NetBSD/sys/dev/usb/if_zyd.c

2673 lines
68 KiB
C
Raw Normal View History

/* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */
2021-06-13 12:24:33 +03:00
/* $NetBSD: if_zyd.c,v 1.60 2021/06/13 09:24:33 mlelstv Exp $ */
/*-
* Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr>
* Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
2013-01-05 05:32:50 +04:00
/*-
* ZyDAS ZD1211/ZD1211B USB WLAN driver.
*/
2013-01-05 05:32:50 +04:00
#include <sys/cdefs.h>
2021-06-13 12:24:33 +03:00
__KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.60 2021/06/13 09:24:33 mlelstv Exp $");
2016-11-25 15:56:29 +03:00
#ifdef _KERNEL_OPT
#include "opt_usb.h"
#endif
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/proc.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/bus.h>
#include <machine/endian.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <net80211/ieee80211_netbsd.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_amrr.h>
#include <net80211/ieee80211_radiotap.h>
#include <dev/firmload.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbdevs.h>
#include <dev/usb/if_zydreg.h>
#ifdef ZYD_DEBUG
#define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0)
#define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0)
int zyddebug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
/* various supported device vendors/products */
#define ZYD_ZD1211_DEV(v, p) \
{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
#define ZYD_ZD1211B_DEV(v, p) \
{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
static const struct zyd_type {
struct usb_devno dev;
uint8_t rev;
#define ZYD_ZD1211 0
#define ZYD_ZD1211B 1
} zyd_devs[] = {
ZYD_ZD1211_DEV(3COM2, 3CRUSB10075),
ZYD_ZD1211_DEV(ABOCOM, WL54),
ZYD_ZD1211_DEV(ASUSTEK, WL159G),
ZYD_ZD1211_DEV(CYBERTAN, TG54USB),
ZYD_ZD1211_DEV(DRAYTEK, VIGOR550),
2012-09-23 05:08:17 +04:00
ZYD_ZD1211_DEV(PLANEX2, GWUS54GD),
ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL),
ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ),
ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI),
ZYD_ZD1211_DEV(SAGEM, XG760A),
ZYD_ZD1211_DEV(SENAO, NUB8301),
ZYD_ZD1211_DEV(SITECOMEU, WL113),
ZYD_ZD1211_DEV(SWEEX, ZD1211),
ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN),
ZYD_ZD1211_DEV(TEKRAM, ZD1211_1),
ZYD_ZD1211_DEV(TEKRAM, ZD1211_2),
ZYD_ZD1211_DEV(TWINMOS, G240),
ZYD_ZD1211_DEV(UMEDIA, ALL0298V2),
ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A),
ZYD_ZD1211_DEV(UMEDIA, TEW429UB),
ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G),
ZYD_ZD1211_DEV(ZCOM, ZD1211),
ZYD_ZD1211_DEV(ZYDAS, ZD1211),
ZYD_ZD1211_DEV(ZYXEL, AG225H),
ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220),
2012-09-23 05:08:17 +04:00
ZYD_ZD1211_DEV(ZYXEL, G200V2),
ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG),
2012-09-23 05:08:17 +04:00
ZYD_ZD1211B_DEV(ACCTON, WN4501H_LF_IR),
ZYD_ZD1211B_DEV(ACCTON, WUS201),
ZYD_ZD1211B_DEV(ACCTON, ZD1211B),
ZYD_ZD1211B_DEV(ASUSTEK, A9T_WIFI),
ZYD_ZD1211B_DEV(BELKIN, F5D7050C),
ZYD_ZD1211B_DEV(BELKIN, ZD1211B),
2012-09-23 05:08:17 +04:00
ZYD_ZD1211B_DEV(BEWAN, BWIFI_USB54AR),
ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G),
ZYD_ZD1211B_DEV(CYBERTAN, ZD1211B),
ZYD_ZD1211B_DEV(FIBERLINE, WL430U),
ZYD_ZD1211B_DEV(MELCO, KG54L),
ZYD_ZD1211B_DEV(PHILIPS, SNU5600),
2012-09-23 05:08:17 +04:00
ZYD_ZD1211B_DEV(PHILIPS, SNU5630NS05),
ZYD_ZD1211B_DEV(PLANEX2, GWUS54GXS),
ZYD_ZD1211B_DEV(SAGEM, XG76NA),
2012-09-23 05:08:17 +04:00
ZYD_ZD1211B_DEV(SITECOMEU, WL603),
ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B),
2012-09-23 05:08:17 +04:00
ZYD_ZD1211B_DEV(SONY, IFU_WLM2),
ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1),
2021-06-13 12:24:33 +03:00
ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B),
ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B),
ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B),
ZYD_ZD1211B_DEV(USR, USR5423),
ZYD_ZD1211B_DEV(VTECH, ZD1211B),
ZYD_ZD1211B_DEV(ZCOM, ZD1211B),
ZYD_ZD1211B_DEV(ZYDAS, ZD1211B),
2012-09-23 05:08:17 +04:00
ZYD_ZD1211B_DEV(ZYDAS, ZD1211B_2),
ZYD_ZD1211B_DEV(ZYXEL, M202),
ZYD_ZD1211B_DEV(ZYXEL, G220V2),
};
#define zyd_lookup(v, p) \
((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
2019-11-28 20:09:10 +03:00
static int zyd_match(device_t, cfdata_t, void *);
static void zyd_attach(device_t, device_t, void *);
static int zyd_detach(device_t, int);
static int zyd_activate(device_t, enum devact);
CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match,
zyd_attach, zyd_detach, zyd_activate);
Static void zyd_attachhook(device_t);
Static int zyd_complete_attach(struct zyd_softc *);
Static int zyd_open_pipes(struct zyd_softc *);
Static void zyd_close_pipes(struct zyd_softc *);
Static int zyd_alloc_tx_list(struct zyd_softc *);
Static void zyd_free_tx_list(struct zyd_softc *);
Static int zyd_alloc_rx_list(struct zyd_softc *);
Static void zyd_free_rx_list(struct zyd_softc *);
Static struct ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *);
Static int zyd_media_change(struct ifnet *);
Static void zyd_next_scan(void *);
Static void zyd_task(void *);
Static int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
Static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
void *, int, u_int);
Static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
Static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
Static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
Static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
Static int zyd_rfwrite(struct zyd_softc *, uint32_t);
Static void zyd_lock_phy(struct zyd_softc *);
Static void zyd_unlock_phy(struct zyd_softc *);
Static int zyd_rfmd_init(struct zyd_rf *);
Static int zyd_rfmd_switch_radio(struct zyd_rf *, int);
Static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
Static int zyd_al2230_init(struct zyd_rf *);
Static int zyd_al2230_switch_radio(struct zyd_rf *, int);
Static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
Static int zyd_al2230_init_b(struct zyd_rf *);
Static int zyd_al7230B_init(struct zyd_rf *);
Static int zyd_al7230B_switch_radio(struct zyd_rf *, int);
Static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
Static int zyd_al2210_init(struct zyd_rf *);
Static int zyd_al2210_switch_radio(struct zyd_rf *, int);
Static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
Static int zyd_gct_init(struct zyd_rf *);
Static int zyd_gct_switch_radio(struct zyd_rf *, int);
Static int zyd_gct_set_channel(struct zyd_rf *, uint8_t);
Static int zyd_maxim_init(struct zyd_rf *);
Static int zyd_maxim_switch_radio(struct zyd_rf *, int);
Static int zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
Static int zyd_maxim2_init(struct zyd_rf *);
Static int zyd_maxim2_switch_radio(struct zyd_rf *, int);
Static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
Static int zyd_rf_attach(struct zyd_softc *, uint8_t);
Static const char *zyd_rf_name(uint8_t);
Static int zyd_hw_init(struct zyd_softc *);
Static int zyd_read_eeprom(struct zyd_softc *);
Static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
Static int zyd_set_bssid(struct zyd_softc *, const uint8_t *);
Static int zyd_switch_radio(struct zyd_softc *, int);
Static void zyd_set_led(struct zyd_softc *, int, int);
Static int zyd_set_rxfilter(struct zyd_softc *);
Static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
Static int zyd_set_beacon_interval(struct zyd_softc *, int);
Static uint8_t zyd_plcp_signal(int);
Static void zyd_intr(struct usbd_xfer *, void *, usbd_status);
Static void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
Static void zyd_rxeof(struct usbd_xfer *, void *, usbd_status);
Static void zyd_txeof(struct usbd_xfer *, void *, usbd_status);
Static int zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
struct ieee80211_node *);
Static int zyd_tx_data(struct zyd_softc *, struct mbuf *,
struct ieee80211_node *);
Static void zyd_start(struct ifnet *);
Static void zyd_watchdog(struct ifnet *);
Static int zyd_ioctl(struct ifnet *, u_long, void *);
Static int zyd_init(struct ifnet *);
Static void zyd_stop(struct ifnet *, int);
Static int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
Static void zyd_iter_func(void *, struct ieee80211_node *);
Static void zyd_amrr_timeout(void *);
Static void zyd_newassoc(struct ieee80211_node *, int);
2019-11-28 20:09:10 +03:00
static int
zyd_match(device_t parent, cfdata_t match, void *aux)
{
struct usb_attach_arg *uaa = aux;
return (zyd_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
}
Static void
zyd_attachhook(device_t self)
{
struct zyd_softc *sc = device_private(self);
firmware_handle_t fwh;
const char *fwname;
u_char *fw;
size_t size;
int error;
fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b";
if ((error = firmware_open("zyd", fwname, &fwh)) != 0) {
aprint_error_dev(sc->sc_dev,
"failed to open firmware %s (error=%d)\n", fwname, error);
return;
}
size = firmware_get_size(fwh);
fw = firmware_malloc(size);
if (fw == NULL) {
aprint_error_dev(sc->sc_dev,
"failed to allocate firmware memory\n");
firmware_close(fwh);
