline.
*/
for (size_t i = 0; i < nlocks; lock_va += cache_line_size, i++) {
kmutex_t * const lock = (kmutex_t *)lock_va;
mutex_init(lock, MUTEX_DEFAULT, IPL_VM);
pli->pli_locks[i] = lock;
}
pli->pli_lock_mask = nlocks - 1;
}
uint16_t
pmap_pvlist_lock(struct vm_page_md *mdpg, bool list_change)
{
struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
kmutex_t *lock = mdpg->mdpg_lock;
int16_t gen;
/*
* Allocate a lock on an as-needed basis. This will hopefully give us
* semi-random distribution not based on page color.
*/
if (__predict_false(lock == NULL)) {
size_t locknum = atomic_add_int_nv(&pli->pli_lock_index, 37);
size_t lockid = locknum & pli->pli_lock_mask;
kmutex_t * const new_lock = pli->pli_locks[lockid];
/*
* Set the lock. If some other thread already did, just use
* the one they assigned.
*/
lock = atomic_cas_ptr(&mdpg->mdpg_lock, NULL, new_lock);
if (lock == NULL) {
lock = new_lock;
atomic_inc_uint(&pli->pli_lock_refs[lockid]);
}
}
/*
* Now finally lock the pvlists.
*/
mutex_spin_enter(lock);
/*
* If the locker will be changing the list, increment the high 16 bits
* of attrs so we use that as a generation number.
*/
gen = VM_PAGEMD_PVLIST_GEN(mdpg); /* get old value */
if (list_change)
atomic_add_int(&mdpg->mdpg_attrs, 0x10000);
/*
* Return the generation number.
*/
return gen;
}
#else /* !MULTIPROCESSOR */
void
pmap_pvlist_lock_init(size_t cache_line_size)
{
mutex_init(&pmap_pvlist_mutex, MUTEX_DEFAULT, IPL_VM);
}
#ifdef MODULAR
uint16_t
pmap_pvlist_lock(struct vm_page_md *mdpg, bool list_change)
{
/*
* We just use a global lock.
*/
if (__predict_false(mdpg->mdpg_lock == NULL)) {
mdpg->mdpg_lock = &pmap_pvlist_mutex;
}
/*
* Now finally lock the pvlists.
*/
mutex_spin_enter(mdpg->mdpg_lock);
return 0;
}
#endif /* MODULAR */
#endif /* !MULTIPROCESSOR */
/*
* pmap_pv_page_alloc:
*
* Allocate a page for the pv_entry pool.
*/
void *
pmap_pv_page_alloc(struct pool *pp, int flags)
{
struct vm_page *pg = PMAP_ALLOC_POOLPAGE(UVM_PGA_USERESERVE);
if (pg == NULL)
return NULL;
return (void *)pmap_map_poolpage(VM_PAGE_TO_PHYS(pg));
}
/*
* pmap_pv_page_free:
*
* Free a pv_entry pool page.
*/
void
pmap_pv_page_free(struct pool *pp, void *v)
{
vaddr_t va = (vaddr_t)v;
KASSERT(pmap_md_direct_mapped_vaddr_p(va));
const paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
pmap_md_vca_remove(pg, va);
pmap_page_clear_attributes(mdpg, VM_PAGEMD_POOLPAGE);
uvm_pagefree(pg);
}
#ifdef PMAP_PREFER
/*
* Find first virtual address >= *vap that doesn't cause
* a cache alias conflict.
*/
void
pmap_prefer(vaddr_t foff, vaddr_t *vap, vsize_t sz, int td)
{
vaddr_t va;
vsize_t d;
vsize_t prefer_mask = ptoa(uvmexp.colormask);
PMAP_COUNT(prefer_requests);
prefer_mask |= pmap_md_cache_prefer_mask();
if (prefer_mask) {
va = *vap;
d = foff - va;
d &= prefer_mask;
if (d) {
if (td)
*vap = trunc_page(va -((-d) & prefer_mask));
else
*vap = round_page(va + d);
PMAP_COUNT(prefer_adjustments);
}
}
}
#endif /* PMAP_PREFER */
#ifdef PMAP_MAP_POOLPAGE
vaddr_t
pmap_map_poolpage(paddr_t pa)
{
struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
KASSERT(pg);
struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
pmap_page_set_attributes(mdpg, VM_PAGEMD_POOLPAGE);
const vaddr_t va = pmap_md_map_poolpage(pa, NBPG);
pmap_md_vca_add(pg, va, NULL);
return va;
}
paddr_t
pmap_unmap_poolpage(vaddr_t va)
{
KASSERT(pmap_md_direct_mapped_vaddr_p(va));
paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
KASSERT(pg);
struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
pmap_page_clear_attributes(mdpg, VM_PAGEMD_POOLPAGE);
pmap_md_unmap_poolpage(va, NBPG);
pmap_md_vca_remove(pg, va);
return pa;
}
#endif /* PMAP_MAP_POOLPAGE */