NetBSD/sys/dev/raidframe/rf_paritylogging.c

1088 lines
40 KiB
C
Raw Normal View History

/* $NetBSD: rf_paritylogging.c,v 1.1 1998/11/13 04:20:32 oster Exp $ */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
*
* Author: William V. Courtright II
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/* :
* Log: rf_paritylogging.c,v
* Revision 1.42 1996/11/05 21:10:40 jimz
* failed pda generalization
*
* Revision 1.41 1996/07/31 16:56:18 jimz
* dataBytesPerStripe, sectorsPerDisk init arch-indep.
*
* Revision 1.40 1996/07/28 20:31:39 jimz
* i386netbsd port
* true/false fixup
*
* Revision 1.39 1996/07/18 22:57:14 jimz
* port simulator to AIX
*
* Revision 1.38 1996/07/13 00:00:59 jimz
* sanitized generalized reconstruction architecture
* cleaned up head sep, rbuf problems
*
* Revision 1.37 1996/06/17 03:24:14 jimz
* switch to new shutdown function typing
*
* Revision 1.36 1996/06/14 23:15:38 jimz
* attempt to deal with thread GC problem
*
* Revision 1.35 1996/06/11 13:48:30 jimz
* get it to compile in-kernel
*
* Revision 1.34 1996/06/11 10:16:35 jimz
* Check return values on array configuration- back out if failed.
* Reorder shutdown to avoid using deallocated resources.
* Get rid of bogus join op in shutdown.
*
* Revision 1.33 1996/06/10 18:29:17 wvcii
* fixed bug in rf_IdentifyStripeParityLogging
* - added array initialization
*
* Revision 1.32 1996/06/10 11:55:47 jimz
* Straightened out some per-array/not-per-array distinctions, fixed
* a couple bugs related to confusion. Added shutdown lists. Removed
* layout shutdown function (now subsumed by shutdown lists).
*
* Revision 1.31 1996/06/07 22:26:27 jimz
* type-ify which_ru (RF_ReconUnitNum_t)
*
* Revision 1.30 1996/06/07 21:33:04 jimz
* begin using consistent types for sector numbers,
* stripe numbers, row+col numbers, recon unit numbers
*
* Revision 1.29 1996/06/05 18:06:02 jimz
* Major code cleanup. The Great Renaming is now done.
* Better modularity. Better typing. Fixed a bunch of
* synchronization bugs. Made a lot of global stuff
* per-desc or per-array. Removed dead code.
*
* Revision 1.28 1996/06/03 23:28:26 jimz
* more bugfixes
* check in tree to sync for IPDS runs with current bugfixes
* there still may be a problem with threads in the script test
* getting I/Os stuck- not trivially reproducible (runs ~50 times
* in a row without getting stuck)
*
* Revision 1.27 1996/06/02 17:31:48 jimz
* Moved a lot of global stuff into array structure, where it belongs.
* Fixed up paritylogging, pss modules in this manner. Some general
* code cleanup. Removed lots of dead code, some dead files.
*
* Revision 1.26 1996/05/31 22:26:54 jimz
* fix a lot of mapping problems, memory allocation problems
* found some weird lock issues, fixed 'em
* more code cleanup
*
* Revision 1.25 1996/05/30 23:22:16 jimz
* bugfixes of serialization, timing problems
* more cleanup
*
* Revision 1.24 1996/05/27 18:56:37 jimz
* more code cleanup
* better typing
* compiles in all 3 environments
*
* Revision 1.23 1996/05/24 22:17:04 jimz
* continue code + namespace cleanup
* typed a bunch of flags
*
* Revision 1.22 1996/05/24 01:59:45 jimz
* another checkpoint in code cleanup for release
* time to sync kernel tree
*
* Revision 1.21 1996/05/23 21:46:35 jimz
* checkpoint in code cleanup (release prep)
* lots of types, function names have been fixed
*
* Revision 1.20 1996/05/23 00:33:23 jimz
* code cleanup: move all debug decls to rf_options.c, all extern
* debug decls to rf_options.h, all debug vars preceded by rf_
*
* Revision 1.19 1996/05/20 16:16:30 jimz
* switch to rf_{mutex,cond}_{init,destroy}
*
* Revision 1.18 1996/05/18 19:51:34 jimz
* major code cleanup- fix syntax, make some types consistent,
* add prototypes, clean out dead code, et cetera
*
* Revision 1.17 1996/05/03 19:47:11 wvcii
* added includes of new dag library
*
* Revision 1.16 1995/12/12 18:10:06 jimz
* MIN -> RF_MIN, MAX -> RF_MAX, ASSERT -> RF_ASSERT
* fix 80-column brain damage in comments
*
* Revision 1.15 1995/12/06 20:57:43 wvcii
* added prototypes
* reintegration of logs on shutdown now conditional on forceParityLogReint
*
* Revision 1.14 1995/11/30 16:06:42 wvcii
* added copyright info
*
* Revision 1.13 1995/11/17 19:01:29 wvcii
* added prototyping to MapParity
*
* Revision 1.12 1995/11/07 15:36:03 wvcii
* changed ParityLoggingDagSelect prototype
* function no longer returns numHdrSucc, numTermAnt
*
* Revision 1.11 1995/10/08 20:42:54 wvcii
* lots of random debugging - debugging incomplete
*
* Revision 1.10 1995/09/07 01:26:55 jimz
* Achive basic compilation in kernel. Kernel functionality
* is not guaranteed at all, but it'll compile. Mostly. I hope.