return;
}
error = firmware_read(fwh, 0, fw, size);
firmware_close(fwh);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"failed to read firmware (error %d)\n", error);
firmware_free(fw, size);
return;
}
error = zyd_loadfirmware(sc, fw, size);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not load firmware (error=%d)\n", error);
firmware_free(fw, size);
return;
}
firmware_free(fw, size);
/* complete the attach process */
if ((error = zyd_complete_attach(sc)) == 0)
sc->attached = 1;
return;
}
2019-11-28 20:09:10 +03:00
static void
zyd_attach(device_t parent, device_t self, void *aux)
{
struct zyd_softc *sc = device_private(self);
struct usb_attach_arg *uaa = aux;
char *devinfop;
usb_device_descriptor_t* ddesc;
struct ifnet *ifp = &sc->sc_if;
sc->sc_dev = self;
sc->sc_udev = uaa->uaa_device;
aprint_naive("\n");
aprint_normal("\n");
devinfop = usbd_devinfo_alloc(uaa->uaa_device, 0);
aprint_normal_dev(self, "%s\n", devinfop);
usbd_devinfo_free(devinfop);
sc->mac_rev = zyd_lookup(uaa->uaa_vendor, uaa->uaa_product)->rev;
ddesc = usbd_get_device_descriptor(sc->sc_udev);
if (UGETW(ddesc->bcdDevice) < 0x4330) {
aprint_error_dev(self, "device version mismatch: %#x "
"(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice));
return;
}
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = zyd_init;
ifp->if_ioctl = zyd_ioctl;
ifp->if_start = zyd_start;
ifp->if_watchdog = zyd_watchdog;
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
IFQ_SET_READY(&ifp->if_snd);
memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
cv_init(&sc->sc_cmdcv, "zydcmd");
SIMPLEQ_INIT(&sc->sc_rqh);
/* defer configrations after file system is ready to load firmware */
config_mountroot(self, zyd_attachhook);
}
Static int
zyd_complete_attach(struct zyd_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
usbd_status error;
int i;
usb_init_task(&sc->sc_task, zyd_task, sc, 0);
callout_init(&(sc->sc_scan_ch), 0);
sc->amrr.amrr_min_success_threshold = 1;
sc->amrr.amrr_max_success_threshold = 10;
2009-06-26 04:06:27 +04:00
callout_init(&sc->sc_amrr_ch, 0);
error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "failed to set configuration"
", err=%s\n", usbd_errstr(error));
goto fail;
}
error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
&sc->sc_iface);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"getting interface handle failed\n");
goto fail;
}
if ((error = zyd_open_pipes(sc)) != 0) {
aprint_error_dev(sc->sc_dev, "could not open pipes\n");
goto fail;
}
if ((error = zyd_read_eeprom(sc)) != 0) {
aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
goto fail;
}
if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
aprint_error_dev(sc->sc_dev, "could not attach RF\n");
goto fail;
}
if ((error = zyd_hw_init(sc)) != 0) {
aprint_error_dev(sc->sc_dev,
"hardware initialization failed\n");
goto fail;
}
aprint_normal_dev(sc->sc_dev,
"HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
(sc->mac_rev == ZYD_ZD1211) ? "": "B",
sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
sc->pa_rev, ether_sprintf(ic->ic_myaddr));
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
ic->ic_state = IEEE80211_S_INIT;
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_MONITOR | /* monitor mode supported */
IEEE80211_C_TXPMGT | /* tx power management */
IEEE80211_C_SHPREAMBLE | /* short preamble supported */
IEEE80211_C_WEP; /* s/w WEP */
/* set supported .11b and .11g rates */
ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
/* set supported .11b and .11g channels (1 through 14) */
for (i = 1; i <= 14; i++) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
ic->ic_channels[i].ic_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
}
if_attach(ifp);
ieee80211_ifattach(ic);
ic->ic_node_alloc = zyd_node_alloc;
ic->ic_newassoc = zyd_newassoc;
/* override state transition machine */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = zyd_newstate;
/* XXX media locking needs revisiting */
mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTUSB);
ieee80211_media_init_with_lock(ic,
zyd_media_change, ieee80211_media_status, &sc->sc_media_mtx);
bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
&sc->sc_drvbpf);
sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof(sc->sc_txtapu);
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
ieee80211_announce(ic);
usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
fail: return error;
}
2019-11-28 20:09:10 +03:00
static int
zyd_detach(device_t self, int flags)
{
struct zyd_softc *sc = device_private(self);
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
if (!sc->attached)
return 0;
mutex_enter(&sc->sc_lock);
zyd_stop(ifp, 1);
callout_halt(&sc->sc_scan_ch, NULL);
callout_halt(&sc->sc_amrr_ch, NULL);
usb_rem_task_wait(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER, NULL);
/* Abort, etc. done by zyd_stop */
zyd_close_pipes(sc);
sc->attached = 0;
bpf_detach(ifp);
ieee80211_ifdetach(ic);
if_detach(ifp);
mutex_exit(&sc->sc_lock);
mutex_destroy(&sc->sc_lock);
cv_destroy(&sc->sc_cmdcv);
usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
return 0;
}
Static int
zyd_open_pipes(struct zyd_softc *sc)
{
usb_endpoint_descriptor_t *edesc;
usbd_status error;
/* interrupt in */
edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
if (edesc == NULL)
return EINVAL;
sc->ibuf_size = UGETW(edesc->wMaxPacketSize);
if (sc->ibuf_size == 0) /* should not happen */
return EINVAL;
sc->ibuf = kmem_alloc(sc->ibuf_size, KM_SLEEP);
error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
&sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, sc->ibuf_size, zyd_intr,
USBD_DEFAULT_INTERVAL);
if (error != 0) {
printf("%s: open rx intr pipe failed: %s\n",
device_xname(sc->sc_dev), usbd_errstr(error));
goto fail;
}
/* interrupt out (not necessarily an interrupt pipe) */
error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
&sc->zyd_ep[ZYD_ENDPT_IOUT]);
if (error != 0) {
printf("%s: open tx intr pipe failed: %s\n",
device_xname(sc->sc_dev), usbd_errstr(error));
goto fail;
}
/* bulk in */
error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
&sc->zyd_ep[ZYD_ENDPT_BIN]);
if (error != 0) {
printf("%s: open rx pipe failed: %s\n",
device_xname(sc->sc_dev), usbd_errstr(error));
goto fail;
}
/* bulk out */
error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
&sc->zyd_ep[ZYD_ENDPT_BOUT]);
if (error != 0) {
printf("%s: open tx pipe failed: %s\n",
device_xname(sc->sc_dev), usbd_errstr(error));
goto fail;
}
return 0;
fail: zyd_close_pipes(sc);
return error;
}
Static void
zyd_close_pipes(struct zyd_softc *sc)
{
int i;
for (i = 0; i < ZYD_ENDPT_CNT; i++) {
if (sc->zyd_ep[i] != NULL) {
usbd_close_pipe(sc->zyd_ep[i]);
sc->zyd_ep[i] = NULL;
}
}
if (sc->ibuf != NULL) {
kmem_free(sc->ibuf, sc->ibuf_size);
sc->ibuf = NULL;
}
}
Static int
zyd_alloc_tx_list(struct zyd_softc *sc)
{
int i, error;
sc->tx_queued = 0;
for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
struct zyd_tx_data *data = &sc->tx_data[i];
data->sc = sc; /* backpointer for callbacks */
error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BOUT],
ZYD_MAX_TXBUFSZ, USBD_FORCE_SHORT_XFER, 0, &data->xfer);
if (error) {
printf("%s: could not allocate tx xfer\n",
device_xname(sc->sc_dev));
goto fail;
}
data->buf = usbd_get_buffer(data->xfer);
/* clear Tx descriptor */
memset(data->buf, 0, sizeof(struct zyd_tx_desc));
}
return 0;
fail: zyd_free_tx_list(sc);
return error;
}
Static void
zyd_free_tx_list(struct zyd_softc *sc)
{
int i;
for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
struct zyd_tx_data *data = &sc->tx_data[i];
if (data->xfer != NULL) {
usbd_destroy_xfer(data->xfer);
data->xfer = NULL;
}
if (data->ni != NULL) {
ieee80211_free_node(data->ni);
data->ni = NULL;
}
}
}
Static int
zyd_alloc_rx_list(struct zyd_softc *sc)
{
int i, error;
for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
struct zyd_rx_data *data = &sc->rx_data[i];
data->sc = sc; /* backpointer for callbacks */
error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_BIN],
ZYX_MAX_RXBUFSZ, 0, 0, &data->xfer);
if (error) {
printf("%s: could not allocate rx xfer\n",
device_xname(sc->sc_dev));
goto fail;
}
data->buf = usbd_get_buffer(data->xfer);
}
return 0;
fail: zyd_free_rx_list(sc);
return error;
}
Static void
zyd_free_rx_list(struct zyd_softc *sc)
{
int i;
for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
struct zyd_rx_data *data = &sc->rx_data[i];
if (data->xfer != NULL) {
usbd_destroy_xfer(data->xfer);
data->xfer = NULL;
}
}
}
/* ARGUSED */
Static struct ieee80211_node *
zyd_node_alloc(struct ieee80211_node_table *nt __unused)
{
struct zyd_node *zn;
zn = malloc(sizeof(struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
return zn ? &zn->ni : NULL;
}
Static int
zyd_media_change(struct ifnet *ifp)
{
int error;
error = ieee80211_media_change(ifp);
if (error != ENETRESET)
return error;
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
zyd_init(ifp);
return 0;
}
/*
* This function is called periodically (every 200ms) during scanning to
* switch from one channel to another.
