NetBSD/sys/uvm/uvm_page.c

1885 lines
46 KiB
C
Raw Normal View History

/* $NetBSD: uvm_page.c,v 1.195 2017/12/02 08:15:43 mrg Exp $ */
2001-05-25 08:06:11 +04:00
/*
* Copyright (c) 1997 Charles D. Cranor and Washington University.
2001-05-25 08:06:11 +04:00
* Copyright (c) 1991, 1993, The Regents of the University of California.
*
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)vm_page.c 8.3 (Berkeley) 3/21/94
1998-02-07 14:07:38 +03:00
* from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
*
*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
2001-05-25 08:06:11 +04:00
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
2001-05-25 08:06:11 +04:00
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
2001-05-25 08:06:11 +04:00
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*
* uvm_page.c: page ops.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.195 2017/12/02 08:15:43 mrg Exp $");
#include "opt_ddb.h"
#include "opt_uvm.h"
#include "opt_uvmhist.h"
#include "opt_readahead.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sched.h>
#include <sys/kernel.h>
#include <sys/vnode.h>
#include <sys/proc.h>
#include <sys/atomic.h>
#include <sys/cpu.h>
#include <sys/extent.h>
#include <uvm/uvm.h>
#include <uvm/uvm_ddb.h>
#include <uvm/uvm_pdpolicy.h>
/*
* Some supported CPUs in a given architecture don't support all
* of the things necessary to do idle page zero'ing efficiently.
* We therefore provide a way to enable it from machdep code here.
*/
2007-02-22 09:05:00 +03:00
bool vm_page_zero_enable = false;
/*
* number of pages per-CPU to reserve for the kernel.
*/
#ifndef UVM_RESERVED_PAGES_PER_CPU
#define UVM_RESERVED_PAGES_PER_CPU 5
#endif
int vm_page_reserve_kernel = UVM_RESERVED_PAGES_PER_CPU;
/*
* physical memory size;
*/
psize_t physmem;
/*
* local variables
*/
/*
* these variables record the values returned by vm_page_bootstrap,
* for debugging purposes. The implementation of uvm_pageboot_alloc
* and pmap_startup here also uses them internally.
*/
static vaddr_t virtual_space_start;
static vaddr_t virtual_space_end;
/*
* we allocate an initial number of page colors in uvm_page_init(),
* and remember them. We may re-color pages as cache sizes are
* discovered during the autoconfiguration phase. But we can never
* free the initial set of buckets, since they are allocated using
* uvm_pageboot_alloc().
*/
static size_t recolored_pages_memsize /* = 0 */;
#ifdef DEBUG
vaddr_t uvm_zerocheckkva;
#endif /* DEBUG */
/*
* These functions are reserved for uvm(9) internal use and are not
* exported in the header file uvm_physseg.h
*
* Thus they are redefined here.
*/
void uvm_physseg_init_seg(uvm_physseg_t, struct vm_page *);
void uvm_physseg_seg_chomp_slab(uvm_physseg_t, struct vm_page *, size_t);
/* returns a pgs array */
struct vm_page *uvm_physseg_seg_alloc_from_slab(uvm_physseg_t, size_t);
/*
* local prototypes
*/
static void uvm_pageinsert(struct uvm_object *, struct vm_page *);
static void uvm_pageremove(struct uvm_object *, struct vm_page *);
/*
* per-object tree of pages
*/
static signed int
uvm_page_compare_nodes(void *ctx, const void *n1, const void *n2)
{
const struct vm_page *pg1 = n1;
const struct vm_page *pg2 = n2;
const voff_t a = pg1->offset;
const voff_t b = pg2->offset;
if (a < b)
return -1;
if (a > b)
return 1;
return 0;
}
static signed int
uvm_page_compare_key(void *ctx, const void *n, const void *key)
{
const struct vm_page *pg = n;
const voff_t a = pg->offset;
const voff_t b = *(const voff_t *)key;
if (a < b)
return -1;
if (a > b)
return 1;
return 0;
}
const rb_tree_ops_t uvm_page_tree_ops = {
.rbto_compare_nodes = uvm_page_compare_nodes,
.rbto_compare_key = uvm_page_compare_key,
.rbto_node_offset = offsetof(struct vm_page, rb_node),
.rbto_context = NULL
};
/*
* inline functions
*/
/*
* uvm_pageinsert: insert a page in the object.
*
* => caller must lock object
* => caller must lock page queues
* => call should have already set pg's object and offset pointers
* and bumped the version counter
*/
static inline void
uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
struct vm_page *where)
{
KASSERT(uobj == pg->uobject);
KASSERT(mutex_owned(uobj->vmobjlock));
KASSERT((pg->flags & PG_TABLED) == 0);
KASSERT(where == NULL || (where->flags & PG_TABLED));
KASSERT(where == NULL || (where->uobject == uobj));
if (UVM_OBJ_IS_VNODE(uobj)) {
if (uobj->uo_npages == 0) {
struct vnode *vp = (struct vnode *)uobj;
vholdl(vp);
}
if (UVM_OBJ_IS_VTEXT(uobj)) {
atomic_inc_uint(&uvmexp.execpages);
} else {
atomic_inc_uint(&uvmexp.filepages);
}
} else if (UVM_OBJ_IS_AOBJ(uobj)) {
atomic_inc_uint(&uvmexp.anonpages);
}
if (where)
TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
else
TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
1998-03-09 03:58:55 +03:00
pg->flags |= PG_TABLED;
a whole bunch of changes to improve performance and robustness under load: - remove special treatment of pager_map mappings in pmaps. this is required now, since I've removed the globals that expose the address range. pager_map now uses pmap_kenter_pa() instead of pmap_enter(), so there's no longer any need to special-case it. - eliminate struct uvm_vnode by moving its fields into struct vnode. - rewrite the pageout path. the pager is now responsible for handling the high-level requests instead of only getting control after a bunch of work has already been done on its behalf. this will allow us to UBCify LFS, which needs tighter control over its pages than other filesystems do. writing a page to disk no longer requires making it read-only, which allows us to write wired pages without causing all kinds of havoc. - use a new PG_PAGEOUT flag to indicate that a page should be freed on behalf of the pagedaemon when it's unlocked. this flag is very similar to PG_RELEASED, but unlike PG_RELEASED, PG_PAGEOUT can be cleared if the pageout fails due to eg. an indirect-block buffer being locked. this allows us to remove the "version" field from struct vm_page, and together with shrinking "loan_count" from 32 bits to 16, struct vm_page is now 4 bytes smaller. - no longer use PG_RELEASED for swap-backed pages. if the page is busy because it's being paged out, we can't release the swap slot to be reallocated until that write is complete, but unlike with vnodes we don't keep a count of in-progress writes so there's no good way to know when the write is done. instead, when we need to free a busy swap-backed page, just sleep until we can get it busy ourselves. - implement a fast-path for extending writes which allows us to avoid zeroing new pages. this substantially reduces cpu usage. - encapsulate the data used by the genfs code in a struct genfs_node, which must be the first element of the filesystem-specific vnode data for filesystems which use genfs_{get,put}pages(). - eliminate many of the UVM pagerops, since they aren't needed anymore now that the pager "put" operation is a higher-level operation. - enhance the genfs code to allow NFS to use the genfs_{get,put}pages instead of a modified copy. - clean up struct vnode by removing all the fields that used to be used by the vfs_cluster.c code (which we don't use anymore with UBC). - remove kmem_object and mb_object since they were useless. instead of allocating pages to these objects, we now just allocate pages with no object. such pages are mapped in the kernel until they are freed, so we can use the mapping to find the page to free it. this allows us to remove splvm() protection in several places. The sum of all these changes improves write throughput on my decstation 5000/200 to within 1% of the rate of NetBSD 1.5 and reduces the elapsed time for "make release" of a NetBSD 1.5 source tree on my 128MB pc to 10% less than a 1.5 kernel took.
2001-09-16 00:36:31 +04:00
uobj->uo_npages++;
}
static inline void
uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
{
2013-10-26 00:26:22 +04:00
struct vm_page *ret __diagused;
KASSERT(uobj == pg->uobject);
ret = rb_tree_insert_node(&uobj->rb_tree, pg);
KASSERT(ret == pg);
}
static inline void
uvm_pageinsert(struct uvm_object *uobj, struct vm_page *pg)
{
KDASSERT(uobj != NULL);
uvm_pageinsert_tree(uobj, pg);
uvm_pageinsert_list(uobj, pg, NULL);
}
/*
* uvm_page_remove: remove page from object.
*
* => caller must lock object
* => caller must lock page queues
*/
static inline void
uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
{
KASSERT(uobj == pg->uobject);
KASSERT(mutex_owned(uobj->vmobjlock));
KASSERT(pg->flags & PG_TABLED);
if (UVM_OBJ_IS_VNODE(uobj)) {
if (uobj->uo_npages == 1) {
struct vnode *vp = (struct vnode *)uobj;
holdrelel(vp);
}
if (UVM_OBJ_IS_VTEXT(uobj)) {
atomic_dec_uint(&uvmexp.execpages);
} else {
atomic_dec_uint(&uvmexp.filepages);
}
} else if (UVM_OBJ_IS_AOBJ(uobj)) {
atomic_dec_uint(&uvmexp.anonpages);
}
1998-03-09 03:58:55 +03:00
/* object should be locked */
a whole bunch of changes to improve performance and robustness under load: - remove special treatment of pager_map mappings in pmaps. this is required now, since I've removed the globals that expose the address range. pager_map now uses pmap_kenter_pa() instead of pmap_enter(), so there's no longer any need to special-case it. - eliminate struct uvm_vnode by moving its fields into struct vnode. - rewrite the pageout path. the pager is now responsible for handling the high-level requests instead of only getting control after a bunch of work has already been done on its behalf. this will allow us to UBCify LFS, which needs tighter control over its pages than other filesystems do. writing a page to disk no longer requires making it read-only, which allows us to write wired pages without causing all kinds of havoc. - use a new PG_PAGEOUT flag to indicate that a page should be freed on behalf of the pagedaemon when it's unlocked. this flag is very similar to PG_RELEASED, but unlike PG_RELEASED, PG_PAGEOUT can be cleared if the pageout fails due to eg. an indirect-block buffer being locked. this allows us to remove the "version" field from struct vm_page, and together with shrinking "loan_count" from 32 bits to 16, struct vm_page is now 4 bytes smaller. - no longer use PG_RELEASED for swap-backed pages. if the page is busy because it's being paged out, we can't release the swap slot to be reallocated until that write is complete, but unlike with vnodes we don't keep a count of in-progress writes so there's no good way to know when the write is done. instead, when we need to free a busy swap-backed page, just sleep until we can get it busy ourselves. - implement a fast-path for extending writes which allows us to avoid zeroing new pages. this substantially reduces cpu usage. - encapsulate the data used by the genfs code in a struct genfs_node, which must be the first element of the filesystem-specific vnode data for filesystems which use genfs_{get,put}pages(). - eliminate many of the UVM pagerops, since they aren't needed anymore now that the pager "put" operation is a higher-level operation. - enhance the genfs code to allow NFS to use the genfs_{get,put}pages instead of a modified copy. - clean up struct vnode by removing all the fields that used to be used by the vfs_cluster.c code (which we don't use anymore with UBC). - remove kmem_object and mb_object since they were useless. instead of allocating pages to these objects, we now just allocate pages with no object. such pages are mapped in the kernel until they are freed, so we can use the mapping to find the page to free it. this allows us to remove splvm() protection in several places. The sum of all these changes improves write throughput on my decstation 5000/200 to within 1% of the rate of NetBSD 1.5 and reduces the elapsed time for "make release" of a NetBSD 1.5 source tree on my 128MB pc to 10% less than a 1.5 kernel took.
2001-09-16 00:36:31 +04:00
uobj->uo_npages--;
TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
1998-03-09 03:58:55 +03:00
pg->flags &= ~PG_TABLED;
pg->uobject = NULL;
}
static inline void
uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
{
KASSERT(uobj == pg->uobject);
rb_tree_remove_node(&uobj->rb_tree, pg);
}
static inline void
uvm_pageremove(struct uvm_object *uobj, struct vm_page *pg)
{
KDASSERT(uobj != NULL);
uvm_pageremove_tree(uobj, pg);
uvm_pageremove_list(uobj, pg);
}
static void
uvm_page_init_buckets(struct pgfreelist *pgfl)
{
int color, i;
for (color = 0; color < uvmexp.ncolors; color++) {
for (i = 0; i < PGFL_NQUEUES; i++) {
LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
}
}
}
/*
* uvm_page_init: init the page system. called from uvm_init().
2001-05-25 08:06:11 +04:00
*
* => we return the range of kernel virtual memory in kvm_startp/kvm_endp
*/
1998-03-09 03:58:55 +03:00
void
2005-06-27 06:19:48 +04:00
uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
{
static struct uvm_cpu boot_cpu;
psize_t freepages, pagecount, bucketcount, n;
struct pgflbucket *bucketarray, *cpuarray;
2010-11-11 18:47:43 +03:00
struct vm_page *pagearray;
uvm_physseg_t bank;
int lcv;
1998-03-09 03:58:55 +03:00
KASSERT(ncpu <= 1);
CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
1998-03-09 03:58:55 +03:00
/*
* init the page queues and page queue locks, except the free
* list; we allocate that later (with the initial vm_page
* structures).
1998-03-09 03:58:55 +03:00
*/
uvm.cpus[0] = &boot_cpu;
curcpu()->ci_data.cpu_uvm = &boot_cpu;
uvmpdpol_init();
2008-01-02 14:48:20 +03:00
mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
1998-03-09 03:58:55 +03:00
2001-05-25 08:06:11 +04:00
/*
* allocate vm_page structures.
1998-03-09 03:58:55 +03:00
*/
/*
* sanity check:
* before calling this function the MD code is expected to register
* some free RAM with the uvm_page_physload() function. our job
* now is to allocate vm_page structures for this memory.
