775 lines
22 KiB
C
775 lines
22 KiB
C
|
/* Support for printing Fortran values for GDB, the GNU debugger.
|
|||
|
Copyright 1993-1995, 2000 Free Software Foundation, Inc.
|
|||
|
Contributed by Motorola. Adapted from the C definitions by Farooq Butt
|
|||
|
(fmbutt@engage.sps.mot.com), additionally worked over by Stan Shebs.
|
|||
|
|
|||
|
This file is part of GDB.
|
|||
|
|
|||
|
This program is free software; you can redistribute it and/or modify
|
|||
|
it under the terms of the GNU General Public License as published by
|
|||
|
the Free Software Foundation; either version 2 of the License, or
|
|||
|
(at your option) any later version.
|
|||
|
|
|||
|
This program is distributed in the hope that it will be useful,
|
|||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|||
|
GNU General Public License for more details.
|
|||
|
|
|||
|
You should have received a copy of the GNU General Public License
|
|||
|
along with this program; if not, write to the Free Software
|
|||
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
|||
|
Boston, MA 02111-1307, USA. */
|
|||
|
|
|||
|
#include "defs.h"
|
|||
|
#include "gdb_string.h"
|
|||
|
#include "symtab.h"
|
|||
|
#include "gdbtypes.h"
|
|||
|
#include "expression.h"
|
|||
|
#include "value.h"
|
|||
|
#include "demangle.h"
|
|||
|
#include "valprint.h"
|
|||
|
#include "language.h"
|
|||
|
#include "f-lang.h"
|
|||
|
#include "frame.h"
|
|||
|
#include "gdbcore.h"
|
|||
|
#include "command.h"
|
|||
|
|
|||
|
#if 0
|
|||
|
static int there_is_a_visible_common_named PARAMS ((char *));
|
|||
|
#endif
|
|||
|
|
|||
|
extern void _initialize_f_valprint PARAMS ((void));
|
|||
|
static void info_common_command PARAMS ((char *, int));
|
|||
|
static void list_all_visible_commons PARAMS ((char *));
|
|||
|
static void f77_print_array (struct type *, char *, CORE_ADDR,
|
|||
|
struct ui_file *, int, int, int,
|
|||
|
enum val_prettyprint);
|
|||
|
static void f77_print_array_1 (int, int, struct type *, char *,
|
|||
|
CORE_ADDR, struct ui_file *, int, int, int,
|
|||
|
enum val_prettyprint);
|
|||
|
static void f77_create_arrayprint_offset_tbl (struct type *,
|
|||
|
struct ui_file *);
|
|||
|
static void f77_get_dynamic_length_of_aggregate PARAMS ((struct type *));
|
|||
|
|
|||
|
int f77_array_offset_tbl[MAX_FORTRAN_DIMS + 1][2];
|
|||
|
|
|||
|
/* Array which holds offsets to be applied to get a row's elements
|
|||
|
for a given array. Array also holds the size of each subarray. */
|
|||
|
|
|||
|
/* The following macro gives us the size of the nth dimension, Where
|
|||
|
n is 1 based. */
|
|||
|
|
|||
|
#define F77_DIM_SIZE(n) (f77_array_offset_tbl[n][1])
|
|||
|
|
|||
|
/* The following gives us the offset for row n where n is 1-based. */
|
|||
|
|
|||
|
#define F77_DIM_OFFSET(n) (f77_array_offset_tbl[n][0])
|
|||
|
|
|||
|
int
|
|||
|
f77_get_dynamic_lowerbound (type, lower_bound)
|
|||
|
struct type *type;
|
|||
|
int *lower_bound;
|
|||
|
{
|
|||
|
CORE_ADDR current_frame_addr;
|
|||
|
CORE_ADDR ptr_to_lower_bound;
|
|||
|
|
|||
|
switch (TYPE_ARRAY_LOWER_BOUND_TYPE (type))
|
|||
|
{
|
|||
|
case BOUND_BY_VALUE_ON_STACK:
|
|||
|
current_frame_addr = selected_frame->frame;
|
|||
|
if (current_frame_addr > 0)
|
|||
|
{
|
|||
|
*lower_bound =
|
|||
|
read_memory_integer (current_frame_addr +
|
|||
|
TYPE_ARRAY_LOWER_BOUND_VALUE (type),
|
|||
|
4);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
*lower_bound = DEFAULT_LOWER_BOUND;
|
|||
|
return BOUND_FETCH_ERROR;
|
|||
|
}
|
