NetBSD/lib/libcurses/getch.c

533 lines
14 KiB
C
Raw Normal View History

/* $NetBSD: getch.c,v 1.14 1999/06/28 13:32:43 simonb Exp $ */
1997-07-22 11:36:20 +04:00
1993-03-21 12:45:37 +03:00
/*
1994-08-18 01:51:41 +04:00
* Copyright (c) 1981, 1993, 1994
* The Regents of the University of California. All rights reserved.
1993-03-21 12:45:37 +03:00
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
1997-07-22 11:36:20 +04:00
#include <sys/cdefs.h>
1993-03-21 12:45:37 +03:00
#ifndef lint
1997-07-22 11:36:20 +04:00
#if 0
1994-08-18 01:51:41 +04:00
static char sccsid[] = "@(#)getch.c 8.2 (Berkeley) 5/4/94";
1997-07-22 11:36:20 +04:00
#else
__RCSID("$NetBSD: getch.c,v 1.14 1999/06/28 13:32:43 simonb Exp $");
1997-07-22 11:36:20 +04:00
#endif
#endif /* not lint */
1993-03-21 12:45:37 +03:00
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
1994-08-18 01:51:41 +04:00
#include "curses.h"
1993-03-21 12:45:37 +03:00
#define DEFAULT_DELAY 2 /* default delay for timeout() */
/*
* Keyboard input handler. Do this by snarfing
* all the info we can out of the termcap entry for TERM and putting it
* into a set of keymaps. A keymap is an array the size of all the possible
* single characters we can get, the contents of the array is a structure
* that contains the type of entry this character is (i.e. part/end of a
* multi-char sequence or a plain char) and either a pointer which will point
* to another keymap (in the case of a multi-char sequence) OR the data value
* that this key should return.
*
*/
/* private data structures for holding the key definitions */
typedef struct keymap keymap_t;
typedef struct key_entry key_entry_t;
struct key_entry {
short type; /* type of key this is */
union {
keymap_t *next; /* next keymap is key is multi-key sequence */
int symbol; /* key symbol if key is a leaf entry */
} value;
};
/* Types of key structures we can have */
#define KEYMAP_MULTI 1 /* part of a multi char sequence */
#define KEYMAP_LEAF 2 /* key has a symbol associated with it, either
* it is the end of a multi-char sequence or a
* single char key that generates a symbol */
/* The max number of different chars we can receive */
#define MAX_CHAR 256
struct keymap {
int count; /* count of number of key structs allocated */
short mapping[MAX_CHAR]; /* mapping of key to allocated structs */
key_entry_t **key; /* dynamic array of keys */};
/* Key buffer */
#define INBUF_SZ 16 /* size of key buffer - must be larger than
* longest multi-key sequence */
static char inbuf[INBUF_SZ];
static int start, end, working; /* pointers for manipulating inbuf data */
#define INC_POINTER(ptr) do { \
(ptr)++; \
ptr %= INBUF_SZ; \
} while(/*CONSTCOND*/0)
static short state; /* state of the inkey function */
#define INKEY_NORM 0 /* no key backlog to process */
#define INKEY_ASSEMBLING 1 /* assembling a multi-key sequence */
#define INKEY_BACKOUT 2 /* recovering from an unrecognised key */
#define INKEY_TIMEOUT 3 /* multi-key sequence timeout */
/* The termcap data we are interested in and the symbols they map to */
struct tcdata {
char *name; /* name of termcap entry */
int symbol; /* the symbol associated with it */
};
static const struct tcdata tc[] = {
{"K1", KEY_A1},
{"K2", KEY_B2},
{"K3", KEY_A3},
{"K4", KEY_C1},
{"K5", KEY_C3},
{"k0", KEY_F0},
{"k1", KEY_F(1)},
{"k2", KEY_F(2)},
{"k3", KEY_F(3)},
{"k4", KEY_F(4)},
{"k5", KEY_F(5)},
{"k6", KEY_F(6)},
{"k7", KEY_F(7)},
{"k8", KEY_F(8)},
{"k9", KEY_F(9)},
{"kA", KEY_IL},
{"ka", KEY_CATAB},
{"kb", KEY_BACKSPACE},
{"kC", KEY_CLEAR},
{"kD", KEY_DC},
{"kd", KEY_DOWN},
{"kE", KEY_EOL},
{"kF", KEY_SF},
{"kH", KEY_LL},
{"kh", KEY_HOME},
{"kI", KEY_IC},
{"kL", KEY_DL},
{"kl", KEY_LEFT},
{"kN", KEY_NPAGE},
{"kP", KEY_PPAGE},
{"kR", KEY_SR},
{"kr", KEY_RIGHT},
{"kS", KEY_EOS},
{"kT", KEY_STAB},
{"kt", KEY_CTAB},
{"ku", KEY_UP}
};
/* Number of TC entries .... */
static const int num_tcs = (sizeof(tc) / sizeof(struct tcdata));
/* The root keymap */
static keymap_t *base_keymap;
/* prototypes for private functions */
static keymap_t *new_keymap(void); /* create a new keymap */
static key_entry_t *new_key(void); /* create a new key entry */
static unsigned inkey(int, int);
/*
* Init_getch - initialise all the pointers & structures needed to make
* getch work in keypad mode.