*/
if (uvm_physseg_get_last() == UVM_PHYSSEG_TYPE_INVALID)
panic("uvm_page_bootstrap: no memory pre-allocated");
2001-05-25 08:06:11 +04:00
1998-03-09 03:58:55 +03:00
/*
2001-05-25 08:06:11 +04:00
* first calculate the number of free pages...
1998-03-09 03:58:55 +03:00
*
* note that we use start/end rather than avail_start/avail_end.
* this allows us to allocate extra vm_page structures in case we
* want to return some memory to the pool after booting.
*/
2001-05-25 08:06:11 +04:00
1998-03-09 03:58:55 +03:00
freepages = 0;
for (bank = uvm_physseg_get_first();
uvm_physseg_valid_p(bank) ;
bank = uvm_physseg_get_next(bank)) {
freepages += (uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank));
2010-11-11 17:50:54 +03:00
}
1998-03-09 03:58:55 +03:00
/*
* Let MD code initialize the number of colors, or default
* to 1 color if MD code doesn't care.
*/
if (uvmexp.ncolors == 0)
uvmexp.ncolors = 1;
uvmexp.colormask = uvmexp.ncolors - 1;
KASSERT((uvmexp.colormask & uvmexp.ncolors) == 0);
1998-03-09 03:58:55 +03:00
/*
* we now know we have (PAGE_SIZE * freepages) bytes of memory we can
* use. for each page of memory we use we need a vm_page structure.
* thus, the total number of pages we can use is the total size of
* the memory divided by the PAGE_SIZE plus the size of the vm_page
* structure. we add one to freepages as a fudge factor to avoid
* truncation errors (since we can only allocate in terms of whole
* pages).
*/
2001-05-25 08:06:11 +04:00
bucketcount = uvmexp.ncolors * VM_NFREELIST;
pagecount = ((freepages + 1) << PAGE_SHIFT) /
1998-03-09 03:58:55 +03:00
(PAGE_SIZE + sizeof(struct vm_page));
a whole bunch of changes to improve performance and robustness under load: - remove special treatment of pager_map mappings in pmaps. this is required now, since I've removed the globals that expose the address range. pager_map now uses pmap_kenter_pa() instead of pmap_enter(), so there's no longer any need to special-case it. - eliminate struct uvm_vnode by moving its fields into struct vnode. - rewrite the pageout path. the pager is now responsible for handling the high-level requests instead of only getting control after a bunch of work has already been done on its behalf. this will allow us to UBCify LFS, which needs tighter control over its pages than other filesystems do. writing a page to disk no longer requires making it read-only, which allows us to write wired pages without causing all kinds of havoc. - use a new PG_PAGEOUT flag to indicate that a page should be freed on behalf of the pagedaemon when it's unlocked. this flag is very similar to PG_RELEASED, but unlike PG_RELEASED, PG_PAGEOUT can be cleared if the pageout fails due to eg. an indirect-block buffer being locked. this allows us to remove the "version" field from struct vm_page, and together with shrinking "loan_count" from 32 bits to 16, struct vm_page is now 4 bytes smaller. - no longer use PG_RELEASED for swap-backed pages. if the page is busy because it's being paged out, we can't release the swap slot to be reallocated until that write is complete, but unlike with vnodes we don't keep a count of in-progress writes so there's no good way to know when the write is done. instead, when we need to free a busy swap-backed page, just sleep until we can get it busy ourselves. - implement a fast-path for extending writes which allows us to avoid zeroing new pages. this substantially reduces cpu usage. - encapsulate the data used by the genfs code in a struct genfs_node, which must be the first element of the filesystem-specific vnode data for filesystems which use genfs_{get,put}pages(). - eliminate many of the UVM pagerops, since they aren't needed anymore now that the pager "put" operation is a higher-level operation. - enhance the genfs code to allow NFS to use the genfs_{get,put}pages instead of a modified copy. - clean up struct vnode by removing all the fields that used to be used by the vfs_cluster.c code (which we don't use anymore with UBC). - remove kmem_object and mb_object since they were useless. instead of allocating pages to these objects, we now just allocate pages with no object. such pages are mapped in the kernel until they are freed, so we can use the mapping to find the page to free it. this allows us to remove splvm() protection in several places. The sum of all these changes improves write throughput on my decstation 5000/200 to within 1% of the rate of NetBSD 1.5 and reduces the elapsed time for "make release" of a NetBSD 1.5 source tree on my 128MB pc to 10% less than a 1.5 kernel took.
2001-09-16 00:36:31 +04:00
bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
sizeof(struct pgflbucket) * 2) + (pagecount *
sizeof(struct vm_page)));
cpuarray = bucketarray + bucketcount;
pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
uvm.page_free[lcv].pgfl_buckets =
(bucketarray + (lcv * uvmexp.ncolors));
uvm_page_init_buckets(&uvm.page_free[lcv]);
uvm.cpus[0]->page_free[lcv].pgfl_buckets =
(cpuarray + (lcv * uvmexp.ncolors));
uvm_page_init_buckets(&uvm.cpus[0]->page_free[lcv]);
}
memset(pagearray, 0, pagecount * sizeof(struct vm_page));
2001-05-25 08:06:11 +04:00
1998-03-09 03:58:55 +03:00
/*
* init the vm_page structures and put them in the correct place.
1998-03-09 03:58:55 +03:00
*/
/* First init the extent */
1998-03-09 03:58:55 +03:00
for (bank = uvm_physseg_get_first(),
uvm_physseg_seg_chomp_slab(bank, pagearray, pagecount);
uvm_physseg_valid_p(bank);
bank = uvm_physseg_get_next(bank)) {
n = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
uvm_physseg_seg_alloc_from_slab(bank, n);
uvm_physseg_init_seg(bank, pagearray);
1998-03-09 03:58:55 +03:00
/* set up page array pointers */
pagearray += n;
pagecount -= n;
}
/*
* pass up the values of virtual_space_start and
* virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
* layers of the VM.
*/
*kvm_startp = round_page(virtual_space_start);
*kvm_endp = trunc_page(virtual_space_end);
#ifdef DEBUG
/*
* steal kva for uvm_pagezerocheck().
*/
uvm_zerocheckkva = *kvm_startp;
*kvm_startp += PAGE_SIZE;
#endif /* DEBUG */
1998-03-09 03:58:55 +03:00
/*
* init various thresholds.
1998-03-09 03:58:55 +03:00
*/
1998-03-09 03:58:55 +03:00
uvmexp.reserve_pagedaemon = 1;
uvmexp.reserve_kernel = vm_page_reserve_kernel;
1998-03-09 03:58:55 +03:00
/*
* determine if we should zero pages in the idle loop.
*/
uvm.cpus[0]->page_idle_zero = vm_page_zero_enable;
1998-03-09 03:58:55 +03:00
/*
* done!
*/
2007-02-22 09:05:00 +03:00
uvm.page_init_done = true;
}
/*
* uvm_setpagesize: set the page size
2001-05-25 08:06:11 +04:00
*
* => sets page_shift and page_mask from uvmexp.pagesize.
2001-05-25 08:06:11 +04:00
*/
1998-03-09 03:58:55 +03:00
void
2005-06-27 06:19:48 +04:00
uvm_setpagesize(void)
{
/*
* If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
* to be a constant (indicated by being a non-zero value).
*/
if (uvmexp.pagesize == 0) {
if (PAGE_SIZE == 0)
panic("uvm_setpagesize: uvmexp.pagesize not set");
uvmexp.pagesize = PAGE_SIZE;
}
1998-03-09 03:58:55 +03:00
uvmexp.pagemask = uvmexp.pagesize - 1;
if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
panic("uvm_setpagesize: page size %u (%#x) not a power of two",
uvmexp.pagesize, uvmexp.pagesize);
1998-03-09 03:58:55 +03:00
for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
break;
}
/*
* uvm_pageboot_alloc: steal memory from physmem for bootstrapping
*/
vaddr_t
2005-06-27 06:19:48 +04:00
uvm_pageboot_alloc(vsize_t size)
{
2007-02-22 09:05:00 +03:00
static bool initialized = false;
vaddr_t addr;
#if !defined(PMAP_STEAL_MEMORY)
vaddr_t vaddr;
paddr_t paddr;
#endif
1998-03-09 03:58:55 +03:00
/*
* on first call to this function, initialize ourselves.
1998-03-09 03:58:55 +03:00
*/
2007-02-22 09:05:00 +03:00
if (initialized == false) {
pmap_virtual_space(&virtual_space_start, &virtual_space_end);
1998-03-09 03:58:55 +03:00
/* round it the way we like it */
virtual_space_start = round_page(virtual_space_start);
virtual_space_end = trunc_page(virtual_space_end);
2007-02-22 09:05:00 +03:00
initialized = true;
1998-03-09 03:58:55 +03:00
}
/* round to page size */
size = round_page(size);
uvmexp.bootpages += atop(size);
#if defined(PMAP_STEAL_MEMORY)
2001-05-25 08:06:11 +04:00
/*
* defer bootstrap allocation to MD code (it may want to allocate
* from a direct-mapped segment). pmap_steal_memory should adjust
* virtual_space_start/virtual_space_end if necessary.
*/
addr = pmap_steal_memory(size, &virtual_space_start,
&virtual_space_end);
return(addr);
#else /* !PMAP_STEAL_MEMORY */
1998-03-09 03:58:55 +03:00
/*
* allocate virtual memory for this request
*/
if (virtual_space_start == virtual_space_end ||
(virtual_space_end - virtual_space_start) < size)
panic("uvm_pageboot_alloc: out of virtual space");
addr = virtual_space_start;
#ifdef PMAP_GROWKERNEL
/*
* If the kernel pmap can't map the requested space,
* then allocate more resources for it.
*/
if (uvm_maxkaddr < (addr + size)) {
uvm_maxkaddr = pmap_growkernel(addr + size);
if (uvm_maxkaddr < (addr + size))
panic("uvm_pageboot_alloc: pmap_growkernel() failed");
}
#endif
virtual_space_start += size;
1998-04-16 07:54:35 +04:00
/*
1998-03-09 03:58:55 +03:00
* allocate and mapin physical pages to back new virtual pages
*/
1998-03-09 03:58:55 +03:00
for (vaddr = round_page(addr) ; vaddr < addr + size ;
vaddr += PAGE_SIZE) {
1998-03-09 03:58:55 +03:00
if (!uvm_page_physget(&paddr))
panic("uvm_pageboot_alloc: out of memory");
/*
* Note this memory is no longer managed, so using
* pmap_kenter is safe.
*/
pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
1998-03-09 03:58:55 +03:00
}
pmap_update(pmap_kernel());
1998-03-09 03:58:55 +03:00
return(addr);
#endif /* PMAP_STEAL_MEMORY */
}
#if !defined(PMAP_STEAL_MEMORY)
/*
* uvm_page_physget: "steal" one page from the vm_physmem structure.
*
* => attempt to allocate it off the end of a segment in which the "avail"
* values match the start/end values. if we can't do that, then we
* will advance both values (making them equal, and removing some
* vm_page structures from the non-avail area).
* => return false if out of memory.
*/
/* subroutine: try to allocate from memory chunks on the specified freelist */
static bool uvm_page_physget_freelist(paddr_t *, int);
static bool
2005-06-27 06:19:48 +04:00
uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
{
uvm_physseg_t lcv;
1998-03-09 03:58:55 +03:00
/* pass 1: try allocating from a matching end */
#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
#else
for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
#endif
1998-03-09 03:58:55 +03:00
{
2007-02-22 09:05:00 +03:00
if (uvm.page_init_done == true)
panic("uvm_page_physget: called _after_ bootstrap");
1998-03-09 03:58:55 +03:00
/* Try to match at front or back on unused segment */
if (uvm_page_physunload(lcv, freelist, paddrp) == false) {
if (paddrp == NULL) /* freelist fail, try next */
continue;
} else
return true;
}
1998-03-09 03:58:55 +03:00
/* pass2: forget about matching ends, just allocate something */
#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
#else
for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
#endif
1998-03-09 03:58:55 +03:00
{
/* Try the front regardless. */
if (uvm_page_physunload_force(lcv, freelist, paddrp) == false) {
if (paddrp == NULL) /* freelist fail, try next */
continue;
} else
return true;
1998-03-09 03:58:55 +03:00
}
return false;
}
bool
2005-06-27 06:19:48 +04:00
uvm_page_physget(paddr_t *paddrp)
{
int i;
/* try in the order of freelist preference */
for (i = 0; i < VM_NFREELIST; i++)
2007-02-22 09:05:00 +03:00
if (uvm_page_physget_freelist(paddrp, i) == true)
return (true);
return (false);
}
#endif /* PMAP_STEAL_MEMORY */
/*
* PHYS_TO_VM_PAGE: find vm_page for a PA. used by MI code to get vm_pages
* back from an I/O mapping (ugh!). used in some MD code as well.
*/
struct vm_page *
uvm_phys_to_vm_page(paddr_t pa)
{
paddr_t pf = atop(pa);
paddr_t off;
uvm_physseg_t upm;
upm = uvm_physseg_find(pf, &off);
if (upm != UVM_PHYSSEG_TYPE_INVALID)
return uvm_physseg_get_pg(upm, off);
return(NULL);
}
paddr_t
uvm_vm_page_to_phys(const struct vm_page *pg)
{
return pg->phys_addr;
}
/*
* uvm_page_recolor: Recolor the pages if the new bucket count is
* larger than the old one.