|||
|
break;
|
|||
|
|
|||
|
case BOUND_SIMPLE:
|
|||
|
*lower_bound = TYPE_ARRAY_LOWER_BOUND_VALUE (type);
|
|||
|
break;
|
|||
|
|
|||
|
case BOUND_CANNOT_BE_DETERMINED:
|
|||
|
error ("Lower bound may not be '*' in F77");
|
|||
|
break;
|
|||
|
|
|||
|
case BOUND_BY_REF_ON_STACK:
|
|||
|
current_frame_addr = selected_frame->frame;
|
|||
|
if (current_frame_addr > 0)
|
|||
|
{
|
|||
|
ptr_to_lower_bound =
|
|||
|
read_memory_integer (current_frame_addr +
|
|||
|
TYPE_ARRAY_LOWER_BOUND_VALUE (type),
|
|||
|
4);
|
|||
|
*lower_bound = read_memory_integer (ptr_to_lower_bound, 4);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
*lower_bound = DEFAULT_LOWER_BOUND;
|
|||
|
return BOUND_FETCH_ERROR;
|
|||
|
}
|
|||
|
break;
|
|||
|
|
|||
|
case BOUND_BY_REF_IN_REG:
|
|||
|
case BOUND_BY_VALUE_IN_REG:
|
|||
|
default:
|
|||
|
error ("??? unhandled dynamic array bound type ???");
|
|||
|
break;
|
|||
|
}
|
|||
|
return BOUND_FETCH_OK;
|
|||
|
}
|
|||
|
|
|||
|
int
|
|||
|
f77_get_dynamic_upperbound (type, upper_bound)
|
|||
|
struct type *type;
|
|||
|
int *upper_bound;
|
|||
|
{
|
|||
|
CORE_ADDR current_frame_addr = 0;
|
|||
|
CORE_ADDR ptr_to_upper_bound;
|
|||
|
|
|||
|
switch (TYPE_ARRAY_UPPER_BOUND_TYPE (type))
|
|||
|
{
|
|||
|
case BOUND_BY_VALUE_ON_STACK:
|
|||
|
current_frame_addr = selected_frame->frame;
|
|||
|
if (current_frame_addr > 0)
|
|||
|
{
|
|||
|
*upper_bound =
|
|||
|
read_memory_integer (current_frame_addr +
|
|||
|
TYPE_ARRAY_UPPER_BOUND_VALUE (type),
|
|||
|
4);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
*upper_bound = DEFAULT_UPPER_BOUND;
|
|||
|
return BOUND_FETCH_ERROR;
|
|||
|
}
|
|||
|
break;
|
|||
|
|
|||
|
case BOUND_SIMPLE:
|
|||
|
*upper_bound = TYPE_ARRAY_UPPER_BOUND_VALUE (type);
|
|||
|
break;
|
|||
|
|
|||
|
case BOUND_CANNOT_BE_DETERMINED:
|
|||
|
/* we have an assumed size array on our hands. Assume that
|
|||
|
upper_bound == lower_bound so that we show at least
|
|||
|
1 element.If the user wants to see more elements, let
|
|||
|
him manually ask for 'em and we'll subscript the
|
|||
|
array and show him */
|
|||
|
f77_get_dynamic_lowerbound (type, upper_bound);
|
|||
|
break;
|
|||
|
|
|||
|
case BOUND_BY_REF_ON_STACK:
|
|||
|
current_frame_addr = selected_frame->frame;
|
|||
|
if (current_frame_addr > 0)
|
|||
|
{
|
|||
|
ptr_to_upper_bound =
|
|||
|
read_memory_integer (current_frame_addr +
|
|||
|
TYPE_ARRAY_UPPER_BOUND_VALUE (type),
|
|||
|
4);
|
|||
|
*upper_bound = read_memory_integer (ptr_to_upper_bound, 4);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
*upper_bound = DEFAULT_UPPER_BOUND;
|
|||
|
return BOUND_FETCH_ERROR;
|
|||
|
}
|
|||
|
break;
|
|||
|
|
|||
|
case BOUND_BY_REF_IN_REG:
|
|||
|
case BOUND_BY_VALUE_IN_REG:
|
|||
|
default:
|
|||
|
error ("??? unhandled dynamic array bound type ???");
|
|||
|
break;
|
|||
|
}
|
|||
|
return BOUND_FETCH_OK;
|
|||
|
}
|
|||
|
|
|||
|
/* Obtain F77 adjustable array dimensions */
|
|||
|
|
|||
|
static void
|
|||
|
f77_get_dynamic_length_of_aggregate (type)
|
|||
|
struct type *type;
|
|||
|
{
|
|||
|
int upper_bound = -1;
|
|||
|
int lower_bound = 1;
|
|||
|
int retcode;
|
|||
|
|
|||
|
/* Recursively go all the way down into a possibly multi-dimensional
|
|||
|
F77 array and get the bounds. For simple arrays, this is pretty
|
|||
|
easy but when the bounds are dynamic, we must be very careful
|
|||
|
to add up all the lengths correctly. Not doing this right
|
|||
|
will lead to horrendous-looking arrays in parameter lists.