*
* Revision 1.9 1995/09/06 19:21:17 wvcii
* explicit shutdown (forced reintegration) for simulator version
*
* Revision 1.8 1995/07/08 18:19:16 rachad
* Parity verifies can not be done in the simulator.
*
* Revision 1.7 1995/07/07 00:17:20 wvcii
* this version free from deadlock, fails parity verification
*
* Revision 1.6 1995/06/23 13:39:59 robby
* updeated to prototypes in rf_layout.h
*
* Revision 1.5 1995/06/09 13:14:56 wvcii
* code is now nonblocking
*
* Revision 1.4 95/06/01 17:02:23 wvcii
* code debug
*
* Revision 1.3 95/05/31 13:08:57 wvcii
* code debug
*
* Revision 1.2 95/05/21 15:35:00 wvcii
* code debug
*
*
*
*/
/*
parity logging configuration, dag selection, and mapping is implemented here
*/
#include "rf_archs.h"
#if RF_INCLUDE_PARITYLOGGING > 0
#include "rf_types.h"
#include "rf_raid.h"
#include "rf_dag.h"
#include "rf_dagutils.h"
#include "rf_dagfuncs.h"
#include "rf_dagffrd.h"
#include "rf_dagffwr.h"
#include "rf_dagdegrd.h"
#include "rf_dagdegwr.h"
#include "rf_threadid.h"
#include "rf_paritylog.h"
#include "rf_paritylogDiskMgr.h"
#include "rf_paritylogging.h"
#include "rf_parityloggingdags.h"
#include "rf_general.h"
#include "rf_map.h"
#include "rf_utils.h"
#include "rf_shutdown.h"
typedef struct RF_ParityLoggingConfigInfo_s {
RF_RowCol_t **stripeIdentifier; /* filled in at config time & used by IdentifyStripe */
} RF_ParityLoggingConfigInfo_t;
static void FreeRegionInfo(RF_Raid_t *raidPtr, RF_RegionId_t regionID);
static void rf_ShutdownParityLogging(RF_ThreadArg_t arg);
static void rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg);
static void rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg);
static void rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg);
static void rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg);
static void rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg);
int rf_ConfigureParityLogging(
RF_ShutdownList_t **listp,
RF_Raid_t *raidPtr,
RF_Config_t *cfgPtr)
{
int i, j, startdisk, rc;
RF_SectorCount_t totalLogCapacity, fragmentation, lastRegionCapacity;
RF_SectorCount_t parityBufferCapacity, maxRegionParityRange;
RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
RF_ParityLoggingConfigInfo_t *info;
RF_ParityLog_t *l=NULL, *next;
caddr_t lHeapPtr;
/*
* We create multiple entries on the shutdown list here, since
* this configuration routine is fairly complicated in and of
* itself, and this makes backing out of a failed configuration
* much simpler.
*/
raidPtr->numSectorsPerLog = RF_DEFAULT_NUM_SECTORS_PER_LOG;
/* create a parity logging configuration structure */
RF_MallocAndAdd(info, sizeof(RF_ParityLoggingConfigInfo_t), (RF_ParityLoggingConfigInfo_t *), raidPtr->cleanupList);
if (info == NULL)
return(ENOMEM);
layoutPtr->layoutSpecificInfo = (void *) info;
RF_ASSERT(raidPtr->numRow == 1);
/* the stripe identifier must identify the disks in each stripe,
* IN THE ORDER THAT THEY APPEAR IN THE STRIPE.
*/
info->stripeIdentifier = rf_make_2d_array((raidPtr->numCol), (raidPtr->numCol), raidPtr->cleanupList);
if (info->stripeIdentifier == NULL)
return(ENOMEM);
startdisk = 0;
for (i=0; i<(raidPtr->numCol); i++)
{
for (j=0; j<(raidPtr->numCol); j++)
{
info->stripeIdentifier[i][j] = (startdisk + j) % (raidPtr->numCol - 1);
}
if ((--startdisk) < 0)
startdisk = raidPtr->numCol-1-1;
}
/* fill in the remaining layout parameters */
layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
layoutPtr->bytesPerStripeUnit = layoutPtr->sectorsPerStripeUnit << raidPtr->logBytesPerSector;
layoutPtr->numParityCol = 1;
layoutPtr->numParityLogCol = 1;
layoutPtr->numDataCol = raidPtr->numCol - layoutPtr->numParityCol - layoutPtr->numParityLogCol;
layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit;
raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
/* configure parity log parameters
parameter comment/constraints
---------------- -------------------
* numParityRegions all regions (except possibly last) of equal size
* totalInCoreLogCapacity amount of memory in bytes available for in-core logs (default 1 MB)
# numSectorsPerLog capacity of an in-core log in sectors (1 disk track)
numParityLogs total number of in-core logs, should be at least numParityRegions
regionLogCapacity size of a region log (except possibly last one) in sectors
totalLogCapacity total amount of log space in sectors
* denotes a user settable parameter.