*/
void
uvm_page_recolor(int newncolors)
{
struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
struct pgfreelist gpgfl, pgfl;
struct vm_page *pg;
vsize_t bucketcount;
size_t bucketmemsize, oldbucketmemsize;
int color, i, ocolors;
int lcv;
struct uvm_cpu *ucpu;
KASSERT(((newncolors - 1) & newncolors) == 0);
if (newncolors <= uvmexp.ncolors)
return;
2007-02-22 09:05:00 +03:00
if (uvm.page_init_done == false) {
uvmexp.ncolors = newncolors;
return;
}
bucketcount = newncolors * VM_NFREELIST;
bucketmemsize = bucketcount * sizeof(struct pgflbucket) * 2;
bucketarray = kmem_alloc(bucketmemsize, KM_SLEEP);
cpuarray = bucketarray + bucketcount;
mutex_spin_enter(&uvm_fpageqlock);
/* Make sure we should still do this. */
if (newncolors <= uvmexp.ncolors) {
mutex_spin_exit(&uvm_fpageqlock);
kmem_free(bucketarray, bucketmemsize);
return;
}
oldbucketarray = uvm.page_free[0].pgfl_buckets;
ocolors = uvmexp.ncolors;
uvmexp.ncolors = newncolors;
uvmexp.colormask = uvmexp.ncolors - 1;
ucpu = curcpu()->ci_data.cpu_uvm;
for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
uvm_page_init_buckets(&gpgfl);
uvm_page_init_buckets(&pgfl);
for (color = 0; color < ocolors; color++) {
for (i = 0; i < PGFL_NQUEUES; i++) {
while ((pg = LIST_FIRST(&uvm.page_free[
lcv].pgfl_buckets[color].pgfl_queues[i]))
!= NULL) {
LIST_REMOVE(pg, pageq.list); /* global */
LIST_REMOVE(pg, listq.list); /* cpu */
LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
i], pg, pageq.list);
LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
i], pg, listq.list);
}
}
}
uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
}
oldbucketmemsize = recolored_pages_memsize;
recolored_pages_memsize = bucketmemsize;
mutex_spin_exit(&uvm_fpageqlock);
if (oldbucketmemsize) {
kmem_free(oldbucketarray, recolored_pages_memsize);
}
/*
* this calls uvm_km_alloc() which may want to hold
* uvm_fpageqlock.
*/
uvm_pager_realloc_emerg();
}
/*
* uvm_cpu_attach: initialize per-CPU data structures.
*/
void
uvm_cpu_attach(struct cpu_info *ci)
{
struct pgflbucket *bucketarray;
struct pgfreelist pgfl;
struct uvm_cpu *ucpu;
vsize_t bucketcount;
int lcv;
if (CPU_IS_PRIMARY(ci)) {
/* Already done in uvm_page_init(). */
goto attachrnd;
}
/* Add more reserve pages for this CPU. */
uvmexp.reserve_kernel += vm_page_reserve_kernel;
/* Configure this CPU's free lists. */
bucketcount = uvmexp.ncolors * VM_NFREELIST;
bucketarray = kmem_alloc(bucketcount * sizeof(struct pgflbucket),
KM_SLEEP);
ucpu = kmem_zalloc(sizeof(*ucpu), KM_SLEEP);
uvm.cpus[cpu_index(ci)] = ucpu;
ci->ci_data.cpu_uvm = ucpu;
for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
uvm_page_init_buckets(&pgfl);
ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
}
attachrnd:
/*
* Attach RNG source for this CPU's VM events
*/
rnd_attach_source(&uvm.cpus[cpu_index(ci)]->rs,
ci->ci_data.cpu_name, RND_TYPE_VM,
RND_FLAG_COLLECT_TIME|RND_FLAG_COLLECT_VALUE|
RND_FLAG_ESTIMATE_VALUE);
}
/*
* uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
*/
2006-09-27 21:18:50 +04:00
static struct vm_page *
uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
int *trycolorp)
{
struct pgflist *freeq;
struct vm_page *pg;
int color, trycolor = *trycolorp;
struct pgfreelist *gpgfl, *pgfl;
KASSERT(mutex_owned(&uvm_fpageqlock));
color = trycolor;
pgfl = &ucpu->page_free[flist];
gpgfl = &uvm.page_free[flist];
do {
/* cpu, try1 */
if ((pg = LIST_FIRST((freeq =
&pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
KASSERT(pg->pqflags & PQ_FREE);
KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
uvmexp.cpuhit++;
goto gotit;
}
/* global, try1 */
if ((pg = LIST_FIRST((freeq =
&gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
KASSERT(pg->pqflags & PQ_FREE);
KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
uvmexp.cpumiss++;
goto gotit;
}
/* cpu, try2 */
if ((pg = LIST_FIRST((freeq =
&pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
KASSERT(pg->pqflags & PQ_FREE);
KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
uvmexp.cpuhit++;
goto gotit;
}
/* global, try2 */
if ((pg = LIST_FIRST((freeq =
&gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
KASSERT(pg->pqflags & PQ_FREE);
KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
uvmexp.cpumiss++;
goto gotit;
}
color = (color + 1) & uvmexp.colormask;
} while (color != trycolor);
return (NULL);
gotit:
LIST_REMOVE(pg, pageq.list); /* global list */
LIST_REMOVE(pg, listq.list); /* per-cpu list */
uvmexp.free--;
/* update zero'd page count */
if (pg->flags & PG_ZERO)
uvmexp.zeropages--;
if (color == trycolor)
uvmexp.colorhit++;
else {
uvmexp.colormiss++;
*trycolorp = color;
}
return (pg);
}
/*
* uvm_pagealloc_strat: allocate vm_page from a particular free list.
*
* => return null if no pages free
* => wake up pagedaemon if number of free pages drops below low water mark
* => if obj != NULL, obj must be locked (to put in obj's tree)
* => if anon != NULL, anon must be locked (to put in anon)
* => only one of obj or anon can be non-null
* => caller must activate/deactivate page if it is not wired.
* => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
* => policy decision: it is more important to pull a page off of the
* appropriate priority free list than it is to get a zero'd or
* unknown contents page. This is because we live with the
* consequences of a bad free list decision for the entire
* lifetime of the page, e.g. if the page comes from memory that
* is slower to access.
*/
1998-03-09 03:58:55 +03:00
struct vm_page *
2005-06-27 06:19:48 +04:00
uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
int flags, int strat, int free_list)
{
int try1, try2, zeroit = 0, color;
int lcv;
struct uvm_cpu *ucpu;
1998-03-09 03:58:55 +03:00
struct vm_page *pg;
lwp_t *l;
KASSERT(obj == NULL || anon == NULL);
KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
KASSERT(off == trunc_page(off));
KASSERT(obj == NULL || mutex_owned(obj->vmobjlock));
KASSERT(anon == NULL || anon->an_lock == NULL ||
mutex_owned(anon->an_lock));
mutex_spin_enter(&uvm_fpageqlock);
1998-03-09 03:58:55 +03:00
/*
* This implements a global round-robin page coloring
* algorithm.
*/
a whole bunch of changes to improve performance and robustness under load: - remove special treatment of pager_map mappings in pmaps. this is required now, since I've removed the globals that expose the address range. pager_map now uses pmap_kenter_pa() instead of pmap_enter(), so there's no longer any need to special-case it. - eliminate struct uvm_vnode by moving its fields into struct vnode. - rewrite the pageout path. the pager is now responsible for handling the high-level requests instead of only getting control after a bunch of work has already been done on its behalf. this will allow us to UBCify LFS, which needs tighter control over its pages than other filesystems do. writing a page to disk no longer requires making it read-only, which allows us to write wired pages without causing all kinds of havoc. - use a new PG_PAGEOUT flag to indicate that a page should be freed on behalf of the pagedaemon when it's unlocked. this flag is very similar to PG_RELEASED, but unlike PG_RELEASED, PG_PAGEOUT can be cleared if the pageout fails due to eg. an indirect-block buffer being locked. this allows us to remove the "version" field from struct vm_page, and together with shrinking "loan_count" from 32 bits to 16, struct vm_page is now 4 bytes smaller. - no longer use PG_RELEASED for swap-backed pages. if the page is busy because it's being paged out, we can't release the swap slot to be reallocated until that write is complete, but unlike with vnodes we don't keep a count of in-progress writes so there's no good way to know when the write is done. instead, when we need to free a busy swap-backed page, just sleep until we can get it busy ourselves. - implement a fast-path for extending writes which allows us to avoid zeroing new pages. this substantially reduces cpu usage. - encapsulate the data used by the genfs code in a struct genfs_node, which must be the first element of the filesystem-specific vnode data for filesystems which use genfs_{get,put}pages(). - eliminate many of the UVM pagerops, since they aren't needed anymore now that the pager "put" operation is a higher-level operation. - enhance the genfs code to allow NFS to use the genfs_{get,put}pages instead of a modified copy. - clean up struct vnode by removing all the fields that used to be used by the vfs_cluster.c code (which we don't use anymore with UBC). - remove kmem_object and mb_object since they were useless. instead of allocating pages to these objects, we now just allocate pages with no object. such pages are mapped in the kernel until they are freed, so we can use the mapping to find the page to free it. this allows us to remove splvm() protection in several places. The sum of all these changes improves write throughput on my decstation 5000/200 to within 1% of the rate of NetBSD 1.5 and reduces the elapsed time for "make release" of a NetBSD 1.5 source tree on my 128MB pc to 10% less than a 1.5 kernel took.
2001-09-16 00:36:31 +04:00
ucpu = curcpu()->ci_data.cpu_uvm;
if (flags & UVM_FLAG_COLORMATCH) {
color = atop(off) & uvmexp.colormask;
} else {
color = ucpu->page_free_nextcolor;
}
1998-03-09 03:58:55 +03:00
/*
* check to see if we need to generate some free pages waking
* the pagedaemon.
*/
uvm_kick_pdaemon();
1998-03-09 03:58:55 +03:00
/*
* fail if any of these conditions is true:
* [1] there really are no free pages, or
* [2] only kernel "reserved" pages remain and
* reserved pages have not been requested.
1998-03-09 03:58:55 +03:00
* [3] only pagedaemon "reserved" pages remain and
* the requestor isn't the pagedaemon.
* we make kernel reserve pages available if called by a
* kernel thread or a realtime thread.
1998-03-09 03:58:55 +03:00
*/
l = curlwp;
if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
flags |= UVM_PGA_USERESERVE;
}
if ((uvmexp.free <= uvmexp.reserve_kernel &&
(flags & UVM_PGA_USERESERVE) == 0) ||
1998-03-09 03:58:55 +03:00
(uvmexp.free <= uvmexp.reserve_pagedaemon &&
curlwp != uvm.pagedaemon_lwp))
goto fail;
#if PGFL_NQUEUES != 2
#error uvm_pagealloc_strat needs to be updated
#endif
/*
* If we want a zero'd page, try the ZEROS queue first, otherwise
* we try the UNKNOWN queue first.
*/
if (flags & UVM_PGA_ZERO) {
try1 = PGFL_ZEROS;
try2 = PGFL_UNKNOWN;
} else {
try1 = PGFL_UNKNOWN;
try2 = PGFL_ZEROS;
}
again:
switch (strat) {
case UVM_PGA_STRAT_NORMAL:
/* Check freelists: descending priority (ascending id) order */
for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
pg = uvm_pagealloc_pgfl(ucpu, lcv,
try1, try2, &color);
if (pg != NULL)
goto gotit;
}
/* No pages free! */
goto fail;
case UVM_PGA_STRAT_ONLY:
case UVM_PGA_STRAT_FALLBACK:
/* Attempt to allocate from the specified free list. */
KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
pg = uvm_pagealloc_pgfl(ucpu, free_list,
try1, try2, &color);
if (pg != NULL)
goto gotit;
/* Fall back, if possible. */
if (strat == UVM_PGA_STRAT_FALLBACK) {
strat = UVM_PGA_STRAT_NORMAL;
goto again;
}
/* No pages free! */
goto fail;
default:
panic("uvm_pagealloc_strat: bad strat %d", strat);
/* NOTREACHED */
1998-03-09 03:58:55 +03:00
}
gotit:
/*
* We now know which color we actually allocated from; set
* the next color accordingly.
*/
a whole bunch of changes to improve performance and robustness under load: - remove special treatment of pager_map mappings in pmaps. this is required now, since I've removed the globals that expose the address range. pager_map now uses pmap_kenter_pa() instead of pmap_enter(), so there's no longer any need to special-case it. - eliminate struct uvm_vnode by moving its fields into struct vnode. - rewrite the pageout path. the pager is now responsible for handling the high-level requests instead of only getting control after a bunch of work has already been done on its behalf. this will allow us to UBCify LFS, which needs tighter control over its pages than other filesystems do. writing a page to disk no longer requires making it read-only, which allows us to write wired pages without causing all kinds of havoc. - use a new PG_PAGEOUT flag to indicate that a page should be freed on behalf of the pagedaemon when it's unlocked. this flag is very similar to PG_RELEASED, but unlike PG_RELEASED, PG_PAGEOUT can be cleared if the pageout fails due to eg. an indirect-block buffer being locked. this allows us to remove the "version" field from struct vm_page, and together with shrinking "loan_count" from 32 bits to 16, struct vm_page is now 4 bytes smaller. - no longer use PG_RELEASED for swap-backed pages. if the page is busy because it's being paged out, we can't release the swap slot to be reallocated until that write is complete, but unlike with vnodes we don't keep a count of in-progress writes so there's no good way to know when the write is done. instead, when we need to free a busy swap-backed page, just sleep until we can get it busy ourselves. - implement a fast-path for extending writes which allows us to avoid zeroing new pages. this substantially reduces cpu usage. - encapsulate the data used by the genfs code in a struct genfs_node, which must be the first element of the filesystem-specific vnode data for filesystems which use genfs_{get,put}pages(). - eliminate many of the UVM pagerops, since they aren't needed anymore now that the pager "put" operation is a higher-level operation. - enhance the genfs code to allow NFS to use the genfs_{get,put}pages instead of a modified copy. - clean up struct vnode by removing all the fields that used to be used by the vfs_cluster.c code (which we don't use anymore with UBC). - remove kmem_object and mb_object since they were useless. instead of allocating pages to these objects, we now just allocate pages with no object. such pages are mapped in the kernel until they are freed, so we can use the mapping to find the page to free it. this allows us to remove splvm() protection in several places. The sum of all these changes improves write throughput on my decstation 5000/200 to within 1% of the rate of NetBSD 1.5 and reduces the elapsed time for "make release" of a NetBSD 1.5 source tree on my 128MB pc to 10% less than a 1.5 kernel took.