|
|||
|
|
|||
|
This function also works for strings which behave very
|
|||
|
similarly to arrays. */
|
|||
|
|
|||
|
if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY
|
|||
|
|| TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRING)
|
|||
|
f77_get_dynamic_length_of_aggregate (TYPE_TARGET_TYPE (type));
|
|||
|
|
|||
|
/* Recursion ends here, start setting up lengths. */
|
|||
|
retcode = f77_get_dynamic_lowerbound (type, &lower_bound);
|
|||
|
if (retcode == BOUND_FETCH_ERROR)
|
|||
|
error ("Cannot obtain valid array lower bound");
|
|||
|
|
|||
|
retcode = f77_get_dynamic_upperbound (type, &upper_bound);
|
|||
|
if (retcode == BOUND_FETCH_ERROR)
|
|||
|
error ("Cannot obtain valid array upper bound");
|
|||
|
|
|||
|
/* Patch in a valid length value. */
|
|||
|
|
|||
|
TYPE_LENGTH (type) =
|
|||
|
(upper_bound - lower_bound + 1) * TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type)));
|
|||
|
}
|
|||
|
|
|||
|
/* Function that sets up the array offset,size table for the array
|
|||
|
type "type". */
|
|||
|
|
|||
|
static void
|
|||
|
f77_create_arrayprint_offset_tbl (type, stream)
|
|||
|
struct type *type;
|
|||
|
struct ui_file *stream;
|
|||
|
{
|
|||
|
struct type *tmp_type;
|
|||
|
int eltlen;
|
|||
|
int ndimen = 1;
|
|||
|
int upper, lower, retcode;
|
|||
|
|
|||
|
tmp_type = type;
|
|||
|
|
|||
|
while ((TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY))
|
|||
|
{
|
|||
|
if (TYPE_ARRAY_UPPER_BOUND_TYPE (tmp_type) == BOUND_CANNOT_BE_DETERMINED)
|
|||
|
fprintf_filtered (stream, "<assumed size array> ");
|
|||
|
|
|||
|
retcode = f77_get_dynamic_upperbound (tmp_type, &upper);
|
|||
|
if (retcode == BOUND_FETCH_ERROR)
|
|||
|
error ("Cannot obtain dynamic upper bound");
|
|||
|
|
|||
|
retcode = f77_get_dynamic_lowerbound (tmp_type, &lower);
|
|||
|
if (retcode == BOUND_FETCH_ERROR)
|
|||
|
error ("Cannot obtain dynamic lower bound");
|
|||
|
|
|||
|
F77_DIM_SIZE (ndimen) = upper - lower + 1;
|
|||
|
|
|||
|
tmp_type = TYPE_TARGET_TYPE (tmp_type);
|
|||
|
ndimen++;
|
|||
|
}
|
|||
|
|
|||
|
/* Now we multiply eltlen by all the offsets, so that later we
|
|||
|
can print out array elements correctly. Up till now we
|
|||
|
know an offset to apply to get the item but we also
|
|||
|
have to know how much to add to get to the next item */
|
|||
|
|
|||
|
ndimen--;
|
|||
|
eltlen = TYPE_LENGTH (tmp_type);
|
|||
|
F77_DIM_OFFSET (ndimen) = eltlen;
|
|||
|
while (--ndimen > 0)
|
|||
|
{
|
|||
|
eltlen *= F77_DIM_SIZE (ndimen + 1);
|
|||
|
F77_DIM_OFFSET (ndimen) = eltlen;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Actual function which prints out F77 arrays, Valaddr == address in
|
|||
|
the superior. Address == the address in the inferior. */
|
|||
|
|
|||
|
static void
|
|||
|
f77_print_array_1 (nss, ndimensions, type, valaddr, address,
|
|||
|