*/
Static void
zyd_next_scan(void *arg)
{
struct zyd_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
if (ic->ic_state == IEEE80211_S_SCAN)
ieee80211_next_scan(ic);
}
Static void
zyd_task(void *arg)
{
struct zyd_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
enum ieee80211_state ostate;
ostate = ic->ic_state;
switch (sc->sc_state) {
case IEEE80211_S_INIT:
if (ostate == IEEE80211_S_RUN) {
/* turn link LED off */
zyd_set_led(sc, ZYD_LED1, 0);
/* stop data LED from blinking */
zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0);
}
break;
case IEEE80211_S_SCAN:
zyd_set_chan(sc, ic->ic_curchan);
2009-06-26 04:06:27 +04:00
callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc);
break;
case IEEE80211_S_AUTH:
case IEEE80211_S_ASSOC:
zyd_set_chan(sc, ic->ic_curchan);
break;
case IEEE80211_S_RUN:
{
struct ieee80211_node *ni = ic->ic_bss;
zyd_set_chan(sc, ic->ic_curchan);
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
/* turn link LED on */
zyd_set_led(sc, ZYD_LED1, 1);
/* make data LED blink upon Tx */
zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
zyd_set_bssid(sc, ni->ni_bssid);
}
if (ic->ic_opmode == IEEE80211_M_STA) {
/* fake a join to init the tx rate */
zyd_newassoc(ni, 1);
}
/* start automatic rate control timer */
if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
2009-06-26 04:06:27 +04:00
callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
break;
}
}
sc->sc_newstate(ic, sc->sc_state, -1);
}
Static int
zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct zyd_softc *sc = ic->ic_ifp->if_softc;
if (!sc->attached)
return ENXIO;
/*
* XXXSMP: This does not wait for the task, if it is in flight,
* to complete. If this code works at all, it must rely on the
* kernel lock to serialize with the USB task thread.
*/
usb_rem_task(sc->sc_udev, &sc->sc_task);
2009-06-26 04:06:27 +04:00
callout_stop(&sc->sc_scan_ch);
callout_stop(&sc->sc_amrr_ch);
/* do it in a process context */
sc->sc_state = nstate;
usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
return 0;
}
Static int
zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
void *odata, int olen, u_int flags)
{
struct usbd_xfer *xfer;
struct zyd_cmd cmd;
struct rq rq;
uint16_t xferflags;
int error;
usbd_status uerror;
error = usbd_create_xfer(sc->zyd_ep[ZYD_ENDPT_IOUT],
sizeof(uint16_t) + ilen, USBD_FORCE_SHORT_XFER, 0, &xfer);
if (error)
return error;
cmd.code = htole16(code);
memcpy(cmd.data, idata, ilen);
xferflags = USBD_FORCE_SHORT_XFER;
if (!(flags & ZYD_CMD_FLAG_READ))
xferflags |= USBD_SYNCHRONOUS;
else {
rq.idata = idata;
rq.odata = odata;
rq.len = olen / sizeof(struct zyd_pair);
mutex_enter(&sc->sc_lock);
SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
mutex_exit(&sc->sc_lock);
}
usbd_setup_xfer(xfer, 0, &cmd, sizeof(uint16_t) + ilen, xferflags,
ZYD_INTR_TIMEOUT, NULL);
uerror = usbd_transfer(xfer);
if (uerror != USBD_IN_PROGRESS && uerror != 0) {
printf("%s: could not send command (error=%s)\n",
device_xname(sc->sc_dev), usbd_errstr(uerror));
(void)usbd_destroy_xfer(xfer);
return EIO;
}
if (!(flags & ZYD_CMD_FLAG_READ)) {
(void)usbd_destroy_xfer(xfer);
return 0; /* write: don't wait for reply */
}
/* wait at most one second for command reply */
mutex_enter(&sc->sc_lock);
error = cv_timedwait_sig(&sc->sc_cmdcv, &sc->sc_lock, hz);
if (error == EWOULDBLOCK)
printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev));
SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq);
mutex_exit(&sc->sc_lock);
(void)usbd_destroy_xfer(xfer);
return error;
}
Static int
zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
{
struct zyd_pair tmp;
int error;
reg = htole16(reg);
error = zyd_cmd(sc, ZYD_CMD_IORD, &reg, sizeof(reg), &tmp, sizeof(tmp),
ZYD_CMD_FLAG_READ);
if (error == 0)
*val = le16toh(tmp.val);
else
*val = 0;
return error;
}
Static int
zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
{
struct zyd_pair tmp[2];
uint16_t regs[2];
int error;
regs[0] = htole16(ZYD_REG32_HI(reg));
regs[1] = htole16(ZYD_REG32_LO(reg));
error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp),
ZYD_CMD_FLAG_READ);
if (error == 0)
*val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
else
*val = 0;
return error;
}
Static int
zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
{
struct zyd_pair pair;
pair.reg = htole16(reg);
pair.val = htole16(val);
return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0);
}
Static int
zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
{
struct zyd_pair pair[2];
pair[0].reg = htole16(ZYD_REG32_HI(reg));
pair[0].val = htole16(val >> 16);
pair[1].reg = htole16(ZYD_REG32_LO(reg));
pair[1].val = htole16(val & 0xffff);
return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0);
}
Static int
zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
{
struct zyd_rf *rf = &sc->sc_rf;
struct zyd_rfwrite req;
uint16_t cr203;
int i;
(void)zyd_read16(sc, ZYD_CR203, &cr203);
cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
req.code = htole16(2);
req.width = htole16(rf->width);
for (i = 0; i < rf->width; i++) {
req.bit[i] = htole16(cr203);
if (val & (1 << (rf->width - 1 - i)))
req.bit[i] |= htole16(ZYD_RF_DATA);
}
return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
}
Static void
zyd_lock_phy(struct zyd_softc *sc)
{
uint32_t tmp;
(void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
tmp &= ~ZYD_UNLOCK_PHY_REGS;
(void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
}
Static void
zyd_unlock_phy(struct zyd_softc *sc)
{
uint32_t tmp;
(void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
tmp |= ZYD_UNLOCK_PHY_REGS;
(void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
}
/*
* RFMD RF methods.
*/
Static int
zyd_rfmd_init(struct zyd_rf *rf)
{
struct zyd_softc *sc = rf->rf_sc;
static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
static const uint32_t rfini[] = ZYD_RFMD_RF;
2011-07-18 09:57:40 +04:00
int error;
size_t i;
/* init RF-dependent PHY registers */
2011-07-18 09:57:40 +04:00
for (i = 0; i < __arraycount(phyini); i++) {
error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
if (error != 0)
return error;
}
/* init RFMD radio */
2011-07-18 09:57:40 +04:00
for (i = 0; i < __arraycount(rfini); i++) {
if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
return error;
}
return 0;
}
Static int
zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
{
struct zyd_softc *sc = rf->rf_sc;
(void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
(void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
return 0;
}
Static int
zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
{
struct zyd_softc *sc = rf->rf_sc;
static const struct {
uint32_t r1, r2;
} rfprog[] = ZYD_RFMD_CHANTABLE;
(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
return 0;
}
/*
* AL2230 RF methods.