2001-09-16 00:36:31 +04:00
ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
/*
* update allocation statistics and remember if we have to
* zero the page
*/
a whole bunch of changes to improve performance and robustness under load: - remove special treatment of pager_map mappings in pmaps. this is required now, since I've removed the globals that expose the address range. pager_map now uses pmap_kenter_pa() instead of pmap_enter(), so there's no longer any need to special-case it. - eliminate struct uvm_vnode by moving its fields into struct vnode. - rewrite the pageout path. the pager is now responsible for handling the high-level requests instead of only getting control after a bunch of work has already been done on its behalf. this will allow us to UBCify LFS, which needs tighter control over its pages than other filesystems do. writing a page to disk no longer requires making it read-only, which allows us to write wired pages without causing all kinds of havoc. - use a new PG_PAGEOUT flag to indicate that a page should be freed on behalf of the pagedaemon when it's unlocked. this flag is very similar to PG_RELEASED, but unlike PG_RELEASED, PG_PAGEOUT can be cleared if the pageout fails due to eg. an indirect-block buffer being locked. this allows us to remove the "version" field from struct vm_page, and together with shrinking "loan_count" from 32 bits to 16, struct vm_page is now 4 bytes smaller. - no longer use PG_RELEASED for swap-backed pages. if the page is busy because it's being paged out, we can't release the swap slot to be reallocated until that write is complete, but unlike with vnodes we don't keep a count of in-progress writes so there's no good way to know when the write is done. instead, when we need to free a busy swap-backed page, just sleep until we can get it busy ourselves. - implement a fast-path for extending writes which allows us to avoid zeroing new pages. this substantially reduces cpu usage. - encapsulate the data used by the genfs code in a struct genfs_node, which must be the first element of the filesystem-specific vnode data for filesystems which use genfs_{get,put}pages(). - eliminate many of the UVM pagerops, since they aren't needed anymore now that the pager "put" operation is a higher-level operation. - enhance the genfs code to allow NFS to use the genfs_{get,put}pages instead of a modified copy. - clean up struct vnode by removing all the fields that used to be used by the vfs_cluster.c code (which we don't use anymore with UBC). - remove kmem_object and mb_object since they were useless. instead of allocating pages to these objects, we now just allocate pages with no object. such pages are mapped in the kernel until they are freed, so we can use the mapping to find the page to free it. this allows us to remove splvm() protection in several places. The sum of all these changes improves write throughput on my decstation 5000/200 to within 1% of the rate of NetBSD 1.5 and reduces the elapsed time for "make release" of a NetBSD 1.5 source tree on my 128MB pc to 10% less than a 1.5 kernel took.
2001-09-16 00:36:31 +04:00
if (flags & UVM_PGA_ZERO) {
if (pg->flags & PG_ZERO) {
uvmexp.pga_zerohit++;
zeroit = 0;
} else {
uvmexp.pga_zeromiss++;
zeroit = 1;
}
if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
ucpu->page_idle_zero = vm_page_zero_enable;
}
}
KASSERT(pg->pqflags == PQ_FREE);
1998-03-09 03:58:55 +03:00
pg->offset = off;
pg->uobject = obj;
pg->uanon = anon;
pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
if (anon) {
anon->an_page = pg;
1998-03-09 03:58:55 +03:00
pg->pqflags = PQ_ANON;
atomic_inc_uint(&uvmexp.anonpages);
1998-03-09 03:58:55 +03:00
} else {
a whole bunch of changes to improve performance and robustness under load: - remove special treatment of pager_map mappings in pmaps. this is required now, since I've removed the globals that expose the address range. pager_map now uses pmap_kenter_pa() instead of pmap_enter(), so there's no longer any need to special-case it. - eliminate struct uvm_vnode by moving its fields into struct vnode. - rewrite the pageout path. the pager is now responsible for handling the high-level requests instead of only getting control after a bunch of work has already been done on its behalf. this will allow us to UBCify LFS, which needs tighter control over its pages than other filesystems do. writing a page to disk no longer requires making it read-only, which allows us to write wired pages without causing all kinds of havoc. - use a new PG_PAGEOUT flag to indicate that a page should be freed on behalf of the pagedaemon when it's unlocked. this flag is very similar to PG_RELEASED, but unlike PG_RELEASED, PG_PAGEOUT can be cleared if the pageout fails due to eg. an indirect-block buffer being locked. this allows us to remove the "version" field from struct vm_page, and together with shrinking "loan_count" from 32 bits to 16, struct vm_page is now 4 bytes smaller. - no longer use PG_RELEASED for swap-backed pages. if the page is busy because it's being paged out, we can't release the swap slot to be reallocated until that write is complete, but unlike with vnodes we don't keep a count of in-progress writes so there's no good way to know when the write is done. instead, when we need to free a busy swap-backed page, just sleep until we can get it busy ourselves. - implement a fast-path for extending writes which allows us to avoid zeroing new pages. this substantially reduces cpu usage. - encapsulate the data used by the genfs code in a struct genfs_node, which must be the first element of the filesystem-specific vnode data for filesystems which use genfs_{get,put}pages(). - eliminate many of the UVM pagerops, since they aren't needed anymore now that the pager "put" operation is a higher-level operation. - enhance the genfs code to allow NFS to use the genfs_{get,put}pages instead of a modified copy. - clean up struct vnode by removing all the fields that used to be used by the vfs_cluster.c code (which we don't use anymore with UBC). - remove kmem_object and mb_object since they were useless. instead of allocating pages to these objects, we now just allocate pages with no object. such pages are mapped in the kernel until they are freed, so we can use the mapping to find the page to free it. this allows us to remove splvm() protection in several places. The sum of all these changes improves write throughput on my decstation 5000/200 to within 1% of the rate of NetBSD 1.5 and reduces the elapsed time for "make release" of a NetBSD 1.5 source tree on my 128MB pc to 10% less than a 1.5 kernel took.
2001-09-16 00:36:31 +04:00
if (obj) {
uvm_pageinsert(obj, pg);
a whole bunch of changes to improve performance and robustness under load: - remove special treatment of pager_map mappings in pmaps. this is required now, since I've removed the globals that expose the address range. pager_map now uses pmap_kenter_pa() instead of pmap_enter(), so there's no longer any need to special-case it. - eliminate struct uvm_vnode by moving its fields into struct vnode. - rewrite the pageout path. the pager is now responsible for handling the high-level requests instead of only getting control after a bunch of work has already been done on its behalf. this will allow us to UBCify LFS, which needs tighter control over its pages than other filesystems do. writing a page to disk no longer requires making it read-only, which allows us to write wired pages without causing all kinds of havoc. - use a new PG_PAGEOUT flag to indicate that a page should be freed on behalf of the pagedaemon when it's unlocked. this flag is very similar to PG_RELEASED, but unlike PG_RELEASED, PG_PAGEOUT can be cleared if the pageout fails due to eg. an indirect-block buffer being locked. this allows us to remove the "version" field from struct vm_page, and together with shrinking "loan_count" from 32 bits to 16, struct vm_page is now 4 bytes smaller. - no longer use PG_RELEASED for swap-backed pages. if the page is busy because it's being paged out, we can't release the swap slot to be reallocated until that write is complete, but unlike with vnodes we don't keep a count of in-progress writes so there's no good way to know when the write is done. instead, when we need to free a busy swap-backed page, just sleep until we can get it busy ourselves. - implement a fast-path for extending writes which allows us to avoid zeroing new pages. this substantially reduces cpu usage. - encapsulate the data used by the genfs code in a struct genfs_node, which must be the first element of the filesystem-specific vnode data for filesystems which use genfs_{get,put}pages(). - eliminate many of the UVM pagerops, since they aren't needed anymore now that the pager "put" operation is a higher-level operation. - enhance the genfs code to allow NFS to use the genfs_{get,put}pages instead of a modified copy. - clean up struct vnode by removing all the fields that used to be used by the vfs_cluster.c code (which we don't use anymore with UBC). - remove kmem_object and mb_object since they were useless. instead of allocating pages to these objects, we now just allocate pages with no object. such pages are mapped in the kernel until they are freed, so we can use the mapping to find the page to free it. this allows us to remove splvm() protection in several places. The sum of all these changes improves write throughput on my decstation 5000/200 to within 1% of the rate of NetBSD 1.5 and reduces the elapsed time for "make release" of a NetBSD 1.5 source tree on my 128MB pc to 10% less than a 1.5 kernel took.
2001-09-16 00:36:31 +04:00
}
1998-03-09 03:58:55 +03:00
pg->pqflags = 0;
}
mutex_spin_exit(&uvm_fpageqlock);
#if defined(UVM_PAGE_TRKOWN)
1998-03-09 03:58:55 +03:00
pg->owner_tag = NULL;
#endif
1998-03-09 03:58:55 +03:00
UVM_PAGE_OWN(pg, "new alloc");
if (flags & UVM_PGA_ZERO) {
/*
* A zero'd page is not clean. If we got a page not already
* zero'd, then we have to zero it ourselves.
*/
pg->flags &= ~PG_CLEAN;
if (zeroit)
pmap_zero_page(VM_PAGE_TO_PHYS(pg));
}
1998-03-09 03:58:55 +03:00
return(pg);
fail:
mutex_spin_exit(&uvm_fpageqlock);
return (NULL);
}
/*
* uvm_pagereplace: replace a page with another
*
* => object must be locked
*/
void
2005-06-27 06:19:48 +04:00
uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
{
struct uvm_object *uobj = oldpg->uobject;
2004-03-24 10:50:48 +03:00
KASSERT((oldpg->flags & PG_TABLED) != 0);
KASSERT(uobj != NULL);
KASSERT((newpg->flags & PG_TABLED) == 0);
KASSERT(newpg->uobject == NULL);
KASSERT(mutex_owned(uobj->vmobjlock));
newpg->uobject = uobj;
newpg->offset = oldpg->offset;
uvm_pageremove_tree(uobj, oldpg);
uvm_pageinsert_tree(uobj, newpg);
uvm_pageinsert_list(uobj, newpg, oldpg);
uvm_pageremove_list(uobj, oldpg);
}
/*
* uvm_pagerealloc: reallocate a page from one object to another
*
* => both objects must be locked
*/
1998-03-09 03:58:55 +03:00
void
2005-06-27 06:19:48 +04:00
uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
{
1998-03-09 03:58:55 +03:00
/*
* remove it from the old object
*/
if (pg->uobject) {
uvm_pageremove(pg->uobject, pg);
1998-03-09 03:58:55 +03:00
}
/*
* put it in the new object
*/
if (newobj) {
pg->uobject = newobj;
pg->offset = newoff;
uvm_pageinsert(newobj, pg);
1998-03-09 03:58:55 +03:00
}
}
#ifdef DEBUG
/*
* check if page is zero-filled
*
* - called with free page queue lock held.
*/
void
uvm_pagezerocheck(struct vm_page *pg)
{
int *p, *ep;
KASSERT(uvm_zerocheckkva != 0);
KASSERT(mutex_owned(&uvm_fpageqlock));
/*
* XXX assuming pmap_kenter_pa and pmap_kremove never call
* uvm page allocator.
*
2004-02-13 14:36:08 +03:00
* it might be better to have "CPU-local temporary map" pmap interface.
*/
pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
p = (int *)uvm_zerocheckkva;
ep = (int *)((char *)p + PAGE_SIZE);
2003-11-05 18:45:54 +03:00
pmap_update(pmap_kernel());
while (p < ep) {
if (*p != 0)
panic("PG_ZERO page isn't zero-filled");
p++;
}
pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
/*
* pmap_update() is not necessary here because no one except us
* uses this VA.
*/
}
#endif /* DEBUG */
/*
* uvm_pagefree: free page
*
* => erase page's identity (i.e. remove from object)
* => put page on free list
* => caller must lock owning object (either anon or uvm_object)
* => caller must lock page queues
* => assumes all valid mappings of pg are gone
*/
void
2005-06-27 06:19:48 +04:00
uvm_pagefree(struct vm_page *pg)
{
struct pgflist *pgfl;
struct uvm_cpu *ucpu;
int index, color, queue;
bool iszero;
a whole bunch of changes to improve performance and robustness under load: - remove special treatment of pager_map mappings in pmaps. this is required now, since I've removed the globals that expose the address range. pager_map now uses pmap_kenter_pa() instead of pmap_enter(), so there's no longer any need to special-case it. - eliminate struct uvm_vnode by moving its fields into struct vnode. - rewrite the pageout path. the pager is now responsible for handling the high-level requests instead of only getting control after a bunch of work has already been done on its behalf. this will allow us to UBCify LFS, which needs tighter control over its pages than other filesystems do. writing a page to disk no longer requires making it read-only, which allows us to write wired pages without causing all kinds of havoc. - use a new PG_PAGEOUT flag to indicate that a page should be freed on behalf of the pagedaemon when it's unlocked. this flag is very similar to PG_RELEASED, but unlike PG_RELEASED, PG_PAGEOUT can be cleared if the pageout fails due to eg. an indirect-block buffer being locked. this allows us to remove the "version" field from struct vm_page, and together with shrinking "loan_count" from 32 bits to 16, struct vm_page is now 4 bytes smaller. - no longer use PG_RELEASED for swap-backed pages. if the page is busy because it's being paged out, we can't release the swap slot to be reallocated until that write is complete, but unlike with vnodes we don't keep a count of in-progress writes so there's no good way to know when the write is done. instead, when we need to free a busy swap-backed page, just sleep until we can get it busy ourselves. - implement a fast-path for extending writes which allows us to avoid zeroing new pages. this substantially reduces cpu usage. - encapsulate the data used by the genfs code in a struct genfs_node, which must be the first element of the filesystem-specific vnode data for filesystems which use genfs_{get,put}pages(). - eliminate many of the UVM pagerops, since they aren't needed anymore now that the pager "put" operation is a higher-level operation. - enhance the genfs code to allow NFS to use the genfs_{get,put}pages instead of a modified copy. - clean up struct vnode by removing all the fields that used to be used by the vfs_cluster.c code (which we don't use anymore with UBC). - remove kmem_object and mb_object since they were useless. instead of allocating pages to these objects, we now just allocate pages with no object. such pages are mapped in the kernel until they are freed, so we can use the mapping to find the page to free it. this allows us to remove splvm() protection in several places. The sum of all these changes improves write throughput on my decstation 5000/200 to within 1% of the rate of NetBSD 1.5 and reduces the elapsed time for "make release" of a NetBSD 1.5 source tree on my 128MB pc to 10% less than a 1.5 kernel took.