stream, format, deref_ref, recurse, pretty)
|
|||
|
int nss;
|
|||
|
int ndimensions;
|
|||
|
struct type *type;
|
|||
|
char *valaddr;
|
|||
|
CORE_ADDR address;
|
|||
|
struct ui_file *stream;
|
|||
|
int format;
|
|||
|
int deref_ref;
|
|||
|
int recurse;
|
|||
|
enum val_prettyprint pretty;
|
|||
|
{
|
|||
|
int i;
|
|||
|
|
|||
|
if (nss != ndimensions)
|
|||
|
{
|
|||
|
for (i = 0; i < F77_DIM_SIZE (nss); i++)
|
|||
|
{
|
|||
|
fprintf_filtered (stream, "( ");
|
|||
|
f77_print_array_1 (nss + 1, ndimensions, TYPE_TARGET_TYPE (type),
|
|||
|
valaddr + i * F77_DIM_OFFSET (nss),
|
|||
|
address + i * F77_DIM_OFFSET (nss),
|
|||
|
stream, format, deref_ref, recurse, pretty);
|
|||
|
fprintf_filtered (stream, ") ");
|
|||
|
}
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
for (i = 0; (i < F77_DIM_SIZE (nss) && i < print_max); i++)
|
|||
|
{
|
|||
|
val_print (TYPE_TARGET_TYPE (type),
|
|||
|
valaddr + i * F77_DIM_OFFSET (ndimensions),
|
|||
|
0,
|
|||
|
address + i * F77_DIM_OFFSET (ndimensions),
|
|||
|
stream, format, deref_ref, recurse, pretty);
|
|||
|
|
|||
|
if (i != (F77_DIM_SIZE (nss) - 1))
|
|||
|
fprintf_filtered (stream, ", ");
|
|||
|
|
|||
|
if (i == print_max - 1)
|
|||
|
fprintf_filtered (stream, "...");
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* This function gets called to print an F77 array, we set up some
|
|||
|
stuff and then immediately call f77_print_array_1() */
|
|||
|
|
|||
|
static void
|
|||
|
f77_print_array (type, valaddr, address, stream, format, deref_ref, recurse,
|
|||
|
pretty)
|
|||
|
struct type *type;
|
|||
|
char *valaddr;
|
|||
|
CORE_ADDR address;
|
|||
|
struct ui_file *stream;
|
|||
|
int format;
|
|||
|
int deref_ref;
|
|||
|
int recurse;
|
|||
|
enum val_prettyprint pretty;
|
|||
|
{
|
|||
|
int ndimensions;
|
|||
|
|
|||
|
ndimensions = calc_f77_array_dims (type);
|
|||
|
|
|||
|
if (ndimensions > MAX_FORTRAN_DIMS || ndimensions < 0)
|
|||
|
error ("Type node corrupt! F77 arrays cannot have %d subscripts (%d Max)",
|
|||
|
ndimensions, MAX_FORTRAN_DIMS);
|
|||
|
|
|||
|
/* Since F77 arrays are stored column-major, we set up an
|
|||
|
offset table to get at the various row's elements. The
|
|||
|
offset table contains entries for both offset and subarray size. */
|
|||
|
|
|||
|
f77_create_arrayprint_offset_tbl (type, stream);
|
|||
|
|
|||
|
f77_print_array_1 (1, ndimensions, type, valaddr, address, stream, format,
|
|||
|
deref_ref, recurse, pretty);
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Print data of type TYPE located at VALADDR (within GDB), which came from
|
|||
|
the inferior at address ADDRESS, onto stdio stream STREAM according to
|
|||
|
FORMAT (a letter or 0 for natural format). The data at VALADDR is in
|
|||
|
target byte order.
|
|||
|
|
|||
|
If the data are a string pointer, returns the number of string characters
|
|||
|
printed.