*/
Static int
zyd_al2230_init(struct zyd_rf *rf)
{
struct zyd_softc *sc = rf->rf_sc;
static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
static const uint32_t rfini[] = ZYD_AL2230_RF;
2011-07-18 09:57:40 +04:00
int error;
size_t i;
/* init RF-dependent PHY registers */
2011-07-18 09:57:40 +04:00
for (i = 0; i < __arraycount(phyini); i++) {
error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
if (error != 0)
return error;
}
if (sc->rf_rev == ZYD_RF_AL2230S) {
2011-07-18 09:57:40 +04:00
for (i = 0; i < __arraycount(phy2230s); i++) {
error = zyd_write16(sc, phy2230s[i].reg,
phy2230s[i].val);
if (error != 0)
return error;
}
}
/* init AL2230 radio */
2011-07-18 09:57:40 +04:00
for (i = 0; i < __arraycount(rfini); i++) {
if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
return error;
}
return 0;
}
Static int
zyd_al2230_init_b(struct zyd_rf *rf)
{
struct zyd_softc *sc = rf->rf_sc;
static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
static const uint32_t rfini[] = ZYD_AL2230_RF_B;
2011-07-18 09:57:40 +04:00
int error;
size_t i;
/* init RF-dependent PHY registers */
2011-07-18 09:57:40 +04:00
for (i = 0; i < __arraycount(phyini); i++) {
error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
if (error != 0)
return error;
}
/* init AL2230 radio */
2011-07-18 09:57:40 +04:00
for (i = 0; i < __arraycount(rfini); i++) {
if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
return error;
}
return 0;
}
Static int
zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
{
struct zyd_softc *sc = rf->rf_sc;
int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
(void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
(void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
return 0;
}
Static int
zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
{
struct zyd_softc *sc = rf->rf_sc;
static const struct {
uint32_t r1, r2, r3;
} rfprog[] = ZYD_AL2230_CHANTABLE;
(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
(void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
(void)zyd_write16(sc, ZYD_CR138, 0x28);
(void)zyd_write16(sc, ZYD_CR203, 0x06);
return 0;
}
/*
* AL7230B RF methods.
*/
Static int
zyd_al7230B_init(struct zyd_rf *rf)
{
struct zyd_softc *sc = rf->rf_sc;
static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
2011-07-18 09:57:40 +04:00
int error;
size_t i;
/* for AL7230B, PHY and RF need to be initialized in "phases" */
/* init RF-dependent PHY registers, part one */
2011-07-18 09:57:40 +04:00
for (i = 0; i < __arraycount(phyini_1); i++) {
error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
if (error != 0)
return error;
}
/* init AL7230B radio, part one */
2011-07-18 09:57:40 +04:00
for (i = 0; i < __arraycount(rfini_1); i++) {
if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
return error;
}
/* init RF-dependent PHY registers, part two */
2011-07-18 09:57:40 +04:00
for (i = 0; i < __arraycount(phyini_2); i++) {
error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
if (error != 0)
return error;
}
/* init AL7230B radio, part two */
2011-07-18 09:57:40 +04:00
for (i = 0; i < __arraycount(rfini_2); i++) {
if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
return error;
}
/* init RF-dependent PHY registers, part three */
2011-07-18 09:57:40 +04:00
for (i = 0; i < __arraycount(phyini_3); i++) {
error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
if (error != 0)
return error;
}
return 0;
}
Static int
zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
{
struct zyd_softc *sc = rf->rf_sc;
(void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
(void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
return 0;
}
Static int
zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
{
struct zyd_softc *sc = rf->rf_sc;
static const struct {
uint32_t r1, r2;
} rfprog[] = ZYD_AL7230B_CHANTABLE;
static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
2011-07-18 09:57:40 +04:00
int error;
size_t i;
(void)zyd_write16(sc, ZYD_CR240, 0x57);
(void)zyd_write16(sc, ZYD_CR251, 0x2f);
2011-07-18 09:57:40 +04:00
for (i = 0; i < __arraycount(rfsc); i++) {
if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
return error;
}
(void)zyd_write16(sc, ZYD_CR128, 0x14);
(void)zyd_write16(sc, ZYD_CR129, 0x12);
(void)zyd_write16(sc, ZYD_CR130, 0x10);
(void)zyd_write16(sc, ZYD_CR38, 0x38);
(void)zyd_write16(sc, ZYD_CR136, 0xdf);
(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
(void)zyd_rfwrite(sc, 0x3c9000);
(void)zyd_write16(sc, ZYD_CR251, 0x3f);
(void)zyd_write16(sc, ZYD_CR203, 0x06);
(void)zyd_write16(sc, ZYD_CR240, 0x08);
return 0;
}
/*
* AL2210 RF methods.
*/
Static int
zyd_al2210_init(struct zyd_rf *rf)
{
struct zyd_softc *sc = rf->rf_sc;
static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
static const uint32_t rfini[] = ZYD_AL2210_RF;
uint32_t tmp;
2011-07-18 09:57:40 +04:00
int error;
size_t i;
(void)zyd_write32(sc, ZYD_CR18, 2);
/* init RF-dependent PHY registers */
2011-07-18 09:57:40 +04:00
for (i = 0; i < __arraycount(phyini); i++) {
error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
if (error != 0)
return error;
}
/* init AL2210 radio */
2011-07-18 09:57:40 +04:00
for (i = 0; i < __arraycount(rfini); i++) {
if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
return error;
}
(void)zyd_write16(sc, ZYD_CR47, 0x1e);
(void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
(void)zyd_write16(sc, ZYD_CR47, 0x1e);
(void)zyd_write32(sc, ZYD_CR18, 3);
return 0;
}
Static int
zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
{
/* vendor driver does nothing for this RF chip */
return 0;
}
Static int
zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
{
struct zyd_softc *sc = rf->rf_sc;
static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
uint32_t tmp;
(void)zyd_write32(sc, ZYD_CR18, 2);
(void)zyd_write16(sc, ZYD_CR47, 0x1e);
(void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
(void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
(void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
(void)zyd_write16(sc, ZYD_CR47, 0x1e);
/* actually set the channel */
(void)zyd_rfwrite(sc, rfprog[chan - 1]);
(void)zyd_write32(sc, ZYD_CR18, 3);
return 0;
}
/*
* GCT RF methods.
*/
Static int
zyd_gct_init(struct zyd_rf *rf)
{
struct zyd_softc *sc = rf->rf_sc;
static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
static const uint32_t rfini[] = ZYD_GCT_RF;
2011-07-18 09:57:40 +04:00
int error;
size_t i;
/* init RF-dependent PHY registers */
2011-07-18 09:57:40 +04:00
for (i = 0; i < __arraycount(phyini); i++) {
error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
if (error != 0)
return error;
}
/* init cgt radio */
2011-07-18 09:57:40 +04:00
for (i = 0; i < __arraycount(rfini); i++) {
if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
return error;
}
return 0;
}
Static int
zyd_gct_switch_radio(struct zyd_rf *rf, int on)
{
/* vendor driver does nothing for this RF chip */
return 0;
}
Static int
zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
{
struct zyd_softc *sc = rf->rf_sc;
static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
(void)zyd_rfwrite(sc, 0x1c0000);
(void)zyd_rfwrite(sc, rfprog[chan - 1]);
(void)zyd_rfwrite(sc, 0x1c0008);
return 0;
}
/*
* Maxim RF methods.
*/
Static int
zyd_maxim_init(struct zyd_rf *rf)
{
struct zyd_softc *sc = rf->rf_sc;
static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
static const uint32_t rfini[] = ZYD_MAXIM_RF;
uint16_t tmp;
2011-07-18 09:57:40 +04:00
int error;
size_t i;
/* init RF-dependent PHY registers */
2011-07-18 09:57:40 +04:00
for (i = 0; i < __arraycount(phyini); i++) {
error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
if (error != 0)
return error;
}
(void)zyd_read16(sc, ZYD_CR203, &tmp);
(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
/* init maxim radio */
2011-07-18 09:57:40 +04:00
for (i = 0; i < __arraycount(rfini); i++) {
if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
return error;
}
(void)zyd_read16(sc, ZYD_CR203, &tmp);
(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
return 0;
}
Static int
zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
{
/* vendor driver does nothing for this RF chip */
return 0;
}
Static int
zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
{
struct zyd_softc *sc = rf->rf_sc;
static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
static const uint32_t rfini[] = ZYD_MAXIM_RF;
static const struct {
uint32_t r1, r2;
} rfprog[] = ZYD_MAXIM_CHANTABLE;
uint16_t tmp;
2011-07-18 09:57:40 +04:00
int error;
size_t i;
/*
* Do the same as we do when initializing it, except for the channel
* values coming from the two channel tables.
*/
/* init RF-dependent PHY registers */
2011-07-18 09:57:40 +04:00
for (i = 0; i < __arraycount(phyini); i++) {
error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
if (error != 0)
return error;
}
(void)zyd_read16(sc, ZYD_CR203, &tmp);
(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
/* first two values taken from the chantables */
(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
/* init maxim radio - skipping the two first values */
2011-07-18 09:57:40 +04:00
for (i = 2; i < __arraycount(rfini); i++) {
if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
return error;
}
(void)zyd_read16(sc, ZYD_CR203, &tmp);
(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
return 0;
}
/*
* Maxim2 RF methods.