*
*/
void
__init_getch(sp)
char *sp;
{
static char termcap[1024];
char entry[1024], termname[1024], *p;
int i, j, length;
keymap_t *current;
key_entry_t *the_key;
/* init the inkey state variable */
state = INKEY_NORM;
/* init the base keymap */
base_keymap = new_keymap();
/* key input buffer pointers */
start = end = working = 0;
/* now do the termcap snarfing ... */
strncpy(termname, sp, 1022);
termname[1023] = 0;
if (tgetent(termcap, termname) <= 0)
return;
for (i = 0; i < num_tcs; i++) {
p = entry;
if (tgetstr(tc[i].name, &p) == NULL)
continue;
current = base_keymap; /* always start with base keymap. */
length = strlen(entry);
for (j = 0; j < length - 1; j++) {
if (current->mapping[(unsigned) entry[j]] < 0) {
/* first time for this char */
current->mapping[(unsigned) entry[j]] = current->count; /* map new entry */
the_key = new_key();
/* multikey coz we are here */
the_key->type = KEYMAP_MULTI;
/* need for next key */
the_key->value.next = new_keymap();
/* put into key array */
if ((current->key = realloc(current->key, (current->count + 1) * sizeof(key_entry_t *))) == NULL) {
fprintf(stderr,
"Could not malloc for key entry\n");
exit(1);
}
current->key[current->count++] = the_key;
}
/* next key uses this map... */
current = current->key[current->mapping[(unsigned) entry[j]]]->value.next;
}
/*
* This is the last key in the sequence (it may have been
* the only one but that does not matter) this means it is
* a leaf key and should have a symbol associated with it.
*/
if (current->count > 0) {
/*
* If there were other keys then we need to
* extend the mapping array.
*/
if ((current->key =
realloc(current->key,
(current->count + 1) *
sizeof(key_entry_t *))) == NULL) {
fprintf(stderr,
"Could not malloc for key entry\n");
exit(1);
}
}
current->mapping[(unsigned) entry[length - 1]] = current->count;
the_key = new_key();
the_key->type = KEYMAP_LEAF; /* leaf key */
/* the associated symbol */
the_key->value.symbol = tc[i].symbol;
current->key[current->count++] = the_key;
}
}
/*
* new_keymap - allocates & initialises a new keymap structure. This
* function returns a pointer to the new keymap.
*
*/
static keymap_t *
new_keymap(void)
{
int i;
keymap_t *new_map;
if ((new_map = malloc(sizeof(keymap_t))) == NULL) {
perror("Inkey: Cannot allocate new keymap");
exit(2);
}
/* Initialise the new map */
new_map->count = 0;
for (i = 0; i < MAX_CHAR; i++) {
new_map->mapping[i] = -1; /* no mapping for char */
}
/* one does assume there will be at least one key mapped.... */
if ((new_map->key = malloc(sizeof(key_entry_t *))) == NULL) {
perror("Could not malloc first key ent");
exit(1);
}
return (new_map);
}
/*
* new_key - allocates & initialises a new key entry. This function returns
* a pointer to the newly allocated key entry.
*
*/
static key_entry_t *
new_key(void)
{
key_entry_t *new_one;
if ((new_one = malloc(sizeof(key_entry_t))) == NULL) {
perror("inkey: Cannot allocate new key entry");
exit(2);
}
new_one->type = 0;
new_one->value.next = NULL;
return (new_one);
}
/*
* inkey - do the work to process keyboard input, check for multi-key
* sequences and return the appropriate symbol if we get a match.