|
|||
|
|
|||
|
If DEREF_REF is nonzero, then dereference references, otherwise just print
|
|||
|
them like pointers.
|
|||
|
|
|||
|
The PRETTY parameter controls prettyprinting. */
|
|||
|
|
|||
|
int
|
|||
|
f_val_print (type, valaddr, embedded_offset, address, stream, format, deref_ref, recurse,
|
|||
|
pretty)
|
|||
|
struct type *type;
|
|||
|
char *valaddr;
|
|||
|
int embedded_offset;
|
|||
|
CORE_ADDR address;
|
|||
|
struct ui_file *stream;
|
|||
|
int format;
|
|||
|
int deref_ref;
|
|||
|
int recurse;
|
|||
|
enum val_prettyprint pretty;
|
|||
|
{
|
|||
|
register unsigned int i = 0; /* Number of characters printed */
|
|||
|
struct type *elttype;
|
|||
|
LONGEST val;
|
|||
|
CORE_ADDR addr;
|
|||
|
|
|||
|
CHECK_TYPEDEF (type);
|
|||
|
switch (TYPE_CODE (type))
|
|||
|
{
|
|||
|
case TYPE_CODE_STRING:
|
|||
|
f77_get_dynamic_length_of_aggregate (type);
|
|||
|
LA_PRINT_STRING (stream, valaddr, TYPE_LENGTH (type), 1, 0);
|
|||
|
break;
|
|||
|
|
|||
|
case TYPE_CODE_ARRAY:
|
|||
|
fprintf_filtered (stream, "(");
|
|||
|
f77_print_array (type, valaddr, address, stream, format,
|
|||
|
deref_ref, recurse, pretty);
|
|||
|
fprintf_filtered (stream, ")");
|
|||
|
break;
|
|||
|
#if 0
|
|||
|
/* Array of unspecified length: treat like pointer to first elt. */
|
|||
|
valaddr = (char *) &address;
|
|||
|
/* FALL THROUGH */
|
|||
|
#endif
|
|||
|
case TYPE_CODE_PTR:
|
|||
|
if (format && format != 's')
|
|||
|
{
|
|||
|
print_scalar_formatted (valaddr, type, format, 0, stream);
|
|||
|
break;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
addr = unpack_pointer (type, valaddr);
|
|||
|
elttype = check_typedef (TYPE_TARGET_TYPE (type));
|
|||
|
|
|||
|
if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
|
|||
|
{
|
|||
|
/* Try to print what function it points to. */
|
|||
|
print_address_demangle (addr, stream, demangle);
|
|||
|
/* Return value is irrelevant except for string pointers. */
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
if (addressprint && format != 's')
|
|||
|
fprintf_filtered (stream, "0x%s", paddr_nz (addr));
|
|||
|
|
|||
|
/* For a pointer to char or unsigned char, also print the string
|
|||
|
pointed to, unless pointer is null. */
|
|||
|
if (TYPE_LENGTH (elttype) == 1
|
|||
|
&& TYPE_CODE (elttype) == TYPE_CODE_INT
|
|||
|
&& (format == 0 || format == 's')
|
|||
|
&& addr != 0)
|
|||
|
i = val_print_string (addr, -1, TYPE_LENGTH (elttype), stream);
|
|||
|
|
|||
|
/* Return number of characters printed, plus one for the
|
|||
|
terminating null if we have "reached the end". */
|
|||
|
return (i + (print_max && i != print_max));
|
|||
|
}
|
|||
|
break;
|
|||
|
|
|||
|
case TYPE_CODE_FUNC:
|
|||
|
if (format)
|
|||
|
{
|
|||
|
print_scalar_formatted (valaddr, type, format, 0, stream);
|
|||
|
break;
|
|||
|
}
|
|||
|
/* FIXME, we should consider, at least for ANSI C language, eliminating
|
|||
|
the distinction made between FUNCs and POINTERs to FUNCs. */
|
|||
|
fprintf_filtered (stream, "{");
|
|||
|
type_print (type, "", stream, -1);
|
|||
|
fprintf_filtered (stream, "} ");
|
|||
|
/* Try to print what function it points to, and its address. */
|
|||
|
print_address_demangle (address, stream, demangle);
|
|||
|
break;
|
|||
|
|
|||
|
case TYPE_CODE_INT:
|
|||
|
format = format ? format : output_format;
|
|||
|
if (format)
|
|||
|
print_scalar_formatted (valaddr, type, format, 0, stream);
|
|||
|
else
|
|||
|
{
|
|||
|
val_print_type_code_int (type, valaddr, stream);
|
|||
|
/* C and C++ has no single byte int type, char is used instead.