2001-09-16 00:36:31 +04:00
#ifdef DEBUG
if (pg->uobject == (void *)0xdeadbeef &&
pg->uanon == (void *)0xdeadbeef) {
panic("uvm_pagefree: freeing free page %p", pg);
}
#endif /* DEBUG */
KASSERT((pg->flags & PG_PAGEOUT) == 0);
KASSERT(!(pg->pqflags & PQ_FREE));
//KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
KASSERT(pg->uobject == NULL || mutex_owned(pg->uobject->vmobjlock));
2008-01-02 14:48:20 +03:00
KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
mutex_owned(pg->uanon->an_lock));
1998-03-09 03:58:55 +03:00
/*
a whole bunch of changes to improve performance and robustness under load: - remove special treatment of pager_map mappings in pmaps. this is required now, since I've removed the globals that expose the address range. pager_map now uses pmap_kenter_pa() instead of pmap_enter(), so there's no longer any need to special-case it. - eliminate struct uvm_vnode by moving its fields into struct vnode. - rewrite the pageout path. the pager is now responsible for handling the high-level requests instead of only getting control after a bunch of work has already been done on its behalf. this will allow us to UBCify LFS, which needs tighter control over its pages than other filesystems do. writing a page to disk no longer requires making it read-only, which allows us to write wired pages without causing all kinds of havoc. - use a new PG_PAGEOUT flag to indicate that a page should be freed on behalf of the pagedaemon when it's unlocked. this flag is very similar to PG_RELEASED, but unlike PG_RELEASED, PG_PAGEOUT can be cleared if the pageout fails due to eg. an indirect-block buffer being locked. this allows us to remove the "version" field from struct vm_page, and together with shrinking "loan_count" from 32 bits to 16, struct vm_page is now 4 bytes smaller. - no longer use PG_RELEASED for swap-backed pages. if the page is busy because it's being paged out, we can't release the swap slot to be reallocated until that write is complete, but unlike with vnodes we don't keep a count of in-progress writes so there's no good way to know when the write is done. instead, when we need to free a busy swap-backed page, just sleep until we can get it busy ourselves. - implement a fast-path for extending writes which allows us to avoid zeroing new pages. this substantially reduces cpu usage. - encapsulate the data used by the genfs code in a struct genfs_node, which must be the first element of the filesystem-specific vnode data for filesystems which use genfs_{get,put}pages(). - eliminate many of the UVM pagerops, since they aren't needed anymore now that the pager "put" operation is a higher-level operation. - enhance the genfs code to allow NFS to use the genfs_{get,put}pages instead of a modified copy. - clean up struct vnode by removing all the fields that used to be used by the vfs_cluster.c code (which we don't use anymore with UBC). - remove kmem_object and mb_object since they were useless. instead of allocating pages to these objects, we now just allocate pages with no object. such pages are mapped in the kernel until they are freed, so we can use the mapping to find the page to free it. this allows us to remove splvm() protection in several places. The sum of all these changes improves write throughput on my decstation 5000/200 to within 1% of the rate of NetBSD 1.5 and reduces the elapsed time for "make release" of a NetBSD 1.5 source tree on my 128MB pc to 10% less than a 1.5 kernel took.
2001-09-16 00:36:31 +04:00
* if the page is loaned, resolve the loan instead of freeing.
1998-03-09 03:58:55 +03:00
*/
a whole bunch of changes to improve performance and robustness under load: - remove special treatment of pager_map mappings in pmaps. this is required now, since I've removed the globals that expose the address range. pager_map now uses pmap_kenter_pa() instead of pmap_enter(), so there's no longer any need to special-case it. - eliminate struct uvm_vnode by moving its fields into struct vnode. - rewrite the pageout path. the pager is now responsible for handling the high-level requests instead of only getting control after a bunch of work has already been done on its behalf. this will allow us to UBCify LFS, which needs tighter control over its pages than other filesystems do. writing a page to disk no longer requires making it read-only, which allows us to write wired pages without causing all kinds of havoc. - use a new PG_PAGEOUT flag to indicate that a page should be freed on behalf of the pagedaemon when it's unlocked. this flag is very similar to PG_RELEASED, but unlike PG_RELEASED, PG_PAGEOUT can be cleared if the pageout fails due to eg. an indirect-block buffer being locked. this allows us to remove the "version" field from struct vm_page, and together with shrinking "loan_count" from 32 bits to 16, struct vm_page is now 4 bytes smaller. - no longer use PG_RELEASED for swap-backed pages. if the page is busy because it's being paged out, we can't release the swap slot to be reallocated until that write is complete, but unlike with vnodes we don't keep a count of in-progress writes so there's no good way to know when the write is done. instead, when we need to free a busy swap-backed page, just sleep until we can get it busy ourselves. - implement a fast-path for extending writes which allows us to avoid zeroing new pages. this substantially reduces cpu usage. - encapsulate the data used by the genfs code in a struct genfs_node, which must be the first element of the filesystem-specific vnode data for filesystems which use genfs_{get,put}pages(). - eliminate many of the UVM pagerops, since they aren't needed anymore now that the pager "put" operation is a higher-level operation. - enhance the genfs code to allow NFS to use the genfs_{get,put}pages instead of a modified copy. - clean up struct vnode by removing all the fields that used to be used by the vfs_cluster.c code (which we don't use anymore with UBC). - remove kmem_object and mb_object since they were useless. instead of allocating pages to these objects, we now just allocate pages with no object. such pages are mapped in the kernel until they are freed, so we can use the mapping to find the page to free it. this allows us to remove splvm() protection in several places. The sum of all these changes improves write throughput on my decstation 5000/200 to within 1% of the rate of NetBSD 1.5 and reduces the elapsed time for "make release" of a NetBSD 1.5 source tree on my 128MB pc to 10% less than a 1.5 kernel took.
2001-09-16 00:36:31 +04:00
if (pg->loan_count) {
KASSERT(pg->wire_count == 0);
2001-05-25 08:06:11 +04:00
1998-03-09 03:58:55 +03:00
/*
a whole bunch of changes to improve performance and robustness under load: - remove special treatment of pager_map mappings in pmaps. this is required now, since I've removed the globals that expose the address range. pager_map now uses pmap_kenter_pa() instead of pmap_enter(), so there's no longer any need to special-case it. - eliminate struct uvm_vnode by moving its fields into struct vnode. - rewrite the pageout path. the pager is now responsible for handling the high-level requests instead of only getting control after a bunch of work has already been done on its behalf. this will allow us to UBCify LFS, which needs tighter control over its pages than other filesystems do. writing a page to disk no longer requires making it read-only, which allows us to write wired pages without causing all kinds of havoc. - use a new PG_PAGEOUT flag to indicate that a page should be freed on behalf of the pagedaemon when it's unlocked. this flag is very similar to PG_RELEASED, but unlike PG_RELEASED, PG_PAGEOUT can be cleared if the pageout fails due to eg. an indirect-block buffer being locked. this allows us to remove the "version" field from struct vm_page, and together with shrinking "loan_count" from 32 bits to 16, struct vm_page is now 4 bytes smaller. - no longer use PG_RELEASED for swap-backed pages. if the page is busy because it's being paged out, we can't release the swap slot to be reallocated until that write is complete, but unlike with vnodes we don't keep a count of in-progress writes so there's no good way to know when the write is done. instead, when we need to free a busy swap-backed page, just sleep until we can get it busy ourselves. - implement a fast-path for extending writes which allows us to avoid zeroing new pages. this substantially reduces cpu usage. - encapsulate the data used by the genfs code in a struct genfs_node, which must be the first element of the filesystem-specific vnode data for filesystems which use genfs_{get,put}pages(). - eliminate many of the UVM pagerops, since they aren't needed anymore now that the pager "put" operation is a higher-level operation. - enhance the genfs code to allow NFS to use the genfs_{get,put}pages instead of a modified copy. - clean up struct vnode by removing all the fields that used to be used by the vfs_cluster.c code (which we don't use anymore with UBC). - remove kmem_object and mb_object since they were useless. instead of allocating pages to these objects, we now just allocate pages with no object. such pages are mapped in the kernel until they are freed, so we can use the mapping to find the page to free it. this allows us to remove splvm() protection in several places. The sum of all these changes improves write throughput on my decstation 5000/200 to within 1% of the rate of NetBSD 1.5 and reduces the elapsed time for "make release" of a NetBSD 1.5 source tree on my 128MB pc to 10% less than a 1.5 kernel took.
2001-09-16 00:36:31 +04:00
* if the page is owned by an anon then we just want to
* drop anon ownership. the kernel will free the page when
* it is done with it. if the page is owned by an object,
* remove it from the object and mark it dirty for the benefit
* of possible anon owners.
*
* regardless of previous ownership, wakeup any waiters,
* unbusy the page, and we're done.
1998-03-09 03:58:55 +03:00
*/
if (pg->uobject != NULL) {
uvm_pageremove(pg->uobject, pg);
a whole bunch of changes to improve performance and robustness under load: - remove special treatment of pager_map mappings in pmaps. this is required now, since I've removed the globals that expose the address range. pager_map now uses pmap_kenter_pa() instead of pmap_enter(), so there's no longer any need to special-case it. - eliminate struct uvm_vnode by moving its fields into struct vnode. - rewrite the pageout path. the pager is now responsible for handling the high-level requests instead of only getting control after a bunch of work has already been done on its behalf. this will allow us to UBCify LFS, which needs tighter control over its pages than other filesystems do. writing a page to disk no longer requires making it read-only, which allows us to write wired pages without causing all kinds of havoc. - use a new PG_PAGEOUT flag to indicate that a page should be freed on behalf of the pagedaemon when it's unlocked. this flag is very similar to PG_RELEASED, but unlike PG_RELEASED, PG_PAGEOUT can be cleared if the pageout fails due to eg. an indirect-block buffer being locked. this allows us to remove the "version" field from struct vm_page, and together with shrinking "loan_count" from 32 bits to 16, struct vm_page is now 4 bytes smaller. - no longer use PG_RELEASED for swap-backed pages. if the page is busy because it's being paged out, we can't release the swap slot to be reallocated until that write is complete, but unlike with vnodes we don't keep a count of in-progress writes so there's no good way to know when the write is done. instead, when we need to free a busy swap-backed page, just sleep until we can get it busy ourselves. - implement a fast-path for extending writes which allows us to avoid zeroing new pages. this substantially reduces cpu usage. - encapsulate the data used by the genfs code in a struct genfs_node, which must be the first element of the filesystem-specific vnode data for filesystems which use genfs_{get,put}pages(). - eliminate many of the UVM pagerops, since they aren't needed anymore now that the pager "put" operation is a higher-level operation. - enhance the genfs code to allow NFS to use the genfs_{get,put}pages instead of a modified copy. - clean up struct vnode by removing all the fields that used to be used by the vfs_cluster.c code (which we don't use anymore with UBC). - remove kmem_object and mb_object since they were useless. instead of allocating pages to these objects, we now just allocate pages with no object. such pages are mapped in the kernel until they are freed, so we can use the mapping to find the page to free it. this allows us to remove splvm() protection in several places. The sum of all these changes improves write throughput on my decstation 5000/200 to within 1% of the rate of NetBSD 1.5 and reduces the elapsed time for "make release" of a NetBSD 1.5 source tree on my 128MB pc to 10% less than a 1.5 kernel took.
2001-09-16 00:36:31 +04:00
pg->flags &= ~PG_CLEAN;
} else if (pg->uanon != NULL) {
if ((pg->pqflags & PQ_ANON) == 0) {
pg->loan_count--;
} else {
pg->pqflags &= ~PQ_ANON;
atomic_dec_uint(&uvmexp.anonpages);
}
pg->uanon->an_page = NULL;
pg->uanon = NULL;
a whole bunch of changes to improve performance and robustness under load: - remove special treatment of pager_map mappings in pmaps. this is required now, since I've removed the globals that expose the address range. pager_map now uses pmap_kenter_pa() instead of pmap_enter(), so there's no longer any need to special-case it. - eliminate struct uvm_vnode by moving its fields into struct vnode. - rewrite the pageout path. the pager is now responsible for handling the high-level requests instead of only getting control after a bunch of work has already been done on its behalf. this will allow us to UBCify LFS, which needs tighter control over its pages than other filesystems do. writing a page to disk no longer requires making it read-only, which allows us to write wired pages without causing all kinds of havoc. - use a new PG_PAGEOUT flag to indicate that a page should be freed on behalf of the pagedaemon when it's unlocked. this flag is very similar to PG_RELEASED, but unlike PG_RELEASED, PG_PAGEOUT can be cleared if the pageout fails due to eg. an indirect-block buffer being locked. this allows us to remove the "version" field from struct vm_page, and together with shrinking "loan_count" from 32 bits to 16, struct vm_page is now 4 bytes smaller. - no longer use PG_RELEASED for swap-backed pages. if the page is busy because it's being paged out, we can't release the swap slot to be reallocated until that write is complete, but unlike with vnodes we don't keep a count of in-progress writes so there's no good way to know when the write is done. instead, when we need to free a busy swap-backed page, just sleep until we can get it busy ourselves. - implement a fast-path for extending writes which allows us to avoid zeroing new pages. this substantially reduces cpu usage. - encapsulate the data used by the genfs code in a struct genfs_node, which must be the first element of the filesystem-specific vnode data for filesystems which use genfs_{get,put}pages(). - eliminate many of the UVM pagerops, since they aren't needed anymore now that the pager "put" operation is a higher-level operation. - enhance the genfs code to allow NFS to use the genfs_{get,put}pages instead of a modified copy. - clean up struct vnode by removing all the fields that used to be used by the vfs_cluster.c code (which we don't use anymore with UBC). - remove kmem_object and mb_object since they were useless. instead of allocating pages to these objects, we now just allocate pages with no object. such pages are mapped in the kernel until they are freed, so we can use the mapping to find the page to free it. this allows us to remove splvm() protection in several places. The sum of all these changes improves write throughput on my decstation 5000/200 to within 1% of the rate of NetBSD 1.5 and reduces the elapsed time for "make release" of a NetBSD 1.5 source tree on my 128MB pc to 10% less than a 1.5 kernel took.