*
*/
unsigned
inkey(to, delay)
int to, delay;
{
int k, nchar;
char c;
keymap_t *current = base_keymap;
for (;;) { /* loop until we get a complete key sequence */
reread:
if (state == INKEY_NORM) {
if (delay && __timeout(delay) == ERR)
return ERR;
if ((nchar = read(STDIN_FILENO, &c, sizeof(char))) < 0)
return ERR;
if (delay && (__notimeout() == ERR))
return ERR;
if (nchar == 0)
return ERR; /* just in case we are nodelay
* mode */
k = (unsigned int) c;
#ifdef DEBUG
__CTRACE("inkey (state normal) got '%s'\n", unctrl(k));
#endif
working = start;
inbuf[working] = k;
INC_POINTER(working);
end = working;
state = INKEY_ASSEMBLING; /* go to the assembling
* state now */
} else if (state == INKEY_BACKOUT) {
k = inbuf[working];
INC_POINTER(working);
if (working == end) { /* see if we have run
* out of keys in the
* backlog */
/* if we have then switch to
assembling */
state = INKEY_ASSEMBLING;
}
} else if (state == INKEY_ASSEMBLING) {
/* assembling a key sequence */
if (delay) {
if (__timeout(to ? DEFAULT_DELAY : delay) == ERR)
return ERR;
} else {
if (to && (__timeout(DEFAULT_DELAY) == ERR))
return ERR;
}
if ((nchar = read(STDIN_FILENO, &c,
sizeof(char))) < 0)
return ERR;
if ((to || delay) && (__notimeout() == ERR))
return ERR;
k = (unsigned int) c;
#ifdef DEBUG
__CTRACE("inkey (state assembling) got '%s'\n", unctrl(k));
#endif
if (nchar == 0) { /* inter-char timeout,
* start backing out */
if (start == end)
/* no chars in the buffer, restart */
goto reread;
k = inbuf[start];
state = INKEY_TIMEOUT;
} else {
inbuf[working] = k;
INC_POINTER(working);
end = working;
}
} else {
fprintf(stderr, "Inkey state screwed - exiting!!!");
exit(2);
}
/* Check key has no special meaning and we have not timed out */
if ((current->mapping[k] < 0) || (state == INKEY_TIMEOUT)) {
/* return the first key we know about */
k = inbuf[start];
INC_POINTER(start);
working = start;
if (start == end) { /* only one char processed */
state = INKEY_NORM;
} else {/* otherwise we must have more than one char
* to backout */
state = INKEY_BACKOUT;
}
return k;
} else { /* must be part of a multikey sequence */
/* check for completed key sequence */
if (current->key[current->mapping[k]]->type == KEYMAP_LEAF) {
start = working; /* eat the key sequence
* in inbuf */
/* check if inbuf empty now */
if (start == end) {
/* if it is go back to normal */
state = INKEY_NORM;
} else {
/* otherwise go to backout state */
state = INKEY_BACKOUT;
}
/* return the symbol */
return current->key[current->mapping[k]]->value.symbol;
} else {
/*
* Step on to next part of the multi-key
* sequence.
*/
current = current->key[current->mapping[k]]->value.next;
}
}
}
}
1993-03-21 12:45:37 +03:00
/*
1993-08-07 09:48:37 +04:00
* wgetch --
* Read in a character from the window.
1993-03-21 12:45:37 +03:00
*/
1993-08-07 09:48:37 +04:00
int
1993-03-21 12:45:37 +03:00
wgetch(win)
1998-02-03 22:12:13 +03:00
WINDOW *win;
1993-08-07 09:48:37 +04:00
{
int inp, weset;
int nchar;
char c;
1993-03-21 12:45:37 +03:00
if (!(win->flags & __SCROLLOK) && (win->flags & __FULLWIN)
&& win->curx == win->maxx - 1 && win->cury == win->maxy - 1
&& __echoit)
1993-08-07 09:48:37 +04:00
return (ERR);
#ifdef DEBUG
__CTRACE("wgetch: __echoit = %d, __rawmode = %d\n",
1993-08-07 09:48:37 +04:00
__echoit, __rawmode);
#endif
if (__echoit && !__rawmode) {
1993-03-21 12:45:37 +03:00
cbreak();
1993-08-07 09:48:37 +04:00
weset = 1;
} else
weset = 0;
__save_termios();
if (win->flags & __KEYPAD) {
switch (win->delay)
{
case -1:
inp = inkey (win->flags & __NOTIMEOUT ? 0 : 1, 0);
break;
case 0:
if (__nodelay() == ERR) return ERR;
inp = inkey(0, 0);
break;
default:
inp = inkey(win->flags & __NOTIMEOUT ? 0 : 1, win->delay);
break;
}
} else {
switch (win->delay)
{
case -1:
break;
case 0:
if (__nodelay() == ERR) {
__restore_termios();
return ERR;
}
break;
default:
if (__timeout(win->delay) == ERR) {
__restore_termios();
return ERR;
}
break;
}
if ((nchar = read(STDIN_FILENO, &c, sizeof(char))) < 0) {
inp = ERR;
} else {
if (nchar == 0) {
__restore_termios();
return ERR; /* we have timed out */
}
inp = (unsigned int) c;
}
}
1993-08-07 09:48:37 +04:00
#ifdef DEBUG
__CTRACE("wgetch got '%s'\n", unctrl(inp));
1993-08-07 09:48:37 +04:00
#endif
if (win->delay > -1) {
if (__delay() == ERR) {
__restore_termios();
return ERR;
}
}
__restore_termios();
1993-08-07 09:48:37 +04:00
if (__echoit) {
mvwaddch(curscr,
(int) (win->cury + win->begy), (int) (win->curx + win->begx), inp);
1993-08-07 09:48:37 +04:00
waddch(win, inp);
1993-03-21 12:45:37 +03:00
}
if (weset)
nocbreak();
return ((inp < 0) || (inp == ERR) ? ERR : inp);
1993-03-21 12:45:37 +03:00
}