|
|||
|
Since we don't know whether the value is really intended to
|
|||
|
be used as an integer or a character, print the character
|
|||
|
equivalent as well. */
|
|||
|
if (TYPE_LENGTH (type) == 1)
|
|||
|
{
|
|||
|
fputs_filtered (" ", stream);
|
|||
|
LA_PRINT_CHAR ((unsigned char) unpack_long (type, valaddr),
|
|||
|
stream);
|
|||
|
}
|
|||
|
}
|
|||
|
break;
|
|||
|
|
|||
|
case TYPE_CODE_FLT:
|
|||
|
if (format)
|
|||
|
print_scalar_formatted (valaddr, type, format, 0, stream);
|
|||
|
else
|
|||
|
print_floating (valaddr, type, stream);
|
|||
|
break;
|
|||
|
|
|||
|
case TYPE_CODE_VOID:
|
|||
|
fprintf_filtered (stream, "VOID");
|
|||
|
break;
|
|||
|
|
|||
|
case TYPE_CODE_ERROR:
|
|||
|
fprintf_filtered (stream, "<error type>");
|
|||
|
break;
|
|||
|
|
|||
|
case TYPE_CODE_RANGE:
|
|||
|
/* FIXME, we should not ever have to print one of these yet. */
|
|||
|
fprintf_filtered (stream, "<range type>");
|
|||
|
break;
|
|||
|
|
|||
|
case TYPE_CODE_BOOL:
|
|||
|
format = format ? format : output_format;
|
|||
|
if (format)
|
|||
|
print_scalar_formatted (valaddr, type, format, 0, stream);
|
|||
|
else
|
|||
|
{
|
|||
|
val = 0;
|
|||
|
switch (TYPE_LENGTH (type))
|
|||
|
{
|
|||
|
case 1:
|
|||
|
val = unpack_long (builtin_type_f_logical_s1, valaddr);
|
|||
|
break;
|
|||
|
|
|||
|
case 2:
|
|||
|
val = unpack_long (builtin_type_f_logical_s2, valaddr);
|
|||
|
break;
|
|||
|
|
|||
|
case 4:
|
|||
|
val = unpack_long (builtin_type_f_logical, valaddr);
|
|||
|
break;
|
|||
|
|
|||
|
default:
|
|||
|
error ("Logicals of length %d bytes not supported",
|
|||
|
TYPE_LENGTH (type));
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
if (val == 0)
|
|||
|
fprintf_filtered (stream, ".FALSE.");
|
|||
|
else if (val == 1)
|
|||
|
fprintf_filtered (stream, ".TRUE.");
|
|||
|
else
|
|||
|
/* Not a legitimate logical type, print as an integer. */
|
|||
|
{
|
|||
|
/* Bash the type code temporarily. */
|
|||
|
TYPE_CODE (type) = TYPE_CODE_INT;
|
|||
|
f_val_print (type, valaddr, 0, address, stream, format,
|
|||
|
deref_ref, recurse, pretty);
|
|||
|
/* Restore the type code so later uses work as intended. */
|
|||
|
TYPE_CODE (type) = TYPE_CODE_BOOL;
|
|||
|
}
|
|||
|
}
|
|||
|
break;
|
|||
|
|
|||
|
case TYPE_CODE_COMPLEX:
|
|||
|
switch (TYPE_LENGTH (type))
|
|||
|
{
|
|||
|
case 8:
|
|||
|
type = builtin_type_f_real;
|
|||
|
break;
|
|||
|
case 16:
|
|||
|
type = builtin_type_f_real_s8;
|
|||
|
break;
|
|||
|
case 32:
|
|||
|
type = builtin_type_f_real_s16;
|
|||
|
break;
|
|||
|
default:
|
|||
|
error ("Cannot print out complex*%d variables", TYPE_LENGTH (type));
|
|||
|
}
|
|||
|
fputs_filtered ("(", stream);
|
|||
|
print_floating (valaddr, type, stream);
|
|||
|
fputs_filtered (",", stream);
|
|||
|
