NetBSD/sys/arch/evbarm/netwalker/netwalker_machdep.c

1368 lines
40 KiB
C
Raw Normal View History

2014-01-23 16:23:20 +04:00
/* $NetBSD: netwalker_machdep.c,v 1.12 2014/01/23 12:23:20 hkenken Exp $ */
/*
* Copyright (c) 2002, 2003, 2005, 2010 Genetec Corporation.
* All rights reserved.
* Written by Hiroyuki Bessho for Genetec Corporation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
2011-07-01 00:09:15 +04:00
* Machine dependent functions for kernel setup for Sharp Netwalker.
* Based on iq80310_machhdep.c
*/
/*
* Copyright (c) 2001 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1997,1998 Mark Brinicombe.
* Copyright (c) 1997,1998 Causality Limited.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Mark Brinicombe
* for the NetBSD Project.
* 4. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
2011-07-01 00:09:15 +04:00
* Machine dependent functions for kernel setup for Intel IQ80310 evaluation
* boards using RedBoot firmware.
*/
#include <sys/cdefs.h>
2014-01-23 16:23:20 +04:00
__KERNEL_RCSID(0, "$NetBSD: netwalker_machdep.c,v 1.12 2014/01/23 12:23:20 hkenken Exp $");
#include "opt_ddb.h"
#include "opt_kgdb.h"
#include "opt_ipkdb.h"
#include "opt_pmap_debug.h"
#include "opt_md.h"
#include "opt_com.h"
#include "imxuart.h"
#include "opt_imxuart.h"
#include "opt_imx.h"
2014-01-23 16:23:20 +04:00
#include "opt_imx51_ipuv3.h"
#include "wsdisplay.h"
#include <sys/param.h>
#include <sys/device.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/exec.h>
#include <sys/proc.h>
#include <sys/msgbuf.h>
#include <sys/reboot.h>
#include <sys/termios.h>
#include <sys/ksyms.h>
#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/conf.h>
#include <uvm/uvm_extern.h>
#include <dev/cons.h>
#include <dev/md.h>
#include <machine/db_machdep.h>
#include <ddb/db_sym.h>
#include <ddb/db_extern.h>
#ifdef KGDB
#include <sys/kgdb.h>
#endif
#include <machine/bootconfig.h>
#include <arm/locore.h>
#include <arm/undefined.h>
#include <arm/arm32/pte.h>
#include <arm/arm32/machdep.h>
#include <arm/imx/imx51reg.h>
#include <arm/imx/imx51var.h>
#include <arm/imx/imxgpioreg.h>
#include <arm/imx/imxwdogreg.h>
#include <arm/imx/imxuartreg.h>
#include <arm/imx/imxuartvar.h>
#include <arm/imx/imx51_iomuxreg.h>
#include <evbarm/netwalker/netwalker_reg.h>
2014-01-23 16:23:20 +04:00
#include "ukbd.h"
#if (NUKBD > 0)
#include <dev/usb/ukbdvar.h>
#endif
/* Kernel text starts 1MB in from the bottom of the kernel address space. */
#define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00100000)
#define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
/*
* The range 0xc1000000 - 0xccffffff is available for kernel VM space
* Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
*/
#define KERNEL_VM_SIZE 0x0C000000
BootConfig bootconfig; /* Boot config storage */
char *boot_args = NULL;
char *boot_file = NULL;
vm_offset_t physical_start;
vm_offset_t physical_freestart;
vm_offset_t physical_freeend;
vm_offset_t physical_end;
u_int free_pages;
vm_offset_t pagetables_start;
/*int debug_flags;*/
#ifndef PMAP_STATIC_L1S
int max_processes = 64; /* Default number */
#endif /* !PMAP_STATIC_L1S */
vm_offset_t msgbufphys;
extern char KERNEL_BASE_phys[];
extern char KERNEL_BASE_virt[];
extern char etext[], __data_start[], _edata[], __bss_start[], __bss_end__[];
extern char _end[];
extern int cpu_do_powersave;
#define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
#define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
#define KERNEL_PT_KERNEL_NUM 4
#define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
/* Page tables for mapping kernel VM */
#define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
#define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
/*
* Macros to translate between physical and virtual for a subset of the
* kernel address space. *Not* for general use.
*/
#define KERNEL_BASE_PHYS ((paddr_t)&KERNEL_BASE_phys)
#define KERNEL_BASE_VIRT ((vaddr_t)&KERNEL_BASE_virt)
#define KERN_VTOPHYS(va) \
((paddr_t)((vaddr_t)va - KERNEL_BASE_VIRT + KERNEL_BASE_PHYS))
#define KERN_PHYSTOV(pa) \
((vaddr_t)((paddr_t)pa - KERNEL_BASE_PHYS + KERNEL_BASE_VIRT))
/* Prototypes */
void consinit(void);
#if 0
void process_kernel_args(char *);
#endif
#ifdef KGDB
void kgdb_port_init(void);
#endif
void change_clock(uint32_t v);
static void init_clocks(void);
static void setup_ioports(void);
#ifdef DEBUG_IOPORTS
void dump_registers(void);
#endif
bs_protos(bs_notimpl);
#ifndef CONSPEED
#define CONSPEED B115200 /* What RedBoot uses */
#endif
#ifndef CONMODE
#define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
#endif
int comcnspeed = CONSPEED;
int comcnmode = CONMODE;
/*
* void cpu_reboot(int howto, char *bootstr)
*
* Reboots the system
*
* Deal with any syncing, unmounting, dumping and shutdown hooks,
* then reset the CPU.