2001-09-16 00:36:31 +04:00
}
if (pg->flags & PG_WANTED) {
wakeup(pg);
}
Add code to UBCify LFS. This is still behind "#ifdef LFS_UBC" for now (there are still some details to work out) but expect that to go away soon. To support these basic changes (creation of lfs_putpages, lfs_gop_write, mods to lfs_balloc) several other changes were made, to wit: * Create a writer daemon kernel thread whose purpose is to handle page writes for the pagedaemon, but which also takes over some of the functions of lfs_check(). This thread is started the first time an LFS is mounted. * Add a "flags" parameter to GOP_SIZE. Current values are GOP_SIZE_READ, meaning that the call should return the size of the in-core version of the file, and GOP_SIZE_WRITE, meaning that it should return the on-disk size. One of GOP_SIZE_READ or GOP_SIZE_WRITE must be specified. * Instead of using malloc(...M_WAITOK) for everything, reserve enough resources to get by and use malloc(...M_NOWAIT), using the reserves if necessary. Use the pool subsystem for structures small enough that this is feasible. This also obsoletes LFS_THROTTLE. And a few that are not strictly necessary: * Moves the LFS inode extensions off onto a separately allocated structure; getting closer to LFS as an LKM. "Welcome to 1.6O." * Unified GOP_ALLOC between FFS and LFS. * Update LFS copyright headers to correct values. * Actually cast to unsigned in lfs_shellsort, like the comment says. * Keep track of which segments were empty before the previous checkpoint; any segments that pass two checkpoints both dirty and empty can be summarily cleaned. Do this. Right now lfs_segclean still works, but this should be turned into an effectless compatibility syscall.
2003-02-18 02:48:08 +03:00
pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
#ifdef UVM_PAGE_TRKOWN
pg->owner_tag = NULL;
#endif
if (pg->loan_count) {
KASSERT(pg->uobject == NULL);
if (pg->uanon == NULL) {
KASSERT(mutex_owned(&uvm_pageqlock));
uvm_pagedequeue(pg);
}
return;
}
a whole bunch of changes to improve performance and robustness under load: - remove special treatment of pager_map mappings in pmaps. this is required now, since I've removed the globals that expose the address range. pager_map now uses pmap_kenter_pa() instead of pmap_enter(), so there's no longer any need to special-case it. - eliminate struct uvm_vnode by moving its fields into struct vnode. - rewrite the pageout path. the pager is now responsible for handling the high-level requests instead of only getting control after a bunch of work has already been done on its behalf. this will allow us to UBCify LFS, which needs tighter control over its pages than other filesystems do. writing a page to disk no longer requires making it read-only, which allows us to write wired pages without causing all kinds of havoc. - use a new PG_PAGEOUT flag to indicate that a page should be freed on behalf of the pagedaemon when it's unlocked. this flag is very similar to PG_RELEASED, but unlike PG_RELEASED, PG_PAGEOUT can be cleared if the pageout fails due to eg. an indirect-block buffer being locked. this allows us to remove the "version" field from struct vm_page, and together with shrinking "loan_count" from 32 bits to 16, struct vm_page is now 4 bytes smaller. - no longer use PG_RELEASED for swap-backed pages. if the page is busy because it's being paged out, we can't release the swap slot to be reallocated until that write is complete, but unlike with vnodes we don't keep a count of in-progress writes so there's no good way to know when the write is done. instead, when we need to free a busy swap-backed page, just sleep until we can get it busy ourselves. - implement a fast-path for extending writes which allows us to avoid zeroing new pages. this substantially reduces cpu usage. - encapsulate the data used by the genfs code in a struct genfs_node, which must be the first element of the filesystem-specific vnode data for filesystems which use genfs_{get,put}pages(). - eliminate many of the UVM pagerops, since they aren't needed anymore now that the pager "put" operation is a higher-level operation. - enhance the genfs code to allow NFS to use the genfs_{get,put}pages instead of a modified copy. - clean up struct vnode by removing all the fields that used to be used by the vfs_cluster.c code (which we don't use anymore with UBC). - remove kmem_object and mb_object since they were useless. instead of allocating pages to these objects, we now just allocate pages with no object. such pages are mapped in the kernel until they are freed, so we can use the mapping to find the page to free it. this allows us to remove splvm() protection in several places. The sum of all these changes improves write throughput on my decstation 5000/200 to within 1% of the rate of NetBSD 1.5 and reduces the elapsed time for "make release" of a NetBSD 1.5 source tree on my 128MB pc to 10% less than a 1.5 kernel took.
2001-09-16 00:36:31 +04:00
}
1998-03-09 03:58:55 +03:00
a whole bunch of changes to improve performance and robustness under load: - remove special treatment of pager_map mappings in pmaps. this is required now, since I've removed the globals that expose the address range. pager_map now uses pmap_kenter_pa() instead of pmap_enter(), so there's no longer any need to special-case it. - eliminate struct uvm_vnode by moving its fields into struct vnode. - rewrite the pageout path. the pager is now responsible for handling the high-level requests instead of only getting control after a bunch of work has already been done on its behalf. this will allow us to UBCify LFS, which needs tighter control over its pages than other filesystems do. writing a page to disk no longer requires making it read-only, which allows us to write wired pages without causing all kinds of havoc. - use a new PG_PAGEOUT flag to indicate that a page should be freed on behalf of the pagedaemon when it's unlocked. this flag is very similar to PG_RELEASED, but unlike PG_RELEASED, PG_PAGEOUT can be cleared if the pageout fails due to eg. an indirect-block buffer being locked. this allows us to remove the "version" field from struct vm_page, and together with shrinking "loan_count" from 32 bits to 16, struct vm_page is now 4 bytes smaller. - no longer use PG_RELEASED for swap-backed pages. if the page is busy because it's being paged out, we can't release the swap slot to be reallocated until that write is complete, but unlike with vnodes we don't keep a count of in-progress writes so there's no good way to know when the write is done. instead, when we need to free a busy swap-backed page, just sleep until we can get it busy ourselves. - implement a fast-path for extending writes which allows us to avoid zeroing new pages. this substantially reduces cpu usage. - encapsulate the data used by the genfs code in a struct genfs_node, which must be the first element of the filesystem-specific vnode data for filesystems which use genfs_{get,put}pages(). - eliminate many of the UVM pagerops, since they aren't needed anymore now that the pager "put" operation is a higher-level operation. - enhance the genfs code to allow NFS to use the genfs_{get,put}pages instead of a modified copy. - clean up struct vnode by removing all the fields that used to be used by the vfs_cluster.c code (which we don't use anymore with UBC). - remove kmem_object and mb_object since they were useless. instead of allocating pages to these objects, we now just allocate pages with no object. such pages are mapped in the kernel until they are freed, so we can use the mapping to find the page to free it. this allows us to remove splvm() protection in several places. The sum of all these changes improves write throughput on my decstation 5000/200 to within 1% of the rate of NetBSD 1.5 and reduces the elapsed time for "make release" of a NetBSD 1.5 source tree on my 128MB pc to 10% less than a 1.5 kernel took.
2001-09-16 00:36:31 +04:00
/*
* remove page from its object or anon.
*/
if (pg->uobject != NULL) {
uvm_pageremove(pg->uobject, pg);
} else if (pg->uanon != NULL) {
pg->uanon->an_page = NULL;
atomic_dec_uint(&uvmexp.anonpages);
1998-03-09 03:58:55 +03:00
}
/*
* now remove the page from the queues.
1998-03-09 03:58:55 +03:00
*/
if (uvmpdpol_pageisqueued_p(pg)) {
KASSERT(mutex_owned(&uvm_pageqlock));
uvm_pagedequeue(pg);
}
1998-03-09 03:58:55 +03:00
/*
* if the page was wired, unwire it now.
*/
if (pg->wire_count) {
1998-03-09 03:58:55 +03:00
pg->wire_count = 0;
uvmexp.wired--;
}
/*
* and put on free queue
1998-03-09 03:58:55 +03:00
*/
iszero = (pg->flags & PG_ZERO);
index = uvm_page_lookup_freelist(pg);
color = VM_PGCOLOR_BUCKET(pg);
queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
#ifdef DEBUG
1998-03-09 03:58:55 +03:00
pg->uobject = (void *)0xdeadbeef;
pg->uanon = (void *)0xdeadbeef;
#endif
mutex_spin_enter(&uvm_fpageqlock);
pg->pqflags = PQ_FREE;
#ifdef DEBUG
if (iszero)
uvm_pagezerocheck(pg);
#endif /* DEBUG */
/* global list */
pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
LIST_INSERT_HEAD(pgfl, pg, pageq.list);
1998-03-09 03:58:55 +03:00
uvmexp.free++;
if (iszero) {
uvmexp.zeropages++;
}
/* per-cpu list */
ucpu = curcpu()->ci_data.cpu_uvm;
pg->offset = (uintptr_t)ucpu;
pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
LIST_INSERT_HEAD(pgfl, pg, listq.list);
ucpu->pages[queue]++;
if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
ucpu->page_idle_zero = vm_page_zero_enable;
}
mutex_spin_exit(&uvm_fpageqlock);
}
/*
* uvm_page_unbusy: unbusy an array of pages.
*
* => pages must either all belong to the same object, or all belong to anons.
* => if pages are object-owned, object must be locked.
a whole bunch of changes to improve performance and robustness under load: - remove special treatment of pager_map mappings in pmaps. this is required now, since I've removed the globals that expose the address range. pager_map now uses pmap_kenter_pa() instead of pmap_enter(), so there's no longer any need to special-case it. - eliminate struct uvm_vnode by moving its fields into struct vnode. - rewrite the pageout path. the pager is now responsible for handling the high-level requests instead of only getting control after a bunch of work has already been done on its behalf. this will allow us to UBCify LFS, which needs tighter control over its pages than other filesystems do. writing a page to disk no longer requires making it read-only, which allows us to write wired pages without causing all kinds of havoc. - use a new PG_PAGEOUT flag to indicate that a page should be freed on behalf of the pagedaemon when it's unlocked. this flag is very similar to PG_RELEASED, but unlike PG_RELEASED, PG_PAGEOUT can be cleared if the pageout fails due to eg. an indirect-block buffer being locked. this allows us to remove the "version" field from struct vm_page, and together with shrinking "loan_count" from 32 bits to 16, struct vm_page is now 4 bytes smaller. - no longer use PG_RELEASED for swap-backed pages. if the page is busy because it's being paged out, we can't release the swap slot to be reallocated until that write is complete, but unlike with vnodes we don't keep a count of in-progress writes so there's no good way to know when the write is done. instead, when we need to free a busy swap-backed page, just sleep until we can get it busy ourselves. - implement a fast-path for extending writes which allows us to avoid zeroing new pages. this substantially reduces cpu usage. - encapsulate the data used by the genfs code in a struct genfs_node, which must be the first element of the filesystem-specific vnode data for filesystems which use genfs_{get,put}pages(). - eliminate many of the UVM pagerops, since they aren't needed anymore now that the pager "put" operation is a higher-level operation. - enhance the genfs code to allow NFS to use the genfs_{get,put}pages instead of a modified copy. - clean up struct vnode by removing all the fields that used to be used by the vfs_cluster.c code (which we don't use anymore with UBC). - remove kmem_object and mb_object since they were useless. instead of allocating pages to these objects, we now just allocate pages with no object. such pages are mapped in the kernel until they are freed, so we can use the mapping to find the page to free it. this allows us to remove splvm() protection in several places. The sum of all these changes improves write throughput on my decstation 5000/200 to within 1% of the rate of NetBSD 1.5 and reduces the elapsed time for "make release" of a NetBSD 1.5 source tree on my 128MB pc to 10% less than a 1.5 kernel took.
2001-09-16 00:36:31 +04:00
* => if pages are anon-owned, anons must be locked.
* => caller must lock page queues if pages may be released.
* => caller must make sure that anon-owned pages are not PG_RELEASED.