print_floating (valaddr, type, stream);
|
|||
|
fputs_filtered (")", stream);
|
|||
|
break;
|
|||
|
|
|||
|
case TYPE_CODE_UNDEF:
|
|||
|
/* This happens (without TYPE_FLAG_STUB set) on systems which don't use
|
|||
|
dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
|
|||
|
and no complete type for struct foo in that file. */
|
|||
|
fprintf_filtered (stream, "<incomplete type>");
|
|||
|
break;
|
|||
|
|
|||
|
default:
|
|||
|
error ("Invalid F77 type code %d in symbol table.", TYPE_CODE (type));
|
|||
|
}
|
|||
|
gdb_flush (stream);
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
static void
|
|||
|
list_all_visible_commons (funname)
|
|||
|
char *funname;
|
|||
|
{
|
|||
|
SAVED_F77_COMMON_PTR tmp;
|
|||
|
|
|||
|
tmp = head_common_list;
|
|||
|
|
|||
|
printf_filtered ("All COMMON blocks visible at this level:\n\n");
|
|||
|
|
|||
|
while (tmp != NULL)
|
|||
|
{
|
|||
|
if (STREQ (tmp->owning_function, funname))
|
|||
|
printf_filtered ("%s\n", tmp->name);
|
|||
|
|
|||
|
tmp = tmp->next;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* This function is used to print out the values in a given COMMON
|
|||
|
block. It will always use the most local common block of the
|
|||
|
given name */
|
|||
|
|
|||
|
static void
|
|||
|
info_common_command (comname, from_tty)
|
|||
|
char *comname;
|
|||
|
int from_tty;
|
|||
|
{
|
|||
|
SAVED_F77_COMMON_PTR the_common;
|
|||
|
COMMON_ENTRY_PTR entry;
|
|||
|
struct frame_info *fi;
|
|||
|
register char *funname = 0;
|
|||
|
struct symbol *func;
|
|||
|
|
|||
|
/* We have been told to display the contents of F77 COMMON
|
|||
|
block supposedly visible in this function. Let us
|
|||
|
first make sure that it is visible and if so, let
|
|||
|
us display its contents */
|
|||
|
|
|||
|
fi = selected_frame;
|
|||
|
|
|||
|
if (fi == NULL)
|
|||
|
error ("No frame selected");
|
|||
|
|
|||
|
/* The following is generally ripped off from stack.c's routine
|
|||
|
print_frame_info() */
|
|||
|
|
|||
|
func = find_pc_function (fi->pc);
|
|||
|
if (func)
|
|||
|
{
|
|||
|
/* In certain pathological cases, the symtabs give the wrong
|
|||
|
function (when we are in the first function in a file which
|
|||
|
is compiled without debugging symbols, the previous function
|
|||
|
is compiled with debugging symbols, and the "foo.o" symbol
|
|||
|
that is supposed to tell us where the file with debugging symbols
|
|||
|
ends has been truncated by ar because it is longer than 15
|
|||
|
characters).
|
|||
|
|
|||
|
So look in the minimal symbol tables as well, and if it comes
|
|||
|
up with a larger address for the function use that instead.
|
|||
|
I don't think this can ever cause any problems; there shouldn't
|
|||
|
be any minimal symbols in the middle of a function.