*/
void
cpu_reboot(int howto, char *bootstr)
{
#ifdef DIAGNOSTIC
/* info */
printf("boot: howto=%08x curproc=%p\n", howto, curproc);
#endif
/*
* If we are still cold then hit the air brakes
* and crash to earth fast
*/
if (cold) {
doshutdownhooks();
pmf_system_shutdown(boothowto);
printf("The operating system has halted.\n");
printf("Please press any key to reboot.\n\n");
cngetc();
printf("rebooting...\n");
cpu_reset();
/*NOTREACHED*/
}
/* Disable console buffering */
/* cnpollc(1);*/
/*
* If RB_NOSYNC was not specified sync the discs.
* Note: Unless cold is set to 1 here, syslogd will die during the
* unmount. It looks like syslogd is getting woken up only to find
* that it cannot page part of the binary in as the filesystem has
* been unmounted.
*/
if (!(howto & RB_NOSYNC))
bootsync();
/* Say NO to interrupts */
splhigh();
/* Do a dump if requested. */
if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
dumpsys();
/* Run any shutdown hooks */
doshutdownhooks();
pmf_system_shutdown(boothowto);
/* Make sure IRQ's are disabled */
IRQdisable;
if (howto & RB_HALT) {
printf("The operating system has halted.\n");
printf("Please press any key to reboot.\n\n");
cngetc();
}
printf("rebooting...\n");
cpu_reset();
/*NOTREACHED*/
}
/*
* Static device mappings. These peripheral registers are mapped at
* fixed virtual addresses very early in netwalker_start() so that we
* can use them while booting the kernel, and stay at the same address
* throughout whole kernel's life time.
*
* We use this table twice; once with bootstrap page table, and once
* with kernel's page table which we build up in initarm().
*/
#define _A(a) ((a) & ~L1_S_OFFSET)
#define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
static const struct pmap_devmap netwalker_devmap[] = {
{
/* for UART1, IOMUXC */
NETWALKER_IO_VBASE0,
_A(NETWALKER_IO_PBASE0),
L1_S_SIZE * 4,
VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE
},
{0, 0, 0, 0, 0 }
};
#ifndef MEMSTART
#define MEMSTART 0x90000000
#endif
#ifndef MEMSIZE
#define MEMSIZE 512
#endif
/*
* u_int initarm(...)
*
* Initial entry point on startup. This gets called before main() is
* entered.
* It should be responsible for setting up everything that must be
* in place when main is called.
* This includes
* Taking a copy of the boot configuration structure.
* Initialising the physical console so characters can be printed.
* Setting up page tables for the kernel
* Relocating the kernel to the bottom of physical memory
*/
u_int
initarm(void *arg)
{
int loop;
int loop1;
vaddr_t l1pagetable;
#ifdef RBFLAGS
boothowto |= RBFLAGS;
#endif
disable_interrupts(I32_bit|F32_bit);
/* XXX move to netwalker_start.S */
/* Register devmap for devices we mapped in start */
pmap_devmap_register(netwalker_devmap);
setup_ioports();
consinit();
#ifdef DEBUG_IOPORTS
dump_registers();
#endif
/*
* Heads up ... Setup the CPU / MMU / TLB functions
*/
if (set_cpufuncs())
panic("cpu not recognized!");
#ifdef NO_POWERSAVE
cpu_do_powersave=0;
#endif
init_clocks();
#ifdef KGDB
kgdb_port_init();
#endif
/* Talk to the user */
printf("\nNetBSD/evbarm (netwalker) booting ...\n");
/*
* Ok we have the following memory map
*
* Physical Address Range Description
* ----------------------- ----------------------------------
*
* 0x90000000 - 0x97FFFFFF DDR SDRAM (128MByte)
*
* The initarm() has the responsibility for creating the kernel
* page tables.
* It must also set up various memory pointers that are used
* by pmap etc.
*/
#if 0
/*
* Examine the boot args string for options we need to know about
* now.
*/
process_kernel_args((char *)nwbootinfo.bt_args);
#endif
#ifdef VERBOSE_INIT_ARM
printf("initarm: Configuring system ...\n");
#endif
/* Fake bootconfig structure for the benefit of pmap.c */
/* XXX must make the memory description h/w independent */
bootconfig.dramblocks = 1;
bootconfig.dram[0].address = MEMSTART;
bootconfig.dram[0].pages = (MEMSIZE * 1024 * 1024)/ PAGE_SIZE;
/*
* Set up the variables that define the availablilty of
* physical memory. For now, we're going to set
* physical_freestart to 0x80100000 (where the kernel
* was loaded), and allocate the memory we need downwards.
* If we get too close to the bottom of SDRAM, we
* will panic. We will update physical_freestart and
* physical_freeend later to reflect what pmap_bootstrap()
* wants to see.
*
* XXX pmap_bootstrap() needs an enema.
*/
physical_start = bootconfig.dram[0].address;
physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
physical_freestart = 0x90000000UL; /* top of loadaddres */
physical_freeend = 0x90100000UL; /* base of kernel */
physmem = (physical_end - physical_start) / PAGE_SIZE;
#ifdef VERBOSE_INIT_ARM
/* Tell the user about the memory */
printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
physical_start, physical_end - 1);
#endif
/*
* Okay, the kernel starts 1MB in from the bottom of physical
* memory. We are going to allocate our bootstrap pages downwards
* from there.