*/
void
2005-06-27 06:19:48 +04:00
uvm_page_unbusy(struct vm_page **pgs, int npgs)
{
struct vm_page *pg;
int i;
UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
for (i = 0; i < npgs; i++) {
pg = pgs[i];
if (pg == NULL || pg == PGO_DONTCARE) {
continue;
}
KASSERT(uvm_page_locked_p(pg));
KASSERT(pg->flags & PG_BUSY);
KASSERT((pg->flags & PG_PAGEOUT) == 0);
if (pg->flags & PG_WANTED) {
wakeup(pg);
}
if (pg->flags & PG_RELEASED) {
Update the kernhist(9) kernel history code to address issues identified in PR kern/52639, as well as some general cleaning-up... (As proposed on tech-kern@ with additional changes and enhancements.) Details of changes: * All history arguments are now stored as uintmax_t values[1], both in the kernel and in the structures used for exporting the history data to userland via sysctl(9). This avoids problems on some architectures where passing a 64-bit (or larger) value to printf(3) can cause it to process the value as multiple arguments. (This can be particularly problematic when printf()'s format string is not a literal, since in that case the compiler cannot know how large each argument should be.) * Update the data structures used for exporting kernel history data to include a version number as well as the length of history arguments. * All [2] existing users of kernhist(9) have had their format strings updated. Each format specifier now includes an explicit length modifier 'j' to refer to numeric values of the size of uintmax_t. * All [2] existing users of kernhist(9) have had their format strings updated to replace uses of "%p" with "%#jx", and the pointer arguments are now cast to (uintptr_t) before being subsequently cast to (uintmax_t). This is needed to avoid compiler warnings about casting "pointer to integer of a different size." * All [2] existing users of kernhist(9) have had instances of "%s" or "%c" format strings replaced with numeric formats; several instances of mis-match between format string and argument list have been fixed. * vmstat(1) has been modified to handle the new size of arguments in the history data as exported by sysctl(9). * vmstat(1) now provides a warning message if the history requested with the -u option does not exist (previously, this condition was silently ignored, with only a single blank line being printed). * vmstat(1) now checks the version and argument length included in the data exported via sysctl(9) and exits if they do not match the values with which vmstat was built. * The kernhist(9) man-page has been updated to note the additional requirements imposed on the format strings, along with several other minor changes and enhancements. [1] It would have been possible to use an explicit length (for example, uint64_t) for the history arguments. But that would require another "rototill" of all the users in the future when we add support for an architecture that supports a larger size. Also, the printf(3) format specifiers for explicitly-sized values, such as "%"PRIu64, are much more verbose (and less aesthetically appealing, IMHO) than simply using "%ju". [2] I've tried very hard to find "all [the] existing users of kernhist(9)" but it is possible that I've missed some of them. I would be glad to update any stragglers that anyone identifies.
2017-10-28 03:37:11 +03:00
UVMHIST_LOG(ubchist, "releasing pg %#jx",
(uintptr_t)pg, 0, 0, 0);
KASSERT(pg->uobject != NULL ||
(pg->uanon != NULL && pg->uanon->an_ref > 0));
a whole bunch of changes to improve performance and robustness under load: - remove special treatment of pager_map mappings in pmaps. this is required now, since I've removed the globals that expose the address range. pager_map now uses pmap_kenter_pa() instead of pmap_enter(), so there's no longer any need to special-case it. - eliminate struct uvm_vnode by moving its fields into struct vnode. - rewrite the pageout path. the pager is now responsible for handling the high-level requests instead of only getting control after a bunch of work has already been done on its behalf. this will allow us to UBCify LFS, which needs tighter control over its pages than other filesystems do. writing a page to disk no longer requires making it read-only, which allows us to write wired pages without causing all kinds of havoc. - use a new PG_PAGEOUT flag to indicate that a page should be freed on behalf of the pagedaemon when it's unlocked. this flag is very similar to PG_RELEASED, but unlike PG_RELEASED, PG_PAGEOUT can be cleared if the pageout fails due to eg. an indirect-block buffer being locked. this allows us to remove the "version" field from struct vm_page, and together with shrinking "loan_count" from 32 bits to 16, struct vm_page is now 4 bytes smaller. - no longer use PG_RELEASED for swap-backed pages. if the page is busy because it's being paged out, we can't release the swap slot to be reallocated until that write is complete, but unlike with vnodes we don't keep a count of in-progress writes so there's no good way to know when the write is done. instead, when we need to free a busy swap-backed page, just sleep until we can get it busy ourselves. - implement a fast-path for extending writes which allows us to avoid zeroing new pages. this substantially reduces cpu usage. - encapsulate the data used by the genfs code in a struct genfs_node, which must be the first element of the filesystem-specific vnode data for filesystems which use genfs_{get,put}pages(). - eliminate many of the UVM pagerops, since they aren't needed anymore now that the pager "put" operation is a higher-level operation. - enhance the genfs code to allow NFS to use the genfs_{get,put}pages instead of a modified copy. - clean up struct vnode by removing all the fields that used to be used by the vfs_cluster.c code (which we don't use anymore with UBC). - remove kmem_object and mb_object since they were useless. instead of allocating pages to these objects, we now just allocate pages with no object. such pages are mapped in the kernel until they are freed, so we can use the mapping to find the page to free it. this allows us to remove splvm() protection in several places. The sum of all these changes improves write throughput on my decstation 5000/200 to within 1% of the rate of NetBSD 1.5 and reduces the elapsed time for "make release" of a NetBSD 1.5 source tree on my 128MB pc to 10% less than a 1.5 kernel took.
2001-09-16 00:36:31 +04:00
pg->flags &= ~PG_RELEASED;
uvm_pagefree(pg);
} else {
Update the kernhist(9) kernel history code to address issues identified in PR kern/52639, as well as some general cleaning-up... (As proposed on tech-kern@ with additional changes and enhancements.) Details of changes: * All history arguments are now stored as uintmax_t values[1], both in the kernel and in the structures used for exporting the history data to userland via sysctl(9). This avoids problems on some architectures where passing a 64-bit (or larger) value to printf(3) can cause it to process the value as multiple arguments. (This can be particularly problematic when printf()'s format string is not a literal, since in that case the compiler cannot know how large each argument should be.) * Update the data structures used for exporting kernel history data to include a version number as well as the length of history arguments. * All [2] existing users of kernhist(9) have had their format strings updated. Each format specifier now includes an explicit length modifier 'j' to refer to numeric values of the size of uintmax_t. * All [2] existing users of kernhist(9) have had their format strings updated to replace uses of "%p" with "%#jx", and the pointer arguments are now cast to (uintptr_t) before being subsequently cast to (uintmax_t). This is needed to avoid compiler warnings about casting "pointer to integer of a different size." * All [2] existing users of kernhist(9) have had instances of "%s" or "%c" format strings replaced with numeric formats; several instances of mis-match between format string and argument list have been fixed. * vmstat(1) has been modified to handle the new size of arguments in the history data as exported by sysctl(9). * vmstat(1) now provides a warning message if the history requested with the -u option does not exist (previously, this condition was silently ignored, with only a single blank line being printed). * vmstat(1) now checks the version and argument length included in the data exported via sysctl(9) and exits if they do not match the values with which vmstat was built. * The kernhist(9) man-page has been updated to note the additional requirements imposed on the format strings, along with several other minor changes and enhancements. [1] It would have been possible to use an explicit length (for example, uint64_t) for the history arguments. But that would require another "rototill" of all the users in the future when we add support for an architecture that supports a larger size. Also, the printf(3) format specifiers for explicitly-sized values, such as "%"PRIu64, are much more verbose (and less aesthetically appealing, IMHO) than simply using "%ju". [2] I've tried very hard to find "all [the] existing users of kernhist(9)" but it is possible that I've missed some of them. I would be glad to update any stragglers that anyone identifies.
2017-10-28 03:37:11 +03:00
UVMHIST_LOG(ubchist, "unbusying pg %#jx",
(uintptr_t)pg, 0, 0, 0);
2009-01-16 10:01:28 +03:00
KASSERT((pg->flags & PG_FAKE) == 0);
pg->flags &= ~(PG_WANTED|PG_BUSY);
UVM_PAGE_OWN(pg, NULL);
}
}
}
#if defined(UVM_PAGE_TRKOWN)
/*
* uvm_page_own: set or release page ownership
*
* => this is a debugging function that keeps track of who sets PG_BUSY
* and where they do it. it can be used to track down problems
* such a process setting "PG_BUSY" and never releasing it.
* => page's object [if any] must be locked
* => if "tag" is NULL then we are releasing page ownership
*/
1998-03-09 03:58:55 +03:00
void
2005-06-27 06:19:48 +04:00
uvm_page_own(struct vm_page *pg, const char *tag)
{
2006-04-13 12:33:18 +04:00
a whole bunch of changes to improve performance and robustness under load: - remove special treatment of pager_map mappings in pmaps. this is required now, since I've removed the globals that expose the address range. pager_map now uses pmap_kenter_pa() instead of pmap_enter(), so there's no longer any need to special-case it. - eliminate struct uvm_vnode by moving its fields into struct vnode. - rewrite the pageout path. the pager is now responsible for handling the high-level requests instead of only getting control after a bunch of work has already been done on its behalf. this will allow us to UBCify LFS, which needs tighter control over its pages than other filesystems do. writing a page to disk no longer requires making it read-only, which allows us to write wired pages without causing all kinds of havoc. - use a new PG_PAGEOUT flag to indicate that a page should be freed on behalf of the pagedaemon when it's unlocked. this flag is very similar to PG_RELEASED, but unlike PG_RELEASED, PG_PAGEOUT can be cleared if the pageout fails due to eg. an indirect-block buffer being locked. this allows us to remove the "version" field from struct vm_page, and together with shrinking "loan_count" from 32 bits to 16, struct vm_page is now 4 bytes smaller. - no longer use PG_RELEASED for swap-backed pages. if the page is busy because it's being paged out, we can't release the swap slot to be reallocated until that write is complete, but unlike with vnodes we don't keep a count of in-progress writes so there's no good way to know when the write is done. instead, when we need to free a busy swap-backed page, just sleep until we can get it busy ourselves. - implement a fast-path for extending writes which allows us to avoid zeroing new pages. this substantially reduces cpu usage. - encapsulate the data used by the genfs code in a struct genfs_node, which must be the first element of the filesystem-specific vnode data for filesystems which use genfs_{get,put}pages(). - eliminate many of the UVM pagerops, since they aren't needed anymore now that the pager "put" operation is a higher-level operation. - enhance the genfs code to allow NFS to use the genfs_{get,put}pages instead of a modified copy. - clean up struct vnode by removing all the fields that used to be used by the vfs_cluster.c code (which we don't use anymore with UBC). - remove kmem_object and mb_object since they were useless. instead of allocating pages to these objects, we now just allocate pages with no object. such pages are mapped in the kernel until they are freed, so we can use the mapping to find the page to free it. this allows us to remove splvm() protection in several places. The sum of all these changes improves write throughput on my decstation 5000/200 to within 1% of the rate of NetBSD 1.5 and reduces the elapsed time for "make release" of a NetBSD 1.5 source tree on my 128MB pc to 10% less than a 1.5 kernel took.
2001-09-16 00:36:31 +04:00
KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
2006-04-13 12:33:18 +04:00
KASSERT((pg->flags & PG_WANTED) == 0);
KASSERT(uvm_page_locked_p(pg));
2006-04-13 12:33:18 +04:00
1998-03-09 03:58:55 +03:00
/* gain ownership? */
if (tag) {
2006-04-13 12:33:18 +04:00
KASSERT((pg->flags & PG_BUSY) != 0);
1998-03-09 03:58:55 +03:00
if (pg->owner_tag) {
printf("uvm_page_own: page %p already owned "
"by proc %d [%s]\n", pg,
pg->owner, pg->owner_tag);
1998-03-09 03:58:55 +03:00
panic("uvm_page_own");
}
pg->owner = curproc->p_pid;
pg->lowner = curlwp->l_lid;
1998-03-09 03:58:55 +03:00
pg->owner_tag = tag;
return;
}
/* drop ownership */
2006-04-13 12:33:18 +04:00
KASSERT((pg->flags & PG_BUSY) == 0);
1998-03-09 03:58:55 +03:00
if (pg->owner_tag == NULL) {
printf("uvm_page_own: dropping ownership of an non-owned "
"page (%p)\n", pg);
panic("uvm_page_own");
}
if (!uvmpdpol_pageisqueued_p(pg)) {
KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
pg->wire_count > 0);
} else {
KASSERT(pg->wire_count == 0);
}
pg->owner_tag = NULL;
}
#endif
/*
* uvm_pageidlezero: zero free pages while the system is idle.
*
* => try to complete one color bucket at a time, to reduce our impact
* on the CPU cache.
* => we loop until we either reach the target or there is a lwp ready
* to run, or MD code detects a reason to break early.
*/
void
2005-06-27 06:19:48 +04:00
uvm_pageidlezero(void)
{
struct vm_page *pg;
struct pgfreelist *pgfl, *gpgfl;
struct uvm_cpu *ucpu;
int free_list, firstbucket, nextbucket;
bool lcont = false;
ucpu = curcpu()->ci_data.cpu_uvm;
if (!ucpu->page_idle_zero ||
ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
ucpu->page_idle_zero = false;
return;
}
if (!mutex_tryenter(&uvm_fpageqlock)) {
/* Contention: let other CPUs to use the lock. */
return;
}
firstbucket = ucpu->page_free_nextcolor;
nextbucket = firstbucket;
do {
for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
if (sched_curcpu_runnable_p()) {
goto quit;
}
pgfl = &ucpu->page_free[free_list];
gpgfl = &uvm.page_free[free_list];
while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
if (lcont || sched_curcpu_runnable_p()) {
goto quit;
}
LIST_REMOVE(pg, pageq.list); /* global list */
LIST_REMOVE(pg, listq.list); /* per-cpu list */
ucpu->pages[PGFL_UNKNOWN]--;
uvmexp.free--;
KASSERT(pg->pqflags == PQ_FREE);
pg->pqflags = 0;
mutex_spin_exit(&uvm_fpageqlock);
#ifdef PMAP_PAGEIDLEZERO
a whole bunch of changes to improve performance and robustness under load: - remove special treatment of pager_map mappings in pmaps. this is required now, since I've removed the globals that expose the address range. pager_map now uses pmap_kenter_pa() instead of pmap_enter(), so there's no longer any need to special-case it. - eliminate struct uvm_vnode by moving its fields into struct vnode. - rewrite the pageout path. the pager is now responsible for handling the high-level requests instead of only getting control after a bunch of work has already been done on its behalf. this will allow us to UBCify LFS, which needs tighter control over its pages than other filesystems do. writing a page to disk no longer requires making it read-only, which allows us to write wired pages without causing all kinds of havoc. - use a new PG_PAGEOUT flag to indicate that a page should be freed on behalf of the pagedaemon when it's unlocked. this flag is very similar to PG_RELEASED, but unlike PG_RELEASED, PG_PAGEOUT can be cleared if the pageout fails due to eg. an indirect-block buffer being locked. this allows us to remove the "version" field from struct vm_page, and together with shrinking "loan_count" from 32 bits to 16, struct vm_page is now 4 bytes smaller. - no longer use PG_RELEASED for swap-backed pages. if the page is busy because it's being paged out, we can't release the swap slot to be reallocated until that write is complete, but unlike with vnodes we don't keep a count of in-progress writes so there's no good way to know when the write is done. instead, when we need to free a busy swap-backed page, just sleep until we can get it busy ourselves. - implement a fast-path for extending writes which allows us to avoid zeroing new pages. this substantially reduces cpu usage. - encapsulate the data used by the genfs code in a struct genfs_node, which must be the first element of the filesystem-specific vnode data for filesystems which use genfs_{get,put}pages(). - eliminate many of the UVM pagerops, since they aren't needed anymore now that the pager "put" operation is a higher-level operation. - enhance the genfs code to allow NFS to use the genfs_{get,put}pages instead of a modified copy. - clean up struct vnode by removing all the fields that used to be used by the vfs_cluster.c code (which we don't use anymore with UBC). - remove kmem_object and mb_object since they were useless. instead of allocating pages to these objects, we now just allocate pages with no object. such pages are mapped in the kernel until they are freed, so we can use the mapping to find the page to free it. this allows us to remove splvm() protection in several places. The sum of all these changes improves write throughput on my decstation 5000/200 to within 1% of the rate of NetBSD 1.5 and reduces the elapsed time for "make release" of a NetBSD 1.5 source tree on my 128MB pc to 10% less than a 1.5 kernel took.