*/
Static int
zyd_maxim2_init(struct zyd_rf *rf)
{
struct zyd_softc *sc = rf->rf_sc;
static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
static const uint32_t rfini[] = ZYD_MAXIM2_RF;
uint16_t tmp;
2011-07-18 09:57:40 +04:00
int error;
size_t i;
/* init RF-dependent PHY registers */
2011-07-18 09:57:40 +04:00
for (i = 0; i < __arraycount(phyini); i++) {
error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
if (error != 0)
return error;
}
(void)zyd_read16(sc, ZYD_CR203, &tmp);
(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
/* init maxim2 radio */
2011-07-18 09:57:40 +04:00
for (i = 0; i < __arraycount(rfini); i++) {
if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
return error;
}
(void)zyd_read16(sc, ZYD_CR203, &tmp);
(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
return 0;
}
Static int
zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
{
/* vendor driver does nothing for this RF chip */
return 0;
}
Static int
zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
{
struct zyd_softc *sc = rf->rf_sc;
static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
static const uint32_t rfini[] = ZYD_MAXIM2_RF;
static const struct {
uint32_t r1, r2;
} rfprog[] = ZYD_MAXIM2_CHANTABLE;
uint16_t tmp;
2011-07-18 09:57:40 +04:00
int error;
size_t i;
/*
* Do the same as we do when initializing it, except for the channel
* values coming from the two channel tables.
*/
/* init RF-dependent PHY registers */
2011-07-18 09:57:40 +04:00
for (i = 0; i < __arraycount(phyini); i++) {
error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
if (error != 0)
return error;
}
(void)zyd_read16(sc, ZYD_CR203, &tmp);
(void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
/* first two values taken from the chantables */
(void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
(void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
/* init maxim2 radio - skipping the two first values */
2011-07-18 09:57:40 +04:00
for (i = 2; i < __arraycount(rfini); i++) {
if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
return error;
}
(void)zyd_read16(sc, ZYD_CR203, &tmp);
(void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
return 0;
}
Static int
zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
{
struct zyd_rf *rf = &sc->sc_rf;
rf->rf_sc = sc;
switch (type) {
case ZYD_RF_RFMD:
rf->init = zyd_rfmd_init;
rf->switch_radio = zyd_rfmd_switch_radio;
rf->set_channel = zyd_rfmd_set_channel;
rf->width = 24; /* 24-bit RF values */
break;
case ZYD_RF_AL2230:
case ZYD_RF_AL2230S:
if (sc->mac_rev == ZYD_ZD1211B)
rf->init = zyd_al2230_init_b;
else
rf->init = zyd_al2230_init;
rf->switch_radio = zyd_al2230_switch_radio;
rf->set_channel = zyd_al2230_set_channel;
rf->width = 24; /* 24-bit RF values */
break;
case ZYD_RF_AL7230B:
rf->init = zyd_al7230B_init;
rf->switch_radio = zyd_al7230B_switch_radio;
rf->set_channel = zyd_al7230B_set_channel;
rf->width = 24; /* 24-bit RF values */
break;
case ZYD_RF_AL2210:
rf->init = zyd_al2210_init;
rf->switch_radio = zyd_al2210_switch_radio;
rf->set_channel = zyd_al2210_set_channel;
rf->width = 24; /* 24-bit RF values */
break;
case ZYD_RF_GCT:
rf->init = zyd_gct_init;
rf->switch_radio = zyd_gct_switch_radio;
rf->set_channel = zyd_gct_set_channel;
rf->width = 21; /* 21-bit RF values */
break;
case ZYD_RF_MAXIM_NEW:
rf->init = zyd_maxim_init;
rf->switch_radio = zyd_maxim_switch_radio;
rf->set_channel = zyd_maxim_set_channel;
rf->width = 18; /* 18-bit RF values */
break;
case ZYD_RF_MAXIM_NEW2:
rf->init = zyd_maxim2_init;
rf->switch_radio = zyd_maxim2_switch_radio;
rf->set_channel = zyd_maxim2_set_channel;
rf->width = 18; /* 18-bit RF values */
break;
default:
printf("%s: sorry, radio \"%s\" is not supported yet\n",
device_xname(sc->sc_dev), zyd_rf_name(type));
return EINVAL;
}
return 0;
}
Static const char *
zyd_rf_name(uint8_t type)
{
static const char * const zyd_rfs[] = {
"unknown", "unknown", "UW2451", "UCHIP", "AL2230",
"AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT",
"AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2",
"PHILIPS"
};
return zyd_rfs[(type > 15) ? 0 : type];
}
Static int
zyd_hw_init(struct zyd_softc *sc)
{
struct zyd_rf *rf = &sc->sc_rf;
const struct zyd_phy_pair *phyp;
int error;
/* specify that the plug and play is finished */
(void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
(void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
/* retrieve firmware revision number */
(void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
(void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
(void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
/* disable interrupts */
(void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
/* PHY init */
zyd_lock_phy(sc);
phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
for (; phyp->reg != 0; phyp++) {
if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
goto fail;
}
zyd_unlock_phy(sc);
/* HMAC init */
zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
if (sc->mac_rev == ZYD_ZD1211) {
zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
} else {
zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202);
zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
}
zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
/* RF chip init */
zyd_lock_phy(sc);
error = (*rf->init)(rf);
zyd_unlock_phy(sc);
if (error != 0) {
printf("%s: radio initialization failed\n",
device_xname(sc->sc_dev));
goto fail;
}
/* init beacon interval to 100ms */
if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
goto fail;
fail: return error;
}
Static int
zyd_read_eeprom(struct zyd_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
uint16_t val;
int i;
/* read MAC address */
(void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
ic->ic_myaddr[0] = tmp & 0xff;
ic->ic_myaddr[1] = tmp >> 8;
ic->ic_myaddr[2] = tmp >> 16;
ic->ic_myaddr[3] = tmp >> 24;
(void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
ic->ic_myaddr[4] = tmp & 0xff;
ic->ic_myaddr[5] = tmp >> 8;
(void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
sc->rf_rev = tmp & 0x0f;
sc->pa_rev = (tmp >> 16) & 0x0f;
/* read regulatory domain (currently unused) */
(void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
sc->regdomain = tmp >> 16;
DPRINTF(("regulatory domain %x\n", sc->regdomain));
/* read Tx power calibration tables */
for (i = 0; i < 7; i++) {
(void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
sc->pwr_cal[i * 2] = val >> 8;
sc->pwr_cal[i * 2 + 1] = val & 0xff;
(void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
sc->pwr_int[i * 2] = val >> 8;
sc->pwr_int[i * 2 + 1] = val & 0xff;
(void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
sc->ofdm36_cal[i * 2] = val >> 8;
sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
(void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
sc->ofdm48_cal[i * 2] = val >> 8;
sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
(void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
sc->ofdm54_cal[i * 2] = val >> 8;
sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
}
return 0;
}
Static int
zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
{
uint32_t tmp;
tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
(void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
tmp = addr[5] << 8 | addr[4];
(void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
return 0;
}
Static int
zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
{
uint32_t tmp;
tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
(void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
tmp = addr[5] << 8 | addr[4];
(void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
return 0;
}
Static int
zyd_switch_radio(struct zyd_softc *sc, int on)
{
struct zyd_rf *rf = &sc->sc_rf;
int error;
zyd_lock_phy(sc);
error = (*rf->switch_radio)(rf, on);
zyd_unlock_phy(sc);
return error;
}
Static void
zyd_set_led(struct zyd_softc *sc, int which, int on)
{
uint32_t tmp;
(void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
tmp &= ~which;
if (on)
tmp |= which;
(void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
}
Static int
zyd_set_rxfilter(struct zyd_softc *sc)
{
uint32_t rxfilter;
switch (sc->sc_ic.ic_opmode) {
case IEEE80211_M_STA:
rxfilter = ZYD_FILTER_BSS;
break;
case IEEE80211_M_IBSS:
case IEEE80211_M_HOSTAP:
rxfilter = ZYD_FILTER_HOSTAP;
break;
case IEEE80211_M_MONITOR:
rxfilter = ZYD_FILTER_MONITOR;
break;
default:
/* should not get there */
return EINVAL;
}
return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
}
Static void
zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
{
struct ieee80211com *ic = &sc->sc_ic;
struct zyd_rf *rf = &sc->sc_rf;
u_int chan;
chan = ieee80211_chan2ieee(ic, c);
if (chan == 0 || chan == IEEE80211_CHAN_ANY)
return;
zyd_lock_phy(sc);
(*rf->set_channel)(rf, chan);
/* update Tx power */
(void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
(void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
if (sc->mac_rev == ZYD_ZD1211B) {
(void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
(void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
(void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
(void)zyd_write32(sc, ZYD_CR69, 0x28);
(void)zyd_write32(sc, ZYD_CR69, 0x2a);
}
zyd_unlock_phy(sc);
}
Static int
zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
{
/* XXX this is probably broken.. */
(void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
(void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1);
(void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval);
return 0;
}
Static uint8_t
zyd_plcp_signal(int rate)
{
switch (rate) {
/* CCK rates (returned values are device-dependent) */
case 2: return 0x0;
case 4: return 0x1;
case 11: return 0x2;
case 22: return 0x3;
/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
case 12: return 0xb;
case 18: return 0xf;
case 24: return 0xa;
case 36: return 0xe;
case 48: return 0x9;
case 72: return 0xd;
case 96: return 0x8;
case 108: return 0xc;
/* unsupported rates (should not get there) */
default: return 0xff;
}
}
Static void
zyd_intr(struct usbd_xfer *xfer, void * priv, usbd_status status)
{
struct zyd_softc *sc = (struct zyd_softc *)priv;
struct zyd_cmd *cmd;
uint32_t datalen;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
return;
if (status == USBD_STALLED) {
usbd_clear_endpoint_stall_async(
sc->zyd_ep[ZYD_ENDPT_IIN]);
}
return;
}
cmd = (struct zyd_cmd *)sc->ibuf;
if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
struct zyd_notif_retry *retry =
(struct zyd_notif_retry *)cmd->data;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct ieee80211_node *ni;
DPRINTF(("retry intr: rate=%#x addr=%s count=%d (%#x)\n",
le16toh(retry->rate), ether_sprintf(retry->macaddr),
le16toh(retry->count) & 0xff, le16toh(retry->count)));
/*
* Find the node to which the packet was sent and update its
* retry statistics. In BSS mode, this node is the AP we're
* associated to so no lookup is actually needed.