*
* We need to allocate some fixed page tables to get the kernel
* going. We allocate one page directory and a number of page
* tables and store the physical addresses in the kernel_pt_table
* array.
*
* The kernel page directory must be on a 16K boundary. The page
* tables must be on 4K boundaries. What we do is allocate the
* page directory on the first 16K boundary that we encounter, and
* the page tables on 4K boundaries otherwise. Since we allocate
* at least 3 L2 page tables, we are guaranteed to encounter at
* least one 16K aligned region.
*/
#ifdef VERBOSE_INIT_ARM
printf("Allocating page tables\n");
#endif
free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
#ifdef VERBOSE_INIT_ARM
printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
physical_freestart, free_pages, free_pages);
#endif
/* Define a macro to simplify memory allocation */
#define valloc_pages(var, np) \
alloc_pages((var).pv_pa, (np)); \
(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
#define alloc_pages(var, np) \
physical_freeend -= ((np) * PAGE_SIZE); \
if (physical_freeend < physical_freestart) \
panic("initarm: out of memory"); \
(var) = physical_freeend; \
free_pages -= (np); \
memset((char *)(var), 0, ((np) * PAGE_SIZE));
loop1 = 0;
for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
/* Are we 16KB aligned for an L1 ? */
if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
&& kernel_l1pt.pv_pa == 0) {
valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
} else {
valloc_pages(kernel_pt_table[loop1],
L2_TABLE_SIZE / PAGE_SIZE);
++loop1;
}
}
/* This should never be able to happen but better confirm that. */
if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
panic("initarm: Failed to align the kernel page directory");
/*
* Allocate a page for the system page mapped to V0x00000000
* This page will just contain the system vectors and can be
* shared by all processes.
*/
valloc_pages(systempage, 1);
systempage.pv_va = ARM_VECTORS_HIGH;
/* Allocate stacks for all modes */
valloc_pages(fiqstack, FIQ_STACK_SIZE);
valloc_pages(irqstack, IRQ_STACK_SIZE);
valloc_pages(abtstack, ABT_STACK_SIZE);
valloc_pages(undstack, UND_STACK_SIZE);
valloc_pages(kernelstack, UPAGES);
#ifdef VERBOSE_INIT_ARM
printf("FIQ stack: p0x%08lx v0x%08lx\n", fiqstack.pv_pa,
fiqstack.pv_va);
printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
irqstack.pv_va);
printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
abtstack.pv_va);
printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
undstack.pv_va);
printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
kernelstack.pv_va);
#endif
alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
/*
* Ok we have allocated physical pages for the primary kernel
* page tables
*/
#ifdef VERBOSE_INIT_ARM
printf("Creating L1 page table at p0x%08lx v0x%08lx\n",
kernel_l1pt.pv_pa, kernel_l1pt.pv_va);
#endif
/*
* Now we start construction of the L1 page table
* We start by mapping the L2 page tables into the L1.
* This means that we can replace L1 mappings later on if necessary
*/
l1pagetable = kernel_l1pt.pv_pa;
/* Map the L2 pages tables in the L1 page table */
pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
&kernel_pt_table[KERNEL_PT_SYS]);
for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
&kernel_pt_table[KERNEL_PT_KERNEL + loop]);
for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
&kernel_pt_table[KERNEL_PT_VMDATA + loop]);
/* update the top of the kernel VM */
pmap_curmaxkvaddr =
KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
#ifdef VERBOSE_INIT_ARM
printf("Mapping kernel\n");
#endif
/* Now we fill in the L2 pagetable for the kernel static code/data */
#define round_L_page(x) (((x) + L2_L_OFFSET) & L2_L_FRAME)
{
size_t textsize = round_L_page((size_t)etext - KERNEL_TEXT_BASE);
size_t totalsize = round_L_page((size_t)_end - KERNEL_TEXT_BASE);
u_int logical;
#ifdef VERBOSE_INIT_ARM
printf("%s: etext %lx, _end %lx\n",
__func__, (uintptr_t)etext, (uintptr_t)_end);
printf("%s: textsize %#lx, totalsize %#lx\n",
__func__, textsize, totalsize);
#endif
logical = 0x00100000; /* offset of kernel in RAM */
/* Map text section read-only. */
logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
physical_start + logical, textsize,
VM_PROT_READ|VM_PROT_EXECUTE, PTE_CACHE);
/* Map data and bss sections read-write. */
logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
physical_start + logical, totalsize - textsize,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
}
#ifdef VERBOSE_INIT_ARM
printf("Constructing L2 page tables\n");
#endif
/* Map the stack pages */
pmap_map_chunk(l1pagetable, fiqstack.pv_va, fiqstack.pv_pa,
FIQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
}
/* Map the vector page. */
#if 0
/* MULTI-ICE requires that page 0 is NC/NB so that it can download the
* cache-clean code there. */
pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
#else
pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
#endif
/*
* map integrated peripherals at same address in l1pagetable
* so that we can continue to use console.
*/
pmap_devmap_bootstrap(l1pagetable, netwalker_devmap);
/*
* Now we have the real page tables in place so we can switch to them.
* Once this is done we will be running with the REAL kernel page
* tables.
*/
/*
* Update the physical_freestart/physical_freeend/free_pages
* variables.