|
|||
|
FIXME: (Not necessarily true. What about text labels) */
|
|||
|
|
|||
|
struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
|
|||
|
|
|||
|
if (msymbol != NULL
|
|||
|
&& (SYMBOL_VALUE_ADDRESS (msymbol)
|
|||
|
> BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
|
|||
|
funname = SYMBOL_NAME (msymbol);
|
|||
|
else
|
|||
|
funname = SYMBOL_NAME (func);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
register struct minimal_symbol *msymbol =
|
|||
|
lookup_minimal_symbol_by_pc (fi->pc);
|
|||
|
|
|||
|
if (msymbol != NULL)
|
|||
|
funname = SYMBOL_NAME (msymbol);
|
|||
|
}
|
|||
|
|
|||
|
/* If comname is NULL, we assume the user wishes to see the
|
|||
|
which COMMON blocks are visible here and then return */
|
|||
|
|
|||
|
if (comname == 0)
|
|||
|
{
|
|||
|
list_all_visible_commons (funname);
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
the_common = find_common_for_function (comname, funname);
|
|||
|
|
|||
|
if (the_common)
|
|||
|
{
|
|||
|
if (STREQ (comname, BLANK_COMMON_NAME_LOCAL))
|
|||
|
printf_filtered ("Contents of blank COMMON block:\n");
|
|||
|
else
|
|||
|
printf_filtered ("Contents of F77 COMMON block '%s':\n", comname);
|
|||
|
|
|||
|
printf_filtered ("\n");
|
|||
|
entry = the_common->entries;
|
|||
|
|
|||
|
while (entry != NULL)
|
|||
|
{
|
|||
|
printf_filtered ("%s = ", SYMBOL_NAME (entry->symbol));
|
|||
|
print_variable_value (entry->symbol, fi, gdb_stdout);
|
|||
|
printf_filtered ("\n");
|
|||
|
entry = entry->next;
|
|||
|
}
|
|||
|
}
|
|||
|
else
|
|||
|
printf_filtered ("Cannot locate the common block %s in function '%s'\n",
|
|||
|
comname, funname);
|
|||
|
}
|
|||
|
|
|||
|
/* This function is used to determine whether there is a
|
|||
|
F77 common block visible at the current scope called 'comname'. */
|
|||
|
|
|||
|
#if 0
|
|||
|
static int
|
|||
|
there_is_a_visible_common_named (comname)
|
|||
|
char *comname;
|
|||
|
{
|
|||
|
SAVED_F77_COMMON_PTR the_common;
|
|||
|
struct frame_info *fi;
|
|||
|
register char *funname = 0;
|
|||
|
struct symbol *func;
|
|||
|
|
|||
|
if (comname == NULL)
|
|||
|
error ("Cannot deal with NULL common name!");
|
|||
|
|
|||
|
fi = selected_frame;
|
|||
|
|
|||
|
if (fi == NULL)
|
|||
|
error ("No frame selected");
|
|||
|
|
|||
|
/* The following is generally ripped off from stack.c's routine
|
|||
|
print_frame_info() */
|
|||
|
|
|||
|
func = find_pc_function (fi->pc);
|
|||
|
if (func)
|
|||
|
{
|
|||
|
/* In certain pathological cases, the symtabs give the wrong
|
|||
|
function (when we are in the first function in a file which
|
|||
|
is compiled without debugging symbols, the previous function
|
|||
|
is compiled with debugging symbols, and the "foo.o" symbol
|
|||
|
that is supposed to tell us where the file with debugging symbols
|
|||
|
ends has been truncated by ar because it is longer than 15
|
|||
|
characters).
|
|||
|
|
|||
|
So look in the minimal symbol tables as well, and if it comes
|
|||
|
up with a larger address for the function use that instead.
|
|||
|
I don't think this can ever cause any problems; there shouldn't
|
|||
|
be any minimal symbols in the middle of a function.
|
|||
|
FIXME: (Not necessarily true. What about text labels) */
|
|||
|
|
|||
|
struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
|
|||
|
|
|||
|
if (msymbol != NULL
|
|||
|
&& (SYMBOL_VALUE_ADDRESS (msymbol)
|
|||
|
> BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
|
|||
|
funname = SYMBOL_NAME (msymbol);
|
|||
|
else
|
|||
|
funname = SYMBOL_NAME (func);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
register struct minimal_symbol *msymbol =
|
|||
|
lookup_minimal_symbol_by_pc (fi->pc);
|
|||
|
|
|||
|
if (msymbol != NULL)
|
|||
|
funname = SYMBOL_NAME (msymbol);
|
|||
|
}
|
|||
|
|
|||
|
the_common = find_common_for_function (comname, funname);
|
|||
|
|
|||
|
return (the_common ? 1 : 0);
|
|||
|
}
|
|||
|
#endif
|
|||
|
|
|||
|
void
|
|||
|
_initialize_f_valprint ()
|
|||
|
{
|
|||
|
add_info ("common", info_common_command,
|
|||
|
"Print out the values contained in a Fortran COMMON block.");
|
|||
|
if (xdb_commands)
|
|||
|
add_com ("lc", class_info, info_common_command,
|
|||
|
"Print out the values contained in a Fortran COMMON block.");
|
|||
|
}
|