# logs are fixed to be the size of a disk track, value #defined in rf_paritylog.h
*/
totalLogCapacity = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit * layoutPtr->numParityLogCol;
raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions;
if (rf_parityLogDebug)
printf("bytes per sector %d\n", raidPtr->bytesPerSector);
/* reduce fragmentation within a disk region by adjusting the number of regions
in an attempt to allow an integral number of logs to fit into a disk region */
fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog;
if (fragmentation > 0)
for (i = 1; i < (raidPtr->numSectorsPerLog / 2); i++)
{
if (((totalLogCapacity / (rf_numParityRegions + i)) % raidPtr->numSectorsPerLog) < fragmentation)
{
rf_numParityRegions++;
raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions;
fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog;
}
if (((totalLogCapacity / (rf_numParityRegions - i)) % raidPtr->numSectorsPerLog) < fragmentation)
{
rf_numParityRegions--;
raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions;
fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog;
}
}
/* ensure integral number of regions per log */
raidPtr->regionLogCapacity = (raidPtr->regionLogCapacity / raidPtr->numSectorsPerLog) * raidPtr->numSectorsPerLog;
raidPtr->numParityLogs = rf_totalInCoreLogCapacity / (raidPtr->bytesPerSector * raidPtr->numSectorsPerLog);
/* to avoid deadlock, must ensure that enough logs exist for each region to have one simultaneously */
if (raidPtr->numParityLogs < rf_numParityRegions)
raidPtr->numParityLogs = rf_numParityRegions;
/* create region information structs */
RF_Malloc(raidPtr->regionInfo, (rf_numParityRegions * sizeof(RF_RegionInfo_t)), (RF_RegionInfo_t *));
if (raidPtr->regionInfo == NULL)
return(ENOMEM);
/* last region may not be full capacity */
lastRegionCapacity = raidPtr->regionLogCapacity;
while ((rf_numParityRegions - 1) * raidPtr->regionLogCapacity + lastRegionCapacity > totalLogCapacity)
lastRegionCapacity = lastRegionCapacity - raidPtr->numSectorsPerLog;
raidPtr->regionParityRange = raidPtr->sectorsPerDisk / rf_numParityRegions;
maxRegionParityRange = raidPtr->regionParityRange;
/* i can't remember why this line is in the code -wvcii 6/30/95 */
/* if (raidPtr->sectorsPerDisk % rf_numParityRegions > 0)
regionParityRange++; */
/* build pool of unused parity logs */
RF_Malloc(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs * raidPtr->numSectorsPerLog * raidPtr->bytesPerSector, (caddr_t));
if (raidPtr->parityLogBufferHeap == NULL)
return(ENOMEM);
lHeapPtr = raidPtr->parityLogBufferHeap;
rc = rf_mutex_init(&raidPtr->parityLogPool.mutex);
if (rc) {
RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
__LINE__, rc);
RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs * raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
return(ENOMEM);
}
for (i = 0; i < raidPtr->numParityLogs; i++)
{
if (i == 0)
{
RF_Calloc(raidPtr->parityLogPool.parityLogs, 1, sizeof(RF_ParityLog_t), (RF_ParityLog_t *));
if (raidPtr->parityLogPool.parityLogs == NULL) {
RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs * raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
return(ENOMEM);
}
l = raidPtr->parityLogPool.parityLogs;
}
else
{
RF_Calloc(l->next, 1, sizeof(RF_ParityLog_t), (RF_ParityLog_t *));
if (l->next == NULL) {
RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs * raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
for(l=raidPtr->parityLogPool.parityLogs;l;l=next) {
next = l->next;
if (l->records)
RF_Free(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t)));
RF_Free(l, sizeof(RF_ParityLog_t));
}
return(ENOMEM);
}
l = l->next;
}
l->bufPtr = lHeapPtr;
lHeapPtr += raidPtr->numSectorsPerLog * raidPtr->bytesPerSector;
RF_Malloc(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t)), (RF_ParityLogRecord_t *));
if (l->records == NULL) {
RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs * raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
for(l=raidPtr->parityLogPool.parityLogs;l;l=next) {
next = l->next;
if (l->records)
RF_Free(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t)));
RF_Free(l, sizeof(RF_ParityLog_t));
}
return(ENOMEM);
}
}
rc = rf_ShutdownCreate(listp, rf_ShutdownParityLoggingPool, raidPtr);
if (rc) {
RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
__LINE__, rc);
rf_ShutdownParityLoggingPool(raidPtr);
return(rc);
}
/* build pool of region buffers */
rc = rf_mutex_init(&raidPtr->regionBufferPool.mutex);