*/
physical_freestart = physical_start +
(((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) - KERNEL_BASE);
physical_freeend = physical_end;
free_pages =
(physical_freeend - physical_freestart) / PAGE_SIZE;
#ifdef VERBOSE_INIT_ARM
/* Tell the user about where all the bits and pieces live. */
printf("%22s Physical Virtual Num\n", " ");
printf("%22s Starting Ending Starting Ending Pages\n", " ");
static const char mem_fmt[] =
"%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %d\n";
static const char mem_fmt_nov[] =
"%20s: 0x%08lx 0x%08lx %d\n";
printf(mem_fmt, "SDRAM", physical_start, physical_end-1,
KERN_PHYSTOV(physical_start), KERN_PHYSTOV(physical_end-1),
physmem);
printf(mem_fmt, "text section",
(paddr_t)KERNEL_BASE_phys, KERN_VTOPHYS(etext-1),
(vaddr_t)KERNEL_BASE_virt, (vaddr_t)etext-1,
(int)(round_L_page((size_t)etext - KERNEL_TEXT_BASE) / PAGE_SIZE));
printf(mem_fmt, "data section",
KERN_VTOPHYS(__data_start), KERN_VTOPHYS(_edata),
(vaddr_t)__data_start, (vaddr_t)_edata,
(int)((round_page((vaddr_t)_edata)
- trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
printf(mem_fmt, "bss section",
KERN_VTOPHYS(__bss_start), KERN_VTOPHYS(__bss_end__),
(vaddr_t)__bss_start, (vaddr_t)__bss_end__,
(int)((round_page((vaddr_t)__bss_end__)
- trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
printf(mem_fmt, "L1 page directory",
kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
L1_TABLE_SIZE / PAGE_SIZE);
printf(mem_fmt, "Exception Vectors",
systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
1);
printf(mem_fmt, "FIQ stack",
fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
FIQ_STACK_SIZE);
printf(mem_fmt, "IRQ stack",
irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
IRQ_STACK_SIZE);
printf(mem_fmt, "ABT stack",
abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
ABT_STACK_SIZE);
printf(mem_fmt, "UND stack",
undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
UND_STACK_SIZE);
printf(mem_fmt, "SVC stack",
kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
UPAGES);
printf(mem_fmt_nov, "Message Buffer",
msgbufphys, msgbufphys + round_page(MSGBUFSIZE) - 1, round_page(MSGBUFSIZE) / PAGE_SIZE);
printf(mem_fmt, "Free Memory", physical_freestart, physical_freeend-1,
KERN_PHYSTOV(physical_freestart), KERN_PHYSTOV(physical_freeend-1),
free_pages);
#endif
/* Switch tables */
#ifdef VERBOSE_INIT_ARM
printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
physical_freestart, free_pages, free_pages);
printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
#endif
cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
cpu_setttb(kernel_l1pt.pv_pa, true);
cpu_tlb_flushID();
cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
/*
* Moved from cpu_startup() as data_abort_handler() references
* this during uvm init
*/
uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
#ifdef VERBOSE_INIT_ARM
printf("bootstrap done.\n");
#endif
arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
/*
* Pages were allocated during the secondary bootstrap for the
* stacks for different CPU modes.
* We must now set the r13 registers in the different CPU modes to
* point to these stacks.
* Since the ARM stacks use STMFD etc. we must set r13 to the top end
* of the stack memory.
*/
#ifdef VERBOSE_INIT_ARM
printf("init subsystems: stacks ");
#endif
set_stackptr(PSR_FIQ32_MODE, fiqstack.pv_va + FIQ_STACK_SIZE * PAGE_SIZE);
set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
/*
* Well we should set a data abort handler.
* Once things get going this will change as we will need a proper
* handler.
* Until then we will use a handler that just panics but tells us
* why.
* Initialisation of the vectors will just panic on a data abort.
* This just fills in a slightly better one.