2001-09-16 00:36:31 +04:00
if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
/*
* The machine-dependent code detected
* some reason for us to abort zeroing
* pages, probably because there is a
* process now ready to run.
*/
a whole bunch of changes to improve performance and robustness under load: - remove special treatment of pager_map mappings in pmaps. this is required now, since I've removed the globals that expose the address range. pager_map now uses pmap_kenter_pa() instead of pmap_enter(), so there's no longer any need to special-case it. - eliminate struct uvm_vnode by moving its fields into struct vnode. - rewrite the pageout path. the pager is now responsible for handling the high-level requests instead of only getting control after a bunch of work has already been done on its behalf. this will allow us to UBCify LFS, which needs tighter control over its pages than other filesystems do. writing a page to disk no longer requires making it read-only, which allows us to write wired pages without causing all kinds of havoc. - use a new PG_PAGEOUT flag to indicate that a page should be freed on behalf of the pagedaemon when it's unlocked. this flag is very similar to PG_RELEASED, but unlike PG_RELEASED, PG_PAGEOUT can be cleared if the pageout fails due to eg. an indirect-block buffer being locked. this allows us to remove the "version" field from struct vm_page, and together with shrinking "loan_count" from 32 bits to 16, struct vm_page is now 4 bytes smaller. - no longer use PG_RELEASED for swap-backed pages. if the page is busy because it's being paged out, we can't release the swap slot to be reallocated until that write is complete, but unlike with vnodes we don't keep a count of in-progress writes so there's no good way to know when the write is done. instead, when we need to free a busy swap-backed page, just sleep until we can get it busy ourselves. - implement a fast-path for extending writes which allows us to avoid zeroing new pages. this substantially reduces cpu usage. - encapsulate the data used by the genfs code in a struct genfs_node, which must be the first element of the filesystem-specific vnode data for filesystems which use genfs_{get,put}pages(). - eliminate many of the UVM pagerops, since they aren't needed anymore now that the pager "put" operation is a higher-level operation. - enhance the genfs code to allow NFS to use the genfs_{get,put}pages instead of a modified copy. - clean up struct vnode by removing all the fields that used to be used by the vfs_cluster.c code (which we don't use anymore with UBC). - remove kmem_object and mb_object since they were useless. instead of allocating pages to these objects, we now just allocate pages with no object. such pages are mapped in the kernel until they are freed, so we can use the mapping to find the page to free it. this allows us to remove splvm() protection in several places. The sum of all these changes improves write throughput on my decstation 5000/200 to within 1% of the rate of NetBSD 1.5 and reduces the elapsed time for "make release" of a NetBSD 1.5 source tree on my 128MB pc to 10% less than a 1.5 kernel took.
2001-09-16 00:36:31 +04:00
mutex_spin_enter(&uvm_fpageqlock);
pg->pqflags = PQ_FREE;
LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
nextbucket].pgfl_queues[
PGFL_UNKNOWN], pg, pageq.list);
LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
nextbucket].pgfl_queues[
PGFL_UNKNOWN], pg, listq.list);
ucpu->pages[PGFL_UNKNOWN]++;
uvmexp.free++;
uvmexp.zeroaborts++;
goto quit;
}
#else
pmap_zero_page(VM_PAGE_TO_PHYS(pg));
#endif /* PMAP_PAGEIDLEZERO */
pg->flags |= PG_ZERO;
if (!mutex_tryenter(&uvm_fpageqlock)) {
lcont = true;
mutex_spin_enter(&uvm_fpageqlock);
} else {
lcont = false;
}
pg->pqflags = PQ_FREE;
LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
nextbucket].pgfl_queues[PGFL_ZEROS],
pg, pageq.list);
LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
nextbucket].pgfl_queues[PGFL_ZEROS],
pg, listq.list);
ucpu->pages[PGFL_ZEROS]++;
uvmexp.free++;
uvmexp.zeropages++;
}
}
if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
break;
}
nextbucket = (nextbucket + 1) & uvmexp.colormask;
} while (nextbucket != firstbucket);
ucpu->page_idle_zero = false;
quit:
mutex_spin_exit(&uvm_fpageqlock);
}
/*
* uvm_pagelookup: look up a page
*
* => caller should lock object to keep someone from pulling the page
* out from under it
*/
struct vm_page *
uvm_pagelookup(struct uvm_object *obj, voff_t off)
{
struct vm_page *pg;
KASSERT(mutex_owned(obj->vmobjlock));
pg = rb_tree_find_node(&obj->rb_tree, &off);
KASSERT(pg == NULL || obj->uo_npages != 0);
KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
(pg->flags & PG_BUSY) != 0);
return pg;
}
/*
* uvm_pagewire: wire the page, thus removing it from the daemon's grasp
*
* => caller must lock page queues
*/
void
uvm_pagewire(struct vm_page *pg)
{
2008-01-02 14:48:20 +03:00
KASSERT(mutex_owned(&uvm_pageqlock));
#if defined(READAHEAD_STATS)
if ((pg->pqflags & PQ_READAHEAD) != 0) {
uvm_ra_hit.ev_count++;
pg->pqflags &= ~PQ_READAHEAD;
}
#endif /* defined(READAHEAD_STATS) */
if (pg->wire_count == 0) {
uvm_pagedequeue(pg);
uvmexp.wired++;
}
pg->wire_count++;
}
/*
* uvm_pageunwire: unwire the page.
*
* => activate if wire count goes to zero.
* => caller must lock page queues
*/
void
uvm_pageunwire(struct vm_page *pg)
{
2008-01-02 14:48:20 +03:00
KASSERT(mutex_owned(&uvm_pageqlock));
pg->wire_count--;
if (pg->wire_count == 0) {
uvm_pageactivate(pg);
uvmexp.wired--;
}
}
/*
* uvm_pagedeactivate: deactivate page
*
* => caller must lock page queues
* => caller must check to make sure page is not wired
* => object that page belongs to must be locked (so we can adjust pg->flags)
* => caller must clear the reference on the page before calling
*/
void
uvm_pagedeactivate(struct vm_page *pg)
{
2008-01-02 14:48:20 +03:00
KASSERT(mutex_owned(&uvm_pageqlock));
KASSERT(uvm_page_locked_p(pg));
KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
uvmpdpol_pagedeactivate(pg);
}
/*
* uvm_pageactivate: activate page
*
* => caller must lock page queues
*/
void
uvm_pageactivate(struct vm_page *pg)
{
2008-01-02 14:48:20 +03:00
KASSERT(mutex_owned(&uvm_pageqlock));
KASSERT(uvm_page_locked_p(pg));
#if defined(READAHEAD_STATS)
if ((pg->pqflags & PQ_READAHEAD) != 0) {
uvm_ra_hit.ev_count++;
pg->pqflags &= ~PQ_READAHEAD;
}
#endif /* defined(READAHEAD_STATS) */
if (pg->wire_count != 0) {
return;
}
uvmpdpol_pageactivate(pg);
}
/*
* uvm_pagedequeue: remove a page from any paging queue
*/
void
uvm_pagedequeue(struct vm_page *pg)
{
if (uvmpdpol_pageisqueued_p(pg)) {
2008-01-02 14:48:20 +03:00
KASSERT(mutex_owned(&uvm_pageqlock));
}
uvmpdpol_pagedequeue(pg);
}
/*
* uvm_pageenqueue: add a page to a paging queue without activating.
* used where a page is not really demanded (yet). eg. read-ahead
*/
void
uvm_pageenqueue(struct vm_page *pg)
{
2008-01-02 14:48:20 +03:00
KASSERT(mutex_owned(&uvm_pageqlock));
if (pg->wire_count != 0) {
return;
}
uvmpdpol_pageenqueue(pg);
}
/*
* uvm_pagezero: zero fill a page
*
* => if page is part of an object then the object should be locked
* to protect pg->flags.
*/
void
uvm_pagezero(struct vm_page *pg)
{
pg->flags &= ~PG_CLEAN;
pmap_zero_page(VM_PAGE_TO_PHYS(pg));
}
/*
* uvm_pagecopy: copy a page
*
* => if page is part of an object then the object should be locked
* to protect pg->flags.
*/
void
uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
{
dst->flags &= ~PG_CLEAN;
pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
}
/*
* uvm_pageismanaged: test it see that a page (specified by PA) is managed.
*/
bool
uvm_pageismanaged(paddr_t pa)
{
return (uvm_physseg_find(atop(pa), NULL) != UVM_PHYSSEG_TYPE_INVALID);
}
/*
* uvm_page_lookup_freelist: look up the free list for the specified page
*/
int
uvm_page_lookup_freelist(struct vm_page *pg)
{
uvm_physseg_t upm;
upm = uvm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
KASSERT(upm != UVM_PHYSSEG_TYPE_INVALID);
return uvm_physseg_get_free_list(upm);
}
/*
* uvm_page_locked_p: return true if object associated with page is
* locked. this is a weak check for runtime assertions only.
*/
bool
uvm_page_locked_p(struct vm_page *pg)
{
if (pg->uobject != NULL) {
return mutex_owned(pg->uobject->vmobjlock);
}
if (pg->uanon != NULL) {
return mutex_owned(pg->uanon->an_lock);
}
return true;
}
#if defined(DDB) || defined(DEBUGPRINT)
/*
* uvm_page_printit: actually print the page
*/
static const char page_flagbits[] = UVM_PGFLAGBITS;
static const char page_pqflagbits[] = UVM_PQFLAGBITS;
void
uvm_page_printit(struct vm_page *pg, bool full,
void (*pr)(const char *, ...))
{
struct vm_page *tpg;
struct uvm_object *uobj;
struct pgflist *pgl;
char pgbuf[128];
char pqbuf[128];
(*pr)("PAGE %p:\n", pg);
snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
snprintb(pqbuf, sizeof(pqbuf), page_pqflagbits, pg->pqflags);
(*pr)(" flags=%s, pqflags=%s, wire_count=%d, pa=0x%lx\n",
pgbuf, pqbuf, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
(*pr)(" uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
#if defined(UVM_PAGE_TRKOWN)
if (pg->flags & PG_BUSY)
(*pr)(" owning process = %d, tag=%s\n",
pg->owner, pg->owner_tag);
else
(*pr)(" page not busy, no owner\n");
#else
(*pr)(" [page ownership tracking disabled]\n");
#endif
if (!full)
return;
/* cross-verify object/anon */
if ((pg->pqflags & PQ_FREE) == 0) {
if (pg->pqflags & PQ_ANON) {
if (pg->uanon == NULL || pg->uanon->an_page != pg)
(*pr)(" >>> ANON DOES NOT POINT HERE <<< (%p)\n",
(pg->uanon) ? pg->uanon->an_page : NULL);
else
(*pr)(" anon backpointer is OK\n");
} else {
uobj = pg->uobject;
if (uobj) {
(*pr)(" checking object list\n");
TAILQ_FOREACH(tpg, &uobj->memq, listq.queue) {
if (tpg == pg) {
break;
}
}
if (tpg)
(*pr)(" page found on object list\n");
else
(*pr)(" >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
}
}
}
/* cross-verify page queue */
if (pg->pqflags & PQ_FREE) {
int fl = uvm_page_lookup_freelist(pg);
int color = VM_PGCOLOR_BUCKET(pg);
pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
} else {
pgl = NULL;
}
if (pgl) {
(*pr)(" checking pageq list\n");
LIST_FOREACH(tpg, pgl, pageq.list) {
if (tpg == pg) {
break;
}
}
if (tpg)
(*pr)(" page found on pageq list\n");
else
(*pr)(" >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
}
}
/*
* uvm_pages_printthem - print a summary of all managed pages
*/
void
uvm_page_printall(void (*pr)(const char *, ...))
{
uvm_physseg_t i;
paddr_t pfn;
struct vm_page *pg;
(*pr)("%18s %4s %4s %18s %18s"
#ifdef UVM_PAGE_TRKOWN
" OWNER"
#endif
"\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
for (i = uvm_physseg_get_first();
uvm_physseg_valid_p(i);
i = uvm_physseg_get_next(i)) {
for (pfn = uvm_physseg_get_start(i);
2017-02-05 10:25:49 +03:00
pfn < uvm_physseg_get_end(i);
pfn++) {
pg = PHYS_TO_VM_PAGE(ptoa(pfn));
(*pr)("%18p %04x %04x %18p %18p",
pg, pg->flags, pg->pqflags, pg->uobject,
pg->uanon);
#ifdef UVM_PAGE_TRKOWN
if (pg->flags & PG_BUSY)
(*pr)(" %d [%s]", pg->owner, pg->owner_tag);
#endif
(*pr)("\n");
}
}
}
#endif /* DDB || DEBUGPRINT */