if (rc) {
RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
__LINE__, rc);
return(ENOMEM);
}
rc = rf_cond_init(&raidPtr->regionBufferPool.cond);
if (rc) {
RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n", __FILE__,
__LINE__, rc);
rf_mutex_destroy(&raidPtr->regionBufferPool.mutex);
return(ENOMEM);
}
raidPtr->regionBufferPool.bufferSize = raidPtr->regionLogCapacity * raidPtr->bytesPerSector;
printf("regionBufferPool.bufferSize %d\n",raidPtr->regionBufferPool.bufferSize);
raidPtr->regionBufferPool.totalBuffers = 1; /* for now, only one region at a time may be reintegrated */
raidPtr->regionBufferPool.availableBuffers = raidPtr->regionBufferPool.totalBuffers;
raidPtr->regionBufferPool.availBuffersIndex = 0;
raidPtr->regionBufferPool.emptyBuffersIndex = 0;
RF_Malloc(raidPtr->regionBufferPool.buffers, raidPtr->regionBufferPool.totalBuffers * sizeof(caddr_t), (caddr_t *));
if (raidPtr->regionBufferPool.buffers == NULL) {
rf_mutex_destroy(&raidPtr->regionBufferPool.mutex);
rf_cond_destroy(&raidPtr->regionBufferPool.cond);
return(ENOMEM);
}
for (i = 0; i < raidPtr->regionBufferPool.totalBuffers; i++) {
RF_Malloc(raidPtr->regionBufferPool.buffers[i], raidPtr->regionBufferPool.bufferSize * sizeof(char), (caddr_t));
if (raidPtr->regionBufferPool.buffers == NULL) {
rf_mutex_destroy(&raidPtr->regionBufferPool.mutex);
rf_cond_destroy(&raidPtr->regionBufferPool.cond);
for(j=0;j<i;j++) {
RF_Free(raidPtr->regionBufferPool.buffers[i], raidPtr->regionBufferPool.bufferSize * sizeof(char));
}
RF_Free(raidPtr->regionBufferPool.buffers, raidPtr->regionBufferPool.totalBuffers * sizeof(caddr_t));
return(ENOMEM);
}
printf("raidPtr->regionBufferPool.buffers[%d] = %lx\n", i,
(long)raidPtr->regionBufferPool.buffers[i]);
}
rc = rf_ShutdownCreate(listp, rf_ShutdownParityLoggingRegionBufferPool, raidPtr);
if (rc) {
RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
__LINE__, rc);
rf_ShutdownParityLoggingRegionBufferPool(raidPtr);
return(rc);
}
/* build pool of parity buffers */
parityBufferCapacity = maxRegionParityRange;
rc = rf_mutex_init(&raidPtr->parityBufferPool.mutex);
if (rc) {
RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
__LINE__, rc);
return(rc);
}
rc = rf_cond_init(&raidPtr->parityBufferPool.cond);
if (rc) {
RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n", __FILE__,
__LINE__, rc);
rf_mutex_destroy(&raidPtr->parityBufferPool.mutex);
return(ENOMEM);
}
raidPtr->parityBufferPool.bufferSize = parityBufferCapacity * raidPtr->bytesPerSector;
printf("parityBufferPool.bufferSize %d\n",raidPtr->parityBufferPool.bufferSize);
raidPtr->parityBufferPool.totalBuffers = 1; /* for now, only one region at a time may be reintegrated */
raidPtr->parityBufferPool.availableBuffers = raidPtr->parityBufferPool.totalBuffers;
raidPtr->parityBufferPool.availBuffersIndex = 0;
raidPtr->parityBufferPool.emptyBuffersIndex = 0;
RF_Malloc(raidPtr->parityBufferPool.buffers, raidPtr->parityBufferPool.totalBuffers * sizeof(caddr_t), (caddr_t *));
if (raidPtr->parityBufferPool.buffers == NULL) {
rf_mutex_destroy(&raidPtr->parityBufferPool.mutex);
rf_cond_destroy(&raidPtr->parityBufferPool.cond);
return(ENOMEM);
}
for (i = 0; i < raidPtr->parityBufferPool.totalBuffers; i++) {
RF_Malloc(raidPtr->parityBufferPool.buffers[i], raidPtr->parityBufferPool.bufferSize * sizeof(char), (caddr_t));
if (raidPtr->parityBufferPool.buffers == NULL) {
rf_mutex_destroy(&raidPtr->parityBufferPool.mutex);
rf_cond_destroy(&raidPtr->parityBufferPool.cond);
for(j=0;j<i;j++) {
RF_Free(raidPtr->parityBufferPool.buffers[i], raidPtr->regionBufferPool.bufferSize * sizeof(char));
}
RF_Free(raidPtr->parityBufferPool.buffers, raidPtr->regionBufferPool.totalBuffers * sizeof(caddr_t));
return(ENOMEM);
}
printf("parityBufferPool.buffers[%d] = %lx\n", i,
(long)raidPtr->parityBufferPool.buffers[i]);
}
rc = rf_ShutdownCreate(listp, rf_ShutdownParityLoggingParityBufferPool, raidPtr);
if (rc) {
RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
__LINE__, rc);
rf_ShutdownParityLoggingParityBufferPool(raidPtr);
return(rc);
}
/* initialize parityLogDiskQueue */
rc = rf_create_managed_mutex(listp, &raidPtr->parityLogDiskQueue.mutex);
if (rc) {
RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
__LINE__, rc);
return(rc);
}
rc = rf_create_managed_cond(listp, &raidPtr->parityLogDiskQueue.cond);
if (rc) {
RF_ERRORMSG3("Unable to init cond file %s line %d rc=%d\n", __FILE__,
__LINE__, rc);
return(rc);
}
raidPtr->parityLogDiskQueue.flushQueue = NULL;