*/
#ifdef VERBOSE_INIT_ARM
printf("vectors ");
#endif
data_abort_handler_address = (u_int)data_abort_handler;
prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
undefined_handler_address = (u_int)undefinedinstruction_bounce;
/* Initialise the undefined instruction handlers */
#ifdef VERBOSE_INIT_ARM
printf("undefined ");
#endif
undefined_init();
/* Load memory into UVM. */
#ifdef VERBOSE_INIT_ARM
printf("page ");
#endif
uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
atop(physical_freestart), atop(physical_freeend),
VM_FREELIST_DEFAULT);
/* Boot strap pmap telling it where the kernel page table is */
#ifdef VERBOSE_INIT_ARM
printf("pmap ");
#endif
pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
#ifdef __HAVE_MEMORY_DISK__
md_root_setconf(memory_disk, sizeof memory_disk);
#endif
#ifdef VERBOSE_INIT_ARM
printf("done.\n");
#endif
/* disable power down counter in watch dog,
This must be done within 16 seconds of start-up. */
ioreg16_write(NETWALKER_WDOG_VBASE + IMX_WDOG_WMCR, 0);
#ifdef IPKDB
/* Initialise ipkdb */
ipkdb_init();
if (boothowto & RB_KDB)
ipkdb_connect(0);
#endif
#ifdef KGDB
if (boothowto & RB_KDB) {
kgdb_debug_init = 1;
kgdb_connect(1);
}
#endif
#ifdef DDB
#ifdef VERBOSE_INIT_ARM
printf("ddb ");
#endif
db_machine_init();
/* Firmware doesn't load symbols. */
ddb_init(0, NULL, NULL);
if (boothowto & RB_KDB)
Debugger();
#endif
printf("initarm done.\n");
/* We return the new stack pointer address */
return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
}
#if 0
void
process_kernel_args(char *args)
{
boothowto = 0;
/* Make a local copy of the bootargs */
strncpy(bootargs, args, MAX_BOOT_STRING);
args = bootargs;
boot_file = bootargs;
/* Skip the kernel image filename */
while (*args != ' ' && *args != 0)
++args;
if (*args != 0)
*args++ = 0;
while (*args == ' ')
++args;
boot_args = args;
printf("bootfile: %s\n", boot_file);
printf("bootargs: %s\n", boot_args);
parse_mi_bootargs(boot_args);
}
#endif
static void
init_clocks(void)
{
cortex_pmc_ccnt_init();
}
struct iomux_setup {
/* iomux registers are 32-bit wide, but upper 16 bits are not
* used. */
uint16_t reg;
uint16_t val;
};
#define IOMUX_M(padname, mux) \
IOMUX_DATA(__CONCAT(IOMUXC_SW_MUX_CTL_PAD_,padname), mux)
#define IOMUX_P(padname, pad) \
IOMUX_DATA(__CONCAT(IOMUXC_SW_PAD_CTL_PAD_,padname), pad)
#define IOMUX_MP(padname, mux, pad) \
IOMUX_M(padname, mux), \
IOMUX_P(padname, pad)
#define IOMUX_DATA(offset, value) \
{ \
.reg = (offset), \
.val = (value), \
}
/*
* set same values to IOMUX registers as linux kernel does
*/
const struct iomux_setup iomux_setup_data[] = {
#define HYS PAD_CTL_HYS
#define ODE PAD_CTL_ODE
#define DSEHIGH PAD_CTL_DSE_HIGH
#define DSEMID PAD_CTL_DSE_MID
#define DSELOW PAD_CTL_DSE_LOW
#define DSEMAX PAD_CTL_DSE_MAX
#define SRE PAD_CTL_SRE
#define KEEPER PAD_CTL_KEEPER
#define PULL PAD_CTL_PULL
#define PU_22K PAD_CTL_PUS_22K_PU
#define PU_47K PAD_CTL_PUS_47K_PU
#define PU_100K PAD_CTL_PUS_100K_PU
#define PD_100K PAD_CTL_PUS_100K_PD
#define HVE PAD_CTL_HVE /* Low output voltage */
#define ALT0 IOMUX_CONFIG_ALT0
#define ALT1 IOMUX_CONFIG_ALT1
#define ALT2 IOMUX_CONFIG_ALT2
#define ALT3 IOMUX_CONFIG_ALT3
#define ALT4 IOMUX_CONFIG_ALT4
#define ALT5 IOMUX_CONFIG_ALT5
#define ALT6 IOMUX_CONFIG_ALT6
#define ALT7 IOMUX_CONFIG_ALT7
#define SION IOMUX_CONFIG_SION
/* left button */
IOMUX_MP(EIM_EB2, ALT1, HYS),
/* right button */