*/
if (ic->ic_opmode != IEEE80211_M_STA) {
ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr);
if (ni == NULL)
return; /* just ignore */
} else
ni = ic->ic_bss;
((struct zyd_node *)ni)->amn.amn_retrycnt++;
if (le16toh(retry->count) & 0x100)
2020-01-29 09:35:28 +03:00
if_statinc(ifp, if_oerrors);
} else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
struct rq *rqp;
if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
return; /* HMAC interrupt */
usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
datalen -= sizeof(cmd->code);
datalen -= 2; /* XXX: padding? */
mutex_enter(&sc->sc_lock);
SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) {
int i;
if (sizeof(struct zyd_pair) * rqp->len != datalen)
continue;
for (i = 0; i < rqp->len; i++) {
if (*(((const uint16_t *)rqp->idata) + i) !=
(((struct zyd_pair *)cmd->data) + i)->reg)
break;
}
if (i != rqp->len)
continue;
/* copy answer into caller-supplied buffer */
memcpy(rqp->odata, cmd->data,
sizeof(struct zyd_pair) * rqp->len);
cv_signal(&sc->sc_cmdcv);
mutex_exit(&sc->sc_lock);
return;
}
mutex_exit(&sc->sc_lock);
return; /* unexpected IORD notification */
} else {
printf("%s: unknown notification %x\n", device_xname(sc->sc_dev),
le16toh(cmd->code));
}
}
Static void
zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct ieee80211_node *ni;
struct ieee80211_frame *wh;
const struct zyd_plcphdr *plcp;
const struct zyd_rx_stat *stat;
struct mbuf *m;
int rlen, s;
if (len < ZYD_MIN_FRAGSZ) {
printf("%s: frame too short (length=%d)\n",
device_xname(sc->sc_dev), len);
2020-01-29 09:35:28 +03:00
if_statinc(ifp, if_ierrors);
return;
}
plcp = (const struct zyd_plcphdr *)buf;
stat = (const struct zyd_rx_stat *)
(buf + len - sizeof(struct zyd_rx_stat));
if (stat->flags & ZYD_RX_ERROR) {
DPRINTF(("%s: RX status indicated error (%x)\n",
device_xname(sc->sc_dev), stat->flags));
2020-01-29 09:35:28 +03:00
if_statinc(ifp, if_ierrors);
return;
}
/* compute actual frame length */
rlen = len - sizeof(struct zyd_plcphdr) -
sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN;
/* allocate a mbuf to store the frame */
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
printf("%s: could not allocate rx mbuf\n",
device_xname(sc->sc_dev));
2020-01-29 09:35:28 +03:00
if_statinc(ifp, if_ierrors);
return;
}
if (rlen > MHLEN) {
MCLGET(m, M_DONTWAIT);
if (!(m->m_flags & M_EXT)) {
printf("%s: could not allocate rx mbuf cluster\n",
device_xname(sc->sc_dev));
m_freem(m);
2020-01-29 09:35:28 +03:00
if_statinc(ifp, if_ierrors);
return;
}
}
m_set_rcvif(m, ifp);
m->m_pkthdr.len = m->m_len = rlen;
memcpy(mtod(m, uint8_t *), (const uint8_t *)(plcp + 1), rlen);
s = splnet();
if (sc->sc_drvbpf != NULL) {
struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
static const uint8_t rates[] = {
/* reverse function of zyd_plcp_signal() */
2, 4, 11, 22, 0, 0, 0, 0,
96, 48, 24, 12, 108, 72, 36, 18
};
tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
tap->wr_rssi = stat->rssi;
tap->wr_rate = rates[plcp->signal & 0xf];
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
}
wh = mtod(m, struct ieee80211_frame *);
ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
ieee80211_input(ic, m, ni, stat->rssi, 0);
/* node is no longer needed */
ieee80211_free_node(ni);
splx(s);
}
Static void
zyd_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
{
struct zyd_rx_data *data = priv;
struct zyd_softc *sc = data->sc;
struct ifnet *ifp = &sc->sc_if;
const struct zyd_rx_desc *desc;
int len;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
return;
if (status == USBD_STALLED)
usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
goto skip;
}
usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
if (len < ZYD_MIN_RXBUFSZ) {
printf("%s: xfer too short (length=%d)\n",
device_xname(sc->sc_dev), len);
2020-01-29 09:35:28 +03:00
if_statinc(ifp, if_ierrors);
goto skip;
}
desc = (const struct zyd_rx_desc *)
(data->buf + len - sizeof(struct zyd_rx_desc));
if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
const uint8_t *p = data->buf, *end = p + len;
int i;
DPRINTFN(3, ("received multi-frame transfer\n"));
for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
const uint16_t len16 = UGETW(desc->len[i]);
if (len16 == 0 || p + len16 > end)
break;
zyd_rx_data(sc, p, len16);
/* next frame is aligned on a 32-bit boundary */
p += (len16 + 3) & ~3;
}
} else {
DPRINTFN(3, ("received single-frame transfer\n"));
zyd_rx_data(sc, data->buf, len);
}
skip: /* setup a new transfer */
usbd_setup_xfer(xfer, data, NULL, ZYX_MAX_RXBUFSZ, USBD_SHORT_XFER_OK,
USBD_NO_TIMEOUT, zyd_rxeof);
(void)usbd_transfer(xfer);
}
Static int
zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct zyd_tx_desc *desc;
struct zyd_tx_data *data;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
int xferlen, totlen, rate;
uint16_t pktlen;
usbd_status error;
data = &sc->tx_data[0];
desc = (struct zyd_tx_desc *)data->buf;
rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
wh = mtod(m0, struct ieee80211_frame *);
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ic, ni, m0);
if (k == NULL) {
m_freem(m0);
return ENOBUFS;
}
}
data->ni = ni;
wh = mtod(m0, struct ieee80211_frame *);
xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
/* fill Tx descriptor */
desc->len = htole16(totlen);
desc->flags = ZYD_TX_FLAG_BACKOFF;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
/* multicast frames are not sent at OFDM rates in 802.11b/g */
if (totlen > ic->ic_rtsthreshold) {
desc->flags |= ZYD_TX_FLAG_RTS;
} else if (ZYD_RATE_IS_OFDM(rate) &&
(ic->ic_flags & IEEE80211_F_USEPROT)) {
if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
desc->flags |= ZYD_TX_FLAG_RTS;
}
} else
desc->flags |= ZYD_TX_FLAG_MULTICAST;
if ((wh->i_fc[0] &
(IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
(IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
desc->phy = zyd_plcp_signal(rate);
if (ZYD_RATE_IS_OFDM(rate)) {
desc->phy |= ZYD_TX_PHY_OFDM;
if (ic->ic_curmode == IEEE80211_MODE_11A)
desc->phy |= ZYD_TX_PHY_5GHZ;
} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
/* actual transmit length (XXX why +10?) */
pktlen = sizeof(struct zyd_tx_desc) + 10;
if (sc->mac_rev == ZYD_ZD1211)
pktlen += totlen;
desc->pktlen = htole16(pktlen);
desc->plcp_length = (16 * totlen + rate - 1) / rate;
desc->plcp_service = 0;
if (rate == 22) {
const int remainder = (16 * totlen) % 22;
if (remainder != 0 && remainder < 7)
desc->plcp_service |= ZYD_PLCP_LENGEXT;
}
if (sc->sc_drvbpf != NULL) {
struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
}
m_copydata(m0, 0, m0->m_pkthdr.len,
data->buf + sizeof(struct zyd_tx_desc));
DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
m_freem(m0); /* mbuf no longer needed */
usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof);
error = usbd_transfer(data->xfer);
if (error != USBD_IN_PROGRESS && error != 0) {
2020-01-29 09:35:28 +03:00
if_statinc(ifp, if_oerrors);
return EIO;
}
sc->tx_queued++;
return 0;
}
Static void
zyd_txeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
{
struct zyd_tx_data *data = priv;
struct zyd_softc *sc = data->sc;
struct ifnet *ifp = &sc->sc_if;
int s;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
return;
printf("%s: could not transmit buffer: %s\n",
device_xname(sc->sc_dev), usbd_errstr(status));
if (status == USBD_STALLED) {
usbd_clear_endpoint_stall_async(
sc->zyd_ep[ZYD_ENDPT_BOUT]);
}
2020-01-29 09:35:28 +03:00
if_statinc(ifp, if_oerrors);
return;
}
s = splnet();
/* update rate control statistics */
((struct zyd_node *)data->ni)->amn.amn_txcnt++;
ieee80211_free_node(data->ni);
data->ni = NULL;
sc->tx_queued--;
2020-01-29 09:35:28 +03:00
if_statinc(ifp, if_opackets);
sc->tx_timer = 0;
ifp->if_flags &= ~IFF_OACTIVE;
zyd_start(ifp);
splx(s);
}
Static int
zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct zyd_tx_desc *desc;
struct zyd_tx_data *data;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
int xferlen, totlen, rate;
uint16_t pktlen;
usbd_status error;
wh = mtod(m0, struct ieee80211_frame *);
if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
else
rate = ni->ni_rates.rs_rates[ni->ni_txrate];
rate &= IEEE80211_RATE_VAL;
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ic, ni, m0);
if (k == NULL) {
m_freem(m0);
return ENOBUFS;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
data = &sc->tx_data[0];
desc = (struct zyd_tx_desc *)data->buf;
data->ni = ni;
xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
/* fill Tx descriptor */
desc->len = htole16(totlen);
desc->flags = ZYD_TX_FLAG_BACKOFF;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
/* multicast frames are not sent at OFDM rates in 802.11b/g */
if (totlen > ic->ic_rtsthreshold) {
desc->flags |= ZYD_TX_FLAG_RTS;
} else if (ZYD_RATE_IS_OFDM(rate) &&
(ic->ic_flags & IEEE80211_F_USEPROT)) {
if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
desc->flags |= ZYD_TX_FLAG_RTS;
}
} else
desc->flags |= ZYD_TX_FLAG_MULTICAST;
if ((wh->i_fc[0] &
(IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
(IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
desc->phy = zyd_plcp_signal(rate);
if (ZYD_RATE_IS_OFDM(rate)) {
desc->phy |= ZYD_TX_PHY_OFDM;
if (ic->ic_curmode == IEEE80211_MODE_11A)
desc->phy |= ZYD_TX_PHY_5GHZ;
} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
/* actual transmit length (XXX why +10?) */
pktlen = sizeof(struct zyd_tx_desc) + 10;
if (sc->mac_rev == ZYD_ZD1211)
pktlen += totlen;
desc->pktlen = htole16(pktlen);
desc->plcp_length = (16 * totlen + rate - 1) / rate;
desc->plcp_service = 0;
if (rate == 22) {
const int remainder = (16 * totlen) % 22;
if (remainder != 0 && remainder < 7)
desc->plcp_service |= ZYD_PLCP_LENGEXT;
}
if (sc->sc_drvbpf != NULL) {
struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
}
m_copydata(m0, 0, m0->m_pkthdr.len,
data->buf + sizeof(struct zyd_tx_desc));
DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n",
device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
m_freem(m0); /* mbuf no longer needed */
usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
USBD_FORCE_SHORT_XFER, ZYD_TX_TIMEOUT, zyd_txeof);
error = usbd_transfer(data->xfer);
if (error != USBD_IN_PROGRESS && error != 0) {
2020-01-29 09:35:28 +03:00
if_statinc(ifp, if_oerrors);
return EIO;
}
sc->tx_queued++;
return 0;
}
Static void
zyd_start(struct ifnet *ifp)
{
struct zyd_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ether_header *eh;
struct ieee80211_node *ni;
struct mbuf *m0;
for (;;) {
IF_POLL(&ic->ic_mgtq, m0);
if (m0 != NULL) {
if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
IF_DEQUEUE(&ic->ic_mgtq, m0);
2016-05-26 08:01:11 +03:00
ni = M_GETCTX(m0, struct ieee80211_node *);
M_CLEARCTX(m0);
bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
if (zyd_tx_mgt(sc, m0, ni) != 0)
break;
} else {
if (ic->ic_state != IEEE80211_S_RUN)
break;
IFQ_POLL(&ifp->if_snd, m0);
if (m0 == NULL)
break;
if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
IFQ_DEQUEUE(&ifp->if_snd, m0);
if (m0->m_len < sizeof(struct ether_header) &&
!(m0 = m_pullup(m0, sizeof(struct ether_header))))
continue;
eh = mtod(m0, struct ether_header *);
ni = ieee80211_find_txnode(ic, eh->ether_dhost);
if (ni == NULL) {
m_freem(m0);
continue;
}
bpf_mtap(ifp, m0, BPF_D_OUT);
if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
ieee80211_free_node(ni);
2020-01-29 09:35:28 +03:00
if_statinc(ifp, if_oerrors);
continue;
}
bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
if (zyd_tx_data(sc, m0, ni) != 0) {
ieee80211_free_node(ni);
2020-01-29 09:35:28 +03:00
if_statinc(ifp, if_oerrors);
break;
}
}
sc->tx_timer = 5;
ifp->if_timer = 1;
}
}
Static void
zyd_watchdog(struct ifnet *ifp)
{
struct zyd_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
ifp->if_timer = 0;
if (sc->tx_timer > 0) {
if (--sc->tx_timer == 0) {
printf("%s: device timeout\n", device_xname(sc->sc_dev));
/* zyd_init(ifp); XXX needs a process context ? */
2020-01-29 09:35:28 +03:00
if_statinc(ifp, if_oerrors);
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(ic);
}
Static int
zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct zyd_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFFLAGS:
*** Summary *** When a link-layer address changes (e.g., ifconfig ex0 link 02:de:ad:be:ef:02 active), send a gratuitous ARP and/or a Neighbor Advertisement to update the network-/link-layer address bindings on our LAN peers. Refuse a change of ethernet address to the address 00:00:00:00:00:00 or to any multicast/broadcast address. (Thanks matt@.) Reorder ifnet ioctl operations so that driver ioctls may inherit the functions of their "class"---ether_ioctl(), fddi_ioctl(), et cetera---and the class ioctls may inherit from the generic ioctl, ifioctl_common(), but both driver- and class-ioctls may override the generic behavior. Make network drivers share more code. Distinguish a "factory" link-layer address from others for the purposes of both protecting that address from deletion and computing EUI64. Return consistent, appropriate error codes from network drivers. Improve readability. KNF. *** Details *** In if_attach(), always initialize the interface ioctl routine, ifnet->if_ioctl, if the driver has not already initialized it. Delete if_ioctl == NULL tests everywhere else, because it cannot happen. In the ioctl routines of network interfaces, inherit common ioctl behaviors by calling either ifioctl_common() or whichever ioctl routine is appropriate for the class of interface---e.g., ether_ioctl() for ethernets. Stop (ab)using SIOCSIFADDR and start to use SIOCINITIFADDR. In the user->kernel interface, SIOCSIFADDR's argument was an ifreq, but on the protocol->ifnet interface, SIOCSIFADDR's argument was an ifaddr. That was confusing, and it would work against me as I make it possible for a network interface to overload most ioctls. On the protocol->ifnet interface, replace SIOCSIFADDR with SIOCINITIFADDR. In ifioctl(), return EPERM if userland tries to invoke SIOCINITIFADDR. In ifioctl(), give the interface the first shot at handling most interface ioctls, and give the protocol the second shot, instead of the other way around. Finally, let compatibility code (COMPAT_OSOCK) take a shot. Pull device initialization out of switch statements under SIOCINITIFADDR. For example, pull ..._init() out of any switch statement that looks like this: switch (...->sa_family) { case ...: ..._init(); ... break; ... default: ..._init(); ... break; } Rewrite many if-else clauses that handle all permutations of IFF_UP and IFF_RUNNING to use a switch statement, switch (x & (IFF_UP|IFF_RUNNING)) { case 0: ... break; case IFF_RUNNING: ... break; case IFF_UP: ... break; case IFF_UP|IFF_RUNNING: ... break; } unifdef lots of code containing #ifdef FreeBSD, #ifdef NetBSD, and #ifdef SIOCSIFMTU, especially in fwip(4) and in ndis(4). In ipw(4), remove an if_set_sadl() call that is out of place. In nfe(4), reuse the jumbo MTU logic in ether_ioctl(). Let ethernets register a callback for setting h/w state such as promiscuous mode and the multicast filter in accord with a change in the if_flags: ether_set_ifflags_cb() registers a callback that returns ENETRESET if the caller should reset the ethernet by calling if_init(), 0 on success, != 0 on failure. Pull common code from ex(4), gem(4), nfe(4), sip(4), tlp(4), vge(4) into ether_ioctl(), and register if_flags callbacks for those drivers. Return ENOTTY instead of EINVAL for inappropriate ioctls. In zyd(4), use ENXIO instead of ENOTTY to indicate that the device is not any longer attached. Add to if_set_sadl() a boolean 'factory' argument that indicates whether a link-layer address was assigned by the factory or some other source. In a comment, recommend using the factory address for generating an EUI64, and update in6_get_hw_ifid() to prefer a factory address to any other link-layer address. Add a routing message, RTM_LLINFO_UPD, that tells protocols to update the binding of network-layer addresses to link-layer addresses. Implement this message in IPv4 and IPv6 by sending a gratuitous ARP or a neighbor advertisement, respectively. Generate RTM_LLINFO_UPD messages on a change of an interface's link-layer address. In ether_ioctl(), do not let SIOCALIFADDR set a link-layer address that is broadcast/multicast or equal to 00:00:00:00:00:00. Make ether_ioctl() call ifioctl_common() to handle ioctls that it does not understand. In gif(4), initialize if_softc and use it, instead of assuming that the gif_softc and ifp overlap. Let ifioctl_common() handle SIOCGIFADDR. Sprinkle rtcache_invariants(), which checks on DIAGNOSTIC kernels that certain invariants on a struct route are satisfied. In agr(4), rewrite agr_ioctl_filter() to be a bit more explicit about the ioctls that we do not allow on an agr(4) member interface. bzero -> memset. Delete unnecessary casts to void *. Use sockaddr_in_init() and sockaddr_in6_init(). Compare pointers with NULL instead of "testing truth". Replace some instances of (type *)0 with NULL. Change some K&R prototypes to ANSI C, and join lines.
2008-11-07 03:20:01 +03:00
if ((error = ifioctl_common(ifp, cmd, data)) != 0)
break;
/* XXX re-use ether_ioctl() */
switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
case IFF_UP:
zyd_init(ifp);
break;
case IFF_RUNNING:
zyd_stop(ifp, 1);
break;
default:
break;
}
break;
default:
error = ieee80211_ioctl(ic, cmd, data);
}
if (error == ENETRESET) {
if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
(IFF_RUNNING | IFF_UP))
zyd_init(ifp);
error = 0;
}
splx(s);
return error;
}
Static int
zyd_init(struct ifnet *ifp)
{
struct zyd_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int i, error;
zyd_stop(ifp, 0);
IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
error = zyd_set_macaddr(sc, ic->ic_myaddr);
if (error != 0)
return error;
/* we'll do software WEP decryption for now */
DPRINTF(("setting encryption type\n"));
error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
if (error != 0)
return error;
/* promiscuous mode */
(void)zyd_write32(sc, ZYD_MAC_SNIFFER,
(ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
(void)zyd_set_rxfilter(sc);
/* switch radio transmitter ON */
(void)zyd_switch_radio(sc, 1);
/* set basic rates */
if (ic->ic_curmode == IEEE80211_MODE_11B)
(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
else if (ic->ic_curmode == IEEE80211_MODE_11A)
(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
else /* assumes 802.11b/g */
(void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
/* set mandatory rates */
if (ic->ic_curmode == IEEE80211_MODE_11B)
(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
else if (ic->ic_curmode == IEEE80211_MODE_11A)
(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
else /* assumes 802.11b/g */
(void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
/* set default BSS channel */
ic->ic_bss->ni_chan = ic->ic_ibss_chan;
zyd_set_chan(sc, ic->ic_bss->ni_chan);
/* enable interrupts */
(void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
/*
* Allocate Tx and Rx xfer queues.
*/
if ((error = zyd_alloc_tx_list(sc)) != 0) {
printf("%s: could not allocate Tx list\n",
device_xname(sc->sc_dev));
goto fail;
}
if ((error = zyd_alloc_rx_list(sc)) != 0) {
printf("%s: could not allocate Rx list\n",
device_xname(sc->sc_dev));
goto fail;
}
/*
* Start up the receive pipe.
*/
for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
struct zyd_rx_data *data = &sc->rx_data[i];
usbd_setup_xfer(data->xfer, data, NULL, ZYX_MAX_RXBUFSZ,
USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, zyd_rxeof);
error = usbd_transfer(data->xfer);
if (error != USBD_IN_PROGRESS && error != 0) {
printf("%s: could not queue Rx transfer\n",
device_xname(sc->sc_dev));
goto fail;
}
}
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_flags |= IFF_RUNNING;
if (ic->ic_opmode == IEEE80211_M_MONITOR)
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
else
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
return 0;
fail: zyd_stop(ifp, 1);
return error;
}
Static void
zyd_stop(struct ifnet *ifp, int disable)
{
struct zyd_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
sc->tx_timer = 0;
ifp->if_timer = 0;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
/* switch radio transmitter OFF */
(void)zyd_switch_radio(sc, 0);
/* disable Rx */
(void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
/* disable interrupts */
(void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
zyd_free_rx_list(sc);
zyd_free_tx_list(sc);
}
Static int
zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
{
usb_device_request_t req;
uint16_t addr;
uint8_t stat;
2007-06-15 23:06:09 +04:00
DPRINTF(("firmware size=%zu\n", size));
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = ZYD_DOWNLOADREQ;
USETW(req.wIndex, 0);
addr = ZYD_FIRMWARE_START_ADDR;
while (size > 0) {
#if 0
Rename min/max -> uimin/uimax for better honesty. These functions are defined on unsigned int. The generic name min/max should not silently truncate to 32 bits on 64-bit systems. This is purely a name change -- no functional change intended. HOWEVER! Some subsystems have #define min(a, b) ((a) < (b) ? (a) : (b)) #define max(a, b) ((a) > (b) ? (a) : (b)) even though our standard name for that is MIN/MAX. Although these may invite multiple evaluation bugs, these do _not_ cause integer truncation. To avoid `fixing' these cases, I first changed the name in libkern, and then compile-tested every file where min/max occurred in order to confirm that it failed -- and thus confirm that nothing shadowed min/max -- before changing it. I have left a handful of bootloaders that are too annoying to compile-test, and some dead code: cobalt ews4800mips hp300 hppa ia64 luna68k vax acorn32/if_ie.c (not included in any kernels) macppc/if_gm.c (superseded by gem(4)) It should be easy to fix the fallout once identified -- this way of doing things fails safe, and the goal here, after all, is to _avoid_ silent integer truncations, not introduce them. Maybe one day we can reintroduce min/max as type-generic things that never silently truncate. But we should avoid doing that for a while, so that existing code has a chance to be detected by the compiler for conversion to uimin/uimax without changing the semantics until we can properly audit it all. (Who knows, maybe in some cases integer truncation is actually intended!)
2018-09-03 19:29:22 +03:00
const int mlen = uimin(size, 4096);
#else
/*
* XXXX: When the transfer size is 4096 bytes, it is not
* likely to be able to transfer it.
* The cause is port or machine or chip?
*/
Rename min/max -> uimin/uimax for better honesty. These functions are defined on unsigned int. The generic name min/max should not silently truncate to 32 bits on 64-bit systems. This is purely a name change -- no functional change intended. HOWEVER! Some subsystems have #define min(a, b) ((a) < (b) ? (a) : (b)) #define max(a, b) ((a) > (b) ? (a) : (b)) even though our standard name for that is MIN/MAX. Although these may invite multiple evaluation bugs, these do _not_ cause integer truncation. To avoid `fixing' these cases, I first changed the name in libkern, and then compile-tested every file where min/max occurred in order to confirm that it failed -- and thus confirm that nothing shadowed min/max -- before changing it. I have left a handful of bootloaders that are too annoying to compile-test, and some dead code: cobalt ews4800mips hp300 hppa ia64 luna68k vax acorn32/if_ie.c (not included in any kernels) macppc/if_gm.c (superseded by gem(4)) It should be easy to fix the fallout once identified -- this way of doing things fails safe, and the goal here, after all, is to _avoid_ silent integer truncations, not introduce them. Maybe one day we can reintroduce min/max as type-generic things that never silently truncate. But we should avoid doing that for a while, so that existing code has a chance to be detected by the compiler for conversion to uimin/uimax without changing the semantics until we can properly audit it all. (Who knows, maybe in some cases integer truncation is actually intended!)
2018-09-03 19:29:22 +03:00
const int mlen = uimin(size, 64);
#endif
DPRINTF(("loading firmware block: len=%d, addr=%#x\n", mlen,
addr));
USETW(req.wValue, addr);
USETW(req.wLength, mlen);
if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
return EIO;
addr += mlen / 2;
fw += mlen;
size -= mlen;
}
/* check whether the upload succeeded */
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = ZYD_DOWNLOADSTS;
USETW(req.wValue, 0);
USETW(req.wIndex, 0);
USETW(req.wLength, sizeof(stat));
if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
return EIO;
return (stat & 0x80) ? EIO : 0;
}
Static void
zyd_iter_func(void *arg, struct ieee80211_node *ni)
{
struct zyd_softc *sc = arg;
struct zyd_node *zn = (struct zyd_node *)ni;
ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
}
Static void
zyd_amrr_timeout(void *arg)
{
struct zyd_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
int s;
s = splnet();
if (ic->ic_opmode == IEEE80211_M_STA)
zyd_iter_func(sc, ic->ic_bss);
else
ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc);
splx(s);
2009-06-26 04:06:27 +04:00
callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
}
Static void
zyd_newassoc(struct ieee80211_node *ni, int isnew)
{
struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc;
int i;
ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
/* set rate to some reasonable initial value */
for (i = ni->ni_rates.rs_nrates - 1;
i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
i--);
ni->ni_txrate = i;
}
2019-11-28 20:09:10 +03:00
static int
zyd_activate(device_t self, enum devact act)
{
struct zyd_softc *sc = device_private(self);
switch (act) {
case DVACT_DEACTIVATE:
if_deactivate(&sc->sc_if);
return 0;
default:
return EOPNOTSUPP;
}
}