raidPtr->parityLogDiskQueue.reintQueue = NULL;
raidPtr->parityLogDiskQueue.bufHead = NULL;
raidPtr->parityLogDiskQueue.bufTail = NULL;
raidPtr->parityLogDiskQueue.reintHead = NULL;
raidPtr->parityLogDiskQueue.reintTail = NULL;
raidPtr->parityLogDiskQueue.logBlockHead = NULL;
raidPtr->parityLogDiskQueue.logBlockTail = NULL;
raidPtr->parityLogDiskQueue.reintBlockHead = NULL;
raidPtr->parityLogDiskQueue.reintBlockTail = NULL;
raidPtr->parityLogDiskQueue.freeDataList = NULL;
raidPtr->parityLogDiskQueue.freeCommonList = NULL;
rc = rf_ShutdownCreate(listp, rf_ShutdownParityLoggingDiskQueue, raidPtr);
if (rc) {
RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
__LINE__, rc);
return(rc);
}
for (i = 0; i < rf_numParityRegions; i++)
{
rc = rf_mutex_init(&raidPtr->regionInfo[i].mutex);
if (rc) {
RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
__LINE__, rc);
for(j=0;j<i;j++)
FreeRegionInfo(raidPtr, j);
RF_Free(raidPtr->regionInfo, (rf_numParityRegions * sizeof(RF_RegionInfo_t)));
return(ENOMEM);
}
rc = rf_mutex_init(&raidPtr->regionInfo[i].reintMutex);
if (rc) {
RF_ERRORMSG3("Unable to init mutex file %s line %d rc=%d\n", __FILE__,
__LINE__, rc);
rf_mutex_destroy(&raidPtr->regionInfo[i].mutex);
for(j=0;j<i;j++)
FreeRegionInfo(raidPtr, j);
RF_Free(raidPtr->regionInfo, (rf_numParityRegions * sizeof(RF_RegionInfo_t)));
return(ENOMEM);
}
raidPtr->regionInfo[i].reintInProgress = RF_FALSE;
raidPtr->regionInfo[i].regionStartAddr = raidPtr->regionLogCapacity * i;
raidPtr->regionInfo[i].parityStartAddr = raidPtr->regionParityRange * i;
if (i < rf_numParityRegions - 1)
{
raidPtr->regionInfo[i].capacity = raidPtr->regionLogCapacity;
raidPtr->regionInfo[i].numSectorsParity = raidPtr->regionParityRange;
}
else
{
raidPtr->regionInfo[i].capacity = lastRegionCapacity;
raidPtr->regionInfo[i].numSectorsParity = raidPtr->sectorsPerDisk - raidPtr->regionParityRange * i;
if (raidPtr->regionInfo[i].numSectorsParity > maxRegionParityRange)
maxRegionParityRange = raidPtr->regionInfo[i].numSectorsParity;
}
raidPtr->regionInfo[i].diskCount = 0;
RF_ASSERT(raidPtr->regionInfo[i].capacity + raidPtr->regionInfo[i].regionStartAddr <= totalLogCapacity);
RF_ASSERT(raidPtr->regionInfo[i].parityStartAddr + raidPtr->regionInfo[i].numSectorsParity <= raidPtr->sectorsPerDisk);
RF_Malloc(raidPtr->regionInfo[i].diskMap, (raidPtr->regionInfo[i].capacity * sizeof(RF_DiskMap_t)), (RF_DiskMap_t *));
if (raidPtr->regionInfo[i].diskMap == NULL) {
rf_mutex_destroy(&raidPtr->regionInfo[i].mutex);
rf_mutex_destroy(&raidPtr->regionInfo[i].reintMutex);
for(j=0;j<i;j++)
FreeRegionInfo(raidPtr, j);
RF_Free(raidPtr->regionInfo, (rf_numParityRegions * sizeof(RF_RegionInfo_t)));
return(ENOMEM);
}
raidPtr->regionInfo[i].loggingEnabled = RF_FALSE;
raidPtr->regionInfo[i].coreLog = NULL;
}
rc = rf_ShutdownCreate(listp, rf_ShutdownParityLoggingRegionInfo, raidPtr);
if (rc) {
RF_ERRORMSG3("Unable to create shutdown entry file %s line %d rc=%d\n", __FILE__,
__LINE__, rc);
rf_ShutdownParityLoggingRegionInfo(raidPtr);
return(rc);
}
RF_ASSERT(raidPtr->parityLogDiskQueue.threadState == 0);
raidPtr->parityLogDiskQueue.threadState = RF_PLOG_CREATED;
rc = RF_CREATE_THREAD(raidPtr->pLogDiskThreadHandle, rf_ParityLoggingDiskManager, raidPtr);
if (rc) {
raidPtr->parityLogDiskQueue.threadState = 0;
RF_ERRORMSG3("Unable to create parity logging disk thread file %s line %d rc=%d\n",
__FILE__, __LINE__, rc);
return(ENOMEM);
}
/* wait for thread to start */
RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
while(!(raidPtr->parityLogDiskQueue.threadState&RF_PLOG_RUNNING)) {
RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond, raidPtr->parityLogDiskQueue.mutex);
}
RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
rc = rf_ShutdownCreate(listp, rf_ShutdownParityLogging, raidPtr);
if (rc) {
RF_ERRORMSG1("Got rc=%d adding parity logging shutdown event\n", rc);
rf_ShutdownParityLogging(raidPtr);
return(rc);
}
if (rf_parityLogDebug)
{
printf(" size of disk log in sectors: %d\n",
(int)totalLogCapacity);
printf(" total number of parity regions is %d\n", (int)rf_numParityRegions);
printf(" nominal sectors of log per parity region is %d\n", (int)raidPtr->regionLogCapacity);
printf(" nominal region fragmentation is %d sectors\n",(int)fragmentation);
printf(" total number of parity logs is %d\n", raidPtr->numParityLogs);
printf(" parity log size is %d sectors\n", raidPtr->numSectorsPerLog);
printf(" total in-core log space is %d bytes\n", (int) rf_totalInCoreLogCapacity);