IOMUX_MP(EIM_EB3, ALT1, HYS),
/* UART1 */
IOMUX_MP(UART1_RXD, ALT0, HYS | PULL | DSEHIGH | SRE),
IOMUX_MP(UART1_TXD, ALT0, HYS | PULL | DSEHIGH | SRE),
IOMUX_MP(UART1_RTS, ALT0, HYS | PULL | DSEHIGH),
IOMUX_MP(UART1_CTS, ALT0, HYS | PULL | DSEHIGH),
/* LCD Display */
IOMUX_M(DI1_PIN2, ALT0),
IOMUX_M(DI1_PIN3, ALT0),
IOMUX_DATA(IOMUXC_SW_PAD_CTL_GRP_DISP1_PKE0, PAD_CTL_PKE),
#if 0
IOMUX_MP(DISP1_DAT0, ALT0, SRE | DSEMAX | PULL),
IOMUX_MP(DISP1_DAT1, ALT0, SRE | DSEMAX | PULL),
IOMUX_MP(DISP1_DAT2, ALT0, SRE | DSEMAX | PULL),
IOMUX_MP(DISP1_DAT3, ALT0, SRE | DSEMAX | PULL),
IOMUX_MP(DISP1_DAT4, ALT0, SRE | DSEMAX | PULL),
IOMUX_MP(DISP1_DAT5, ALT0, SRE | DSEMAX | PULL),
#endif
IOMUX_M(DISP1_DAT6, ALT0),
IOMUX_M(DISP1_DAT7, ALT0),
IOMUX_M(DISP1_DAT8, ALT0),
IOMUX_M(DISP1_DAT9, ALT0),
IOMUX_M(DISP1_DAT10, ALT0),
IOMUX_M(DISP1_DAT11, ALT0),
IOMUX_M(DISP1_DAT12, ALT0),
IOMUX_M(DISP1_DAT13, ALT0),
IOMUX_M(DISP1_DAT14, ALT0),
IOMUX_M(DISP1_DAT15, ALT0),
IOMUX_M(DISP1_DAT16, ALT0),
IOMUX_M(DISP1_DAT17, ALT0),
IOMUX_M(DISP1_DAT18, ALT0),
IOMUX_M(DISP1_DAT19, ALT0),
IOMUX_M(DISP1_DAT20, ALT0),
IOMUX_M(DISP1_DAT21, ALT0),
IOMUX_M(DISP1_DAT22, ALT0),
IOMUX_M(DISP1_DAT23, ALT0),
IOMUX_MP(DI1_D0_CS, ALT4, KEEPER | DSEHIGH | SRE), /* GPIO3_3 */
IOMUX_DATA(IOMUXC_GPIO3_IPP_IND_G_IN_3_SELECT_INPUT, INPUT_DAISY_0),
IOMUX_MP(CSI2_D12, ALT3, KEEPER | DSEHIGH | SRE), /* GPIO4_9 */
IOMUX_MP(CSI2_D13, ALT3, KEEPER | DSEHIGH | SRE),
IOMUX_MP(GPIO1_2, ALT0, ODE | DSEHIGH),
IOMUX_MP(EIM_A19, ALT1, SRE | DSEHIGH),
/* XXX VGA pins */
IOMUX_M(DI_GP4, ALT4),
IOMUX_M(GPIO1_8, SION | ALT0),
#if 0
IOMUX_MP(GPIO1_2, ALT1, DSEHIGH | ODE), /* LCD backlight by PWM */
#else
IOMUX_P(GPIO1_2, DSEHIGH | ODE), /* LCD backlight by GPIO */
#endif
IOMUX_MP(GPIO1_8, SION | ALT0, HYS | DSEMID | PU_100K),
/* I2C1 */
IOMUX_MP(EIM_D16, SION | ALT4, HYS | ODE | DSEHIGH | SRE),
IOMUX_MP(EIM_D19, SION | ALT4, SRE), /* SCL */
IOMUX_MP(EIM_A19, ALT1, SRE | DSEHIGH), /* GPIO2_13 */
#if 0
IOMUX_MP(EIM_A23, ALT1, 0),
#else
IOMUX_M(EIM_A23, ALT1), /* GPIO2_17 */
#endif
/* BT */
IOMUX_M(EIM_D20, ALT1), /* GPIO2_4 BT host wakeup */
IOMUX_M(EIM_D22, ALT1), /* GPIO2_6 BT RESET */
IOMUX_M(EIM_D23, ALT1), /* GPIO2_7 BT wakeup */
/* UART3 */
IOMUX_MP(EIM_D24, ALT3, KEEPER | PU_100K | DSEHIGH | SRE),
IOMUX_MP(EIM_D25, ALT3, KEEPER | PU_100K | DSEHIGH | SRE), /* CTS */
IOMUX_MP(EIM_D26, ALT3, KEEPER | PU_100K | DSEHIGH | SRE), /* TXD */
IOMUX_MP(EIM_D27, ALT3, KEEPER | PU_100K | DSEHIGH | SRE), /* RTS */
IOMUX_M(NANDF_D15, ALT3), /* GPIO3_25 */
IOMUX_MP(NANDF_D14, ALT3, HYS | PULL | PU_100K ), /* GPIO3_26 */
IOMUX_M(CSI1_D9, ALT3), /* GPIO3_13 */
IOMUX_M(CSI1_VSYNC, ALT3), /* GPIO3_14 */
IOMUX_M(CSI1_HSYNC, ALT3), /* GPIO3_15 */
/* audio pins */
IOMUX_MP(AUD3_BB_TXD, ALT0, DSEHIGH | PU_100K | SRE),
/* XXX: linux code:
(PAD_CTL_SRE_FAST | PAD_CTL_DRV_HIGH |
PAD_CTL_100K_PU | PAD_CTL_HYS_NONE |
PAD_CTL_DDR_INPUT_CMOS | PAD_CTL_DRV_VOT_LOW), */
IOMUX_MP(AUD3_BB_RXD, ALT0, KEEPER | DSEHIGH | SRE),
IOMUX_MP(AUD3_BB_CK, ALT0, KEEPER | DSEHIGH | SRE),
IOMUX_MP(AUD3_BB_FS, ALT0, KEEPER | DSEHIGH | SRE),
/* headphone detect */
IOMUX_MP(NANDF_D14, ALT3, HYS | PULL | PU_100K),
IOMUX_MP(CSPI1_RDY, ALT3, SRE | DSEHIGH),
/* XXX more audio pins ? */
/* CSPI */
/* ??? doesn't work ??? */
IOMUX_P(CSPI1_MOSI, HYS | PULL | PD_100K | DSEHIGH | SRE),
IOMUX_P(CSPI1_MISO, HYS | PULL | PD_100K | DSEHIGH | SRE),
IOMUX_M(CSPI1_SS0, ALT3),
IOMUX_MP(CSPI1_SS1, ALT0, HYS | KEEPER | DSEHIGH | SRE),
IOMUX_MP(DI1_PIN11, ALT7, HYS | PULL | DSEHIGH | SRE),
IOMUX_P(CSPI1_SCLK, HYS | KEEPER | DSEHIGH | SRE),
/* 26M Osc */
IOMUX_MP(DI1_PIN12, ALT4, KEEPER | DSEHIGH | SRE), /* GPIO3_1 */
/* I2C */
IOMUX_MP(KEY_COL4, SION | ALT3, SRE),
IOMUX_DATA(IOMUXC_I2C2_IPP_SCL_IN_SELECT_INPUT, INPUT_DAISY_1),
IOMUX_MP(KEY_COL5, SION | ALT3, HYS | ODE | DSEHIGH | SRE),
IOMUX_DATA(IOMUXC_I2C2_IPP_SDA_IN_SELECT_INPUT, INPUT_DAISY_1),
IOMUX_DATA(IOMUXC_UART3_IPP_UART_RTS_B_SELECT_INPUT, INPUT_DAISY_3),
#if 1
/* NAND */
IOMUX_MP(NANDF_WE_B, ALT0, HVE | DSEHIGH | PULL | PU_47K),
IOMUX_MP(NANDF_RE_B, ALT0, HVE | DSEHIGH | PULL | PU_47K),
IOMUX_MP(NANDF_ALE, ALT0, HVE | DSEHIGH | KEEPER),
IOMUX_MP(NANDF_CLE, ALT0, HVE | DSEHIGH | KEEPER),
IOMUX_MP(NANDF_WP_B, ALT0, HVE | DSEHIGH | PULL | PU_100K),
IOMUX_MP(NANDF_RB0, ALT0, HVE | DSELOW | PULL | PU_100K),
IOMUX_MP(NANDF_RB1, ALT0, HVE | DSELOW | PULL | PU_100K),
IOMUX_MP(NANDF_D7, ALT0, HVE | DSEHIGH | KEEPER | PU_100K),
IOMUX_MP(NANDF_D6, ALT0, HVE | DSEHIGH | KEEPER | PU_100K),
IOMUX_MP(NANDF_D5, ALT0, HVE | DSEHIGH | KEEPER | PU_100K),
IOMUX_MP(NANDF_D4, ALT0, HVE | DSEHIGH | KEEPER | PU_100K),
IOMUX_MP(NANDF_D3, ALT0, HVE | DSEHIGH | KEEPER | PU_100K),
IOMUX_MP(NANDF_D2, ALT0, HVE | DSEHIGH | KEEPER | PU_100K),
IOMUX_MP(NANDF_D1, ALT0, HVE | DSEHIGH | KEEPER | PU_100K),
IOMUX_MP(NANDF_D0, ALT0, HVE | DSEHIGH | KEEPER | PU_100K),
#endif
/* Batttery pins */
IOMUX_MP(NANDF_D13, ALT3, HYS | DSEHIGH),
IOMUX_MP(NANDF_D12, ALT3, HYS | DSEHIGH),
#if 0
IOMUX_MP(NANDF_D11, ALT3, HYS | DSEHIGH),
#endif
IOMUX_MP(NANDF_D10, ALT3, HYS | DSEHIGH),
/* SD1 */
IOMUX_MP(SD1_CMD, SION | ALT0, DSEHIGH | SRE),
IOMUX_MP(SD1_CLK, SION | ALT0, KEEPER | PU_47K | DSEHIGH),
IOMUX_MP(SD1_DATA0, ALT0, DSEHIGH | SRE),
IOMUX_MP(SD1_DATA1, ALT0, DSEHIGH | SRE),
IOMUX_MP(SD1_DATA2, ALT0, DSEHIGH | SRE),
IOMUX_MP(SD1_DATA3, ALT0, DSEHIGH | SRE),
IOMUX_MP(GPIO1_0, SION | ALT0, HYS | PU_100K),
/* SD2 */
IOMUX_P(SD2_CMD, HVE | PU_22K | DSEMAX | SRE),
IOMUX_P(SD2_CLK, HVE | PU_22K | DSEMAX | SRE),
IOMUX_P(SD2_DATA0, HVE | PU_22K | DSEMAX | SRE),
IOMUX_P(SD2_DATA1, HVE | PU_22K | DSEMAX | SRE),
IOMUX_P(SD2_DATA2, HVE | PU_22K | DSEMAX | SRE),
IOMUX_P(SD2_DATA3, HVE | PU_22K | DSEMAX | SRE),
/* USB */
IOMUX_MP(USBH1_CLK, ALT0, HYS | KEEPER | DSEHIGH | SRE),
IOMUX_MP(USBH1_DIR, ALT0, HYS | KEEPER | DSEHIGH | SRE),
IOMUX_MP(USBH1_STP, ALT0, HYS | KEEPER | DSEHIGH | SRE),
IOMUX_MP(USBH1_NXT, ALT0, HYS | KEEPER | PU_100K | DSEHIGH | SRE),
IOMUX_MP(USBH1_DATA0, ALT0, HYS | KEEPER | DSEHIGH | SRE),
IOMUX_MP(USBH1_DATA1, ALT0, HYS | KEEPER | DSEHIGH | SRE),
IOMUX_MP(USBH1_DATA2, ALT0, HYS | KEEPER | DSEHIGH | SRE),
IOMUX_MP(USBH1_DATA3, ALT0, HYS | KEEPER | DSEHIGH | SRE),
IOMUX_MP(USBH1_DATA4, ALT0, HYS | KEEPER | DSEHIGH | SRE),
IOMUX_MP(USBH1_DATA5, ALT0, HYS | KEEPER | DSEHIGH | SRE),
IOMUX_MP(USBH1_DATA6, ALT0, HYS | KEEPER | DSEHIGH | SRE),
IOMUX_MP(USBH1_DATA7, ALT0, HYS | KEEPER | DSEHIGH | SRE),
IOMUX_MP(EIM_D17, ALT1, KEEPER | DSEHIGH | SRE),
IOMUX_MP(EIM_D21, ALT1, KEEPER | DSEHIGH | SRE),
IOMUX_P(GPIO1_7, /*ALT0,*/ DSEHIGH | SRE), /* USB Hub reset */
#undef ODE
#undef HYS
#undef SRE
#undef PULL
#undef KEEPER
#undef PU_22K
#undef PU_47K
#undef PU_100K
#undef PD_100K
#undef HVE
#undef DSEMAX
#undef DSEHIGH
#undef DSEMID
#undef DSELOW
#undef ALT0
#undef ALT1