}
rf_EnableParityLogging(raidPtr);
return(0);
}
static void FreeRegionInfo(
RF_Raid_t *raidPtr,
RF_RegionId_t regionID)
{
RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
RF_Free(raidPtr->regionInfo[regionID].diskMap, (raidPtr->regionInfo[regionID].capacity * sizeof(RF_DiskMap_t)));
if (!rf_forceParityLogReint && raidPtr->regionInfo[regionID].coreLog) {
rf_ReleaseParityLogs(raidPtr, raidPtr->regionInfo[regionID].coreLog);
raidPtr->regionInfo[regionID].coreLog = NULL;
}
else {
RF_ASSERT(raidPtr->regionInfo[regionID].coreLog == NULL);
RF_ASSERT(raidPtr->regionInfo[regionID].diskCount == 0);
}
RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
rf_mutex_destroy(&raidPtr->regionInfo[regionID].mutex);
rf_mutex_destroy(&raidPtr->regionInfo[regionID].reintMutex);
}
static void FreeParityLogQueue(
RF_Raid_t *raidPtr,
RF_ParityLogQueue_t *queue)
{
RF_ParityLog_t *l1, *l2;
RF_LOCK_MUTEX(queue->mutex);
l1 = queue->parityLogs;
while (l1)
{
l2 = l1;
l1 = l2->next;
RF_Free(l2->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t)));
RF_Free(l2, sizeof(RF_ParityLog_t));
}
RF_UNLOCK_MUTEX(queue->mutex);
rf_mutex_destroy(&queue->mutex);
}
static void FreeRegionBufferQueue(RF_RegionBufferQueue_t *queue)
{
int i;
RF_LOCK_MUTEX(queue->mutex);
if (queue->availableBuffers != queue->totalBuffers)
{
printf("Attempt to free region queue which is still in use!\n");
RF_ASSERT(0);
}
for (i = 0; i < queue->totalBuffers; i++)
RF_Free(queue->buffers[i], queue->bufferSize);
RF_Free(queue->buffers, queue->totalBuffers * sizeof(caddr_t));
RF_UNLOCK_MUTEX(queue->mutex);
rf_mutex_destroy(&queue->mutex);
}
static void rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg)
{
RF_Raid_t *raidPtr;
RF_RegionId_t i;
raidPtr = (RF_Raid_t *)arg;
if (rf_parityLogDebug) {
int tid;
rf_get_threadid(tid);
printf("[%d] ShutdownParityLoggingRegionInfo\n", tid);
}
/* free region information structs */
for (i = 0; i < rf_numParityRegions; i++)
FreeRegionInfo(raidPtr, i);
RF_Free(raidPtr->regionInfo, (rf_numParityRegions * sizeof(raidPtr->regionInfo)));
raidPtr->regionInfo = NULL;
}
static void rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg)
{
RF_Raid_t *raidPtr;
raidPtr = (RF_Raid_t *)arg;
if (rf_parityLogDebug) {
int tid;
rf_get_threadid(tid);
printf("[%d] ShutdownParityLoggingPool\n", tid);
}
/* free contents of parityLogPool */
FreeParityLogQueue(raidPtr, &raidPtr->parityLogPool);
RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs * raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
}
static void rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg)
{
RF_Raid_t *raidPtr;
raidPtr = (RF_Raid_t *)arg;
if (rf_parityLogDebug) {
int tid;
rf_get_threadid(tid);
printf("[%d] ShutdownParityLoggingRegionBufferPool\n", tid);
}
FreeRegionBufferQueue(&raidPtr->regionBufferPool);
}
static void rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg)
{
RF_Raid_t *raidPtr;
raidPtr = (RF_Raid_t *)arg;
if (rf_parityLogDebug) {
int tid;
rf_get_threadid(tid);
printf("[%d] ShutdownParityLoggingParityBufferPool\n", tid);
}
FreeRegionBufferQueue(&raidPtr->parityBufferPool);
}
static void rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg)
{
RF_ParityLogData_t *d;
RF_CommonLogData_t *c;
RF_Raid_t *raidPtr;
raidPtr = (RF_Raid_t *)arg;
if (rf_parityLogDebug) {
int tid;
rf_get_threadid(tid);
printf("[%d] ShutdownParityLoggingDiskQueue\n", tid);
}
/* free disk manager stuff */
RF_ASSERT(raidPtr->parityLogDiskQueue.bufHead == NULL);
RF_ASSERT(raidPtr->parityLogDiskQueue.bufTail == NULL);
RF_ASSERT(raidPtr->parityLogDiskQueue.reintHead == NULL);
RF_ASSERT(raidPtr->parityLogDiskQueue.reintTail == NULL);
while (raidPtr->parityLogDiskQueue.freeDataList)
{
d = raidPtr->parityLogDiskQueue.freeDataList;
raidPtr->parityLogDiskQueue.freeDataList = raidPtr->parityLogDiskQueue.freeDataList->next;
RF_Free(d, sizeof(RF_ParityLogData_t));
}
while (raidPtr->parityLogDiskQueue.freeCommonList)
{
c = raidPtr->parityLogDiskQueue.freeCommonList;
rf_mutex_destroy(&c->mutex);
raidPtr->parityLogDiskQueue.freeCommonList = raidPtr->parityLogDiskQueue.freeCommonList->next;
RF_Free(c, sizeof(RF_CommonLogData_t));
}
}
static void rf_ShutdownParityLogging(RF_ThreadArg_t arg)
{
RF_Raid_t *raidPtr;
raidPtr = (RF_Raid_t *)arg;
if (rf_parityLogDebug) {
int tid;
rf_get_threadid(tid);
printf("[%d] ShutdownParityLogging\n", tid);
}
#ifndef SIMULATE
/* shutdown disk thread */
/* This has the desirable side-effect of forcing all regions to be
reintegrated. This is necessary since all parity log maps are
currently held in volatile memory. */
RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_TERMINATE;
RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
/*
* pLogDiskThread will now terminate when queues are cleared
* now wait for it to be done
*/
RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
while(!(raidPtr->parityLogDiskQueue.threadState&RF_PLOG_SHUTDOWN)) {
RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond, raidPtr->parityLogDiskQueue.mutex);
}
RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
#else /* !SIMULATE */
/* explicitly call shutdown routines which force reintegration */
rf_ShutdownLogging(raidPtr);
#endif /* !SIMULATE */
if (rf_parityLogDebug) {
int tid;
rf_get_threadid(tid);
printf("[%d] ShutdownParityLogging done (thread completed)\n", tid);
}
}
int rf_GetDefaultNumFloatingReconBuffersParityLogging(RF_Raid_t *raidPtr)
{
return(20);
}
RF_HeadSepLimit_t rf_GetDefaultHeadSepLimitParityLogging(RF_Raid_t *raidPtr)
{
return(10);
}
/* return the region ID for a given RAID address */
RF_RegionId_t rf_MapRegionIDParityLogging(
RF_Raid_t *raidPtr,
RF_SectorNum_t address)
{
RF_RegionId_t regionID;
/* regionID = address / (raidPtr->regionParityRange * raidPtr->Layout.numDataCol); */
regionID = address / raidPtr->regionParityRange;
if (regionID == rf_numParityRegions)
{
/* last region may be larger than other regions */
regionID--;
}
RF_ASSERT(address >= raidPtr->regionInfo[regionID].parityStartAddr);
RF_ASSERT(address < raidPtr->regionInfo[regionID].parityStartAddr + raidPtr->regionInfo[regionID].numSectorsParity);
RF_ASSERT(regionID < rf_numParityRegions);
return(regionID);
}
/* given a logical RAID sector, determine physical disk address of data */
void rf_MapSectorParityLogging(
RF_Raid_t *raidPtr,
RF_RaidAddr_t raidSector,
RF_RowCol_t *row,
RF_RowCol_t *col,
RF_SectorNum_t *diskSector,
int remap)
{
RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
*row = 0;
/* *col = (SUID % (raidPtr->numCol - raidPtr->Layout.numParityLogCol)); */
*col = SUID % raidPtr->Layout.numDataCol;
*diskSector = (SUID / (raidPtr->Layout.numDataCol)) * raidPtr->Layout.sectorsPerStripeUnit +
(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
}
/* given a logical RAID sector, determine physical disk address of parity */
void rf_MapParityParityLogging(
RF_Raid_t *raidPtr,
RF_RaidAddr_t raidSector,
RF_RowCol_t *row,
RF_RowCol_t *col,
RF_SectorNum_t *diskSector,
int remap)
{
RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
*row = 0;
/* *col = raidPtr->Layout.numDataCol-(SUID/raidPtr->Layout.numDataCol)%(raidPtr->numCol - raidPtr->Layout.numParityLogCol); */
*col = raidPtr->Layout.numDataCol;
*diskSector =(SUID / (raidPtr->Layout.numDataCol)) * raidPtr->Layout.sectorsPerStripeUnit +
(raidSector % raidPtr->Layout.sectorsPerStripeUnit);
}
/* given a regionID and sector offset, determine the physical disk address of the parity log */
void rf_MapLogParityLogging(
RF_Raid_t *raidPtr,
RF_RegionId_t regionID,
RF_SectorNum_t regionOffset,
RF_RowCol_t *row,
RF_RowCol_t *col,
RF_SectorNum_t *startSector)
{
*row = 0;
*col = raidPtr->numCol - 1;
*startSector = raidPtr->regionInfo[regionID].regionStartAddr + regionOffset;
}
/* given a regionID, determine the physical disk address of the logged parity for that region */
void rf_MapRegionParity(
RF_Raid_t *raidPtr,
RF_RegionId_t regionID,
RF_RowCol_t *row,
RF_RowCol_t *col,
RF_SectorNum_t *startSector,
RF_SectorCount_t *numSector)
{
*row = 0;
*col = raidPtr->numCol - 2;
*startSector = raidPtr->regionInfo[regionID].parityStartAddr;
*numSector = raidPtr->regionInfo[regionID].numSectorsParity;
}
/* given a logical RAID address, determine the participating disks in the stripe */
void rf_IdentifyStripeParityLogging(
RF_Raid_t *raidPtr,
RF_RaidAddr_t addr,
RF_RowCol_t **diskids,
RF_RowCol_t *outRow)
{
RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr);
RF_ParityLoggingConfigInfo_t *info = (RF_ParityLoggingConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo;
*outRow = 0;
*diskids = info->stripeIdentifier[ stripeID % raidPtr->numCol ];
}
void rf_MapSIDToPSIDParityLogging(
RF_RaidLayout_t *layoutPtr,
RF_StripeNum_t stripeID,
RF_StripeNum_t *psID,
RF_ReconUnitNum_t *which_ru)
{
*which_ru = 0;
*psID = stripeID;
}
/* select an algorithm for performing an access. Returns two pointers,
* one to a function that will return information about the DAG, and
* another to a function that will create the dag.
*/
void rf_ParityLoggingDagSelect(
RF_Raid_t *raidPtr,
RF_IoType_t type,
RF_AccessStripeMap_t *asmp,
RF_VoidFuncPtr *createFunc)
{
RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
RF_PhysDiskAddr_t *failedPDA=NULL;
RF_RowCol_t frow, fcol;
RF_RowStatus_t rstat;
int prior_recon;
int tid;
RF_ASSERT(RF_IO_IS_R_OR_W(type));
if (asmp->numDataFailed + asmp->numParityFailed > 1) {
RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n");
/* *infoFunc = */ *createFunc = NULL;
return;
} else if (asmp->numDataFailed + asmp->numParityFailed == 1) {
/* if under recon & already reconstructed, redirect the access to the spare drive
* and eliminate the failure indication
*/
failedPDA = asmp->failedPDAs[0];
frow = failedPDA->row; fcol = failedPDA->col;
rstat = raidPtr->status[failedPDA->row];
prior_recon = (rstat == rf_rs_reconfigured) || (
(rstat == rf_rs_reconstructing) ?
rf_CheckRUReconstructed(raidPtr->reconControl[frow]->reconMap, failedPDA->startSector) : 0
);
if (prior_recon) {
RF_RowCol_t or = failedPDA->row,oc=failedPDA->col;
RF_SectorNum_t oo=failedPDA->startSector;
if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { /* redirect to dist spare space */
if (failedPDA == asmp->parityInfo) {
/* parity has failed */
(layoutPtr->map->MapParity)(raidPtr, failedPDA->raidAddress, &failedPDA->row,
&failedPDA->col, &failedPDA->startSector, RF_REMAP);
if (asmp->parityInfo->next) { /* redir 2nd component, if any */
RF_PhysDiskAddr_t *p = asmp->parityInfo->next;
RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit;
p->row = failedPDA->row;
p->col = failedPDA->col;
p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) +
SUoffs; /* cheating: startSector is not really a RAID address */
}
} else if (asmp->parityInfo->next && failedPDA == asmp->parityInfo->next) {
RF_ASSERT(0); /* should not ever happen */
} else {
/* data has failed */
(layoutPtr->map->MapSector)(raidPtr, failedPDA->raidAddress, &failedPDA->row,
&failedPDA->col, &failedPDA->startSector, RF_REMAP);
}
} else { /* redirect to dedicated spare space */
failedPDA->row = raidPtr->Disks[frow][fcol].spareRow;
failedPDA->col = raidPtr->Disks[frow][fcol].spareCol;
/* the parity may have two distinct components, both of which may need to be redirected */
if (asmp->parityInfo->next) {
if (failedPDA == asmp->parityInfo) {
failedPDA->next->row = failedPDA->row;
failedPDA->next->col = failedPDA->col;
} else if (failedPDA == asmp->parityInfo->next) { /* paranoid: should never occur */
asmp->parityInfo->row = failedPDA->row;
asmp->parityInfo->col = failedPDA->col;
}
}
}
RF_ASSERT(failedPDA->col != -1);
if (rf_dagDebug || rf_mapDebug) {
rf_get_threadid(tid);
printf("[%d] Redirected type '%c' r %d c %d o %ld -> r %d c %d o %ld\n",
tid,type,or,oc,(long)oo,failedPDA->row,failedPDA->col,(long)failedPDA->startSector);
}
asmp->numDataFailed = asmp->numParityFailed = 0;
}
}
if (type == RF_IO_TYPE_READ) {
if (asmp->numDataFailed == 0)
*createFunc = (RF_VoidFuncPtr)rf_CreateFaultFreeReadDAG;
else
*createFunc = (RF_VoidFuncPtr)rf_CreateRaidFiveDegradedReadDAG;
}
else {
/* if mirroring, always use large writes. If the access requires two distinct parity updates,
* always do a small write. If the stripe contains a failure but the access does not, do a
* small write.
* The first conditional (numStripeUnitsAccessed <= numDataCol/2) uses a less-than-or-equal
* rather than just a less-than because when G is 3 or 4, numDataCol/2 is 1, and I want
* single-stripe-unit updates to use just one disk.
*/
if ( (asmp->numDataFailed + asmp->numParityFailed) == 0) {
if (((asmp->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) && (layoutPtr->numDataCol!=1)) ||
(asmp->parityInfo->next!=NULL) || rf_CheckStripeForFailures(raidPtr, asmp)) {
*createFunc = (RF_VoidFuncPtr)rf_CreateParityLoggingSmallWriteDAG;
}
else
*createFunc = (RF_VoidFuncPtr)rf_CreateParityLoggingLargeWriteDAG;
}
else
if (asmp->numParityFailed == 1)
*createFunc = (RF_VoidFuncPtr)rf_CreateNonRedundantWriteDAG;
else
if (asmp->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)
*createFunc = NULL;
else
*createFunc = (RF_VoidFuncPtr)rf_CreateDegradedWriteDAG;
}
}
#endif /* RF_INCLUDE_PARITYLOGGING > 0 */