#undef ALT2
#undef ALT3
#undef ALT4
#undef ALT5
#undef ALT6
#undef ALT7
#undef SION
};
static void
setup_ioports(void)
{
int i;
const struct iomux_setup *p;
/* Initialize all IOMUX registers */
for (i=0; i < __arraycount(iomux_setup_data); ++i) {
p = iomux_setup_data + i;
ioreg_write(NETWALKER_IOMUXC_VBASE + p->reg,
p->val);
}
#if 0 /* already done by bootloader */
/* GPIO2[22,23]: input (left/right button)
GPIO2[21]: input (power button) */
ioreg_write(NETWALKER_GPIO_VBASE(2) + GPIO_DIR,
~__BITS(21,23) &
ioreg_read(NETWALKER_GPIO_VBASE(2) + GPIO_DIR));
#endif
#if 0 /* already done by bootloader */
/* GPIO4[12]: input (cover switch) */
ioreg_write(NETWALKER_GPIO_VBASE(4) + GPIO_DIR,
~__BIT(12) &
ioreg_read(NETWALKER_GPIO_VBASE(4) + GPIO_DIR));
#endif
}
#ifdef CONSDEVNAME
const char consdevname[] = CONSDEVNAME;
#ifndef CONMODE
#define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
#endif
#ifndef CONSPEED
#define CONSPEED 115200
#endif
int consmode = CONMODE;
int consrate = CONSPEED;
#endif /* CONSDEVNAME */
#ifndef IMXUART_FREQ
#define IMXUART_FREQ 66500000
#endif
void
consinit(void)
{
static int consinit_called = 0;
if (consinit_called)
return;
consinit_called = 1;
#ifdef CONSDEVNAME
#if NIMXUART > 0
imxuart_set_frequency(IMXUART_FREQ, 2);
#endif
#if (NIMXUART > 0) && defined(IMXUARTCONSOLE)
if (strcmp(consdevname, "imxuart") == 0) {
paddr_t consaddr;
#ifdef CONADDR
consaddr = CONADDR;
#else
consaddr = IMX51_UART1_BASE;
#endif
imxuart_cons_attach(&imx_bs_tag, consaddr, consrate, consmode);
return;
}
#endif
#endif
2014-01-23 16:23:20 +04:00
#if (NWSDISPLAY > 0) && defined(IMXIPUCONSOLE)
#if NUKBD > 0
ukbd_cnattach();
#endif
{
extern void netwalker_cnattach(void);
netwalker_cnattach();
}
#endif
}
#ifdef KGDB
#ifndef KGDB_DEVNAME
#define KGDB_DEVNAME "imxuart"
#endif
#ifndef KGDB_DEVMODE
#define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
#endif
const char kgdb_devname[20] = KGDB_DEVNAME;
int kgdb_mode = KGDB_DEVMODE;
int kgdb_addr = KGDB_DEVADDR;
extern int kgdb_rate; /* defined in kgdb_stub.c */
void
kgdb_port_init(void)
{
#if (NIMXUART > 0)
if (strcmp(kgdb_devname, "imxuart") == 0) {
imxuart_kgdb_attach(&imx_bs_tag, kgdb_addr,
kgdb_rate, kgdb_mode);
return;
}
#endif
}
#endif
#ifdef DEBUG_IOPORTS
static void dump_sub(paddr_t addr, size_t size)
{
paddr_t end = addr + size;
for (; addr < end; addr += 4) {
if (addr % 16 == 0)
printf("%08x: ", (u_int)addr);
printf("%08x ", ioreg_read(addr));
if (addr % 16 == 12)
printf("\n");
}
printf("\n");
}
void
dump_registers(void)
{
paddr_t pa;
int i;
dump_sub(IOMUXC_BASE, IOMUXC_USBOH3_IPP_IND_UH3_STP_SELECT_INPUT + 4);
for (i = 1; i <= 4; ++i) {
dump_sub(GPIO_BASE(i), GPIO_SIZE);
}
printf("\nwatchdog: ");
for (pa = WDOG1_BASE; pa <= WDOG1_BASE + IMX_WDOG_WMCR;
pa += 2) {
printf("%04x ", *(volatile uint16_t *)pa);
}
printf("\n");
printf("\nCCM\n");
dump_sub(CCM_BASE, CCM_SIZE);
#if 0
/* disable power down counter in watch dog,
This must be done within 16 seconds of start-up. */
ioreg16_write(NETWALKER_WDOG_VBASE + IMX_WDOG_WMCR, 0);
/* read left/right buttons */
for (;;) {
uint32_t reg;
reg = ioreg_read(GPIO_BASE(2) + GPIO_DR);
printf("\r%08x", reg);
reg = ioreg_read(GPIO_BASE(4) + GPIO_DR);
printf(" %08x", reg);
#if 0
ioreg16_write(WDOG1_BASE + IMX_WDOG_WSR, WSR_MAGIC1);
ioreg16_write(WDOG1_BASE + IMX_WDOG_WSR, WSR_MAGIC2);
#endif
}
#endif
}
#endif
#if 0
#include <arm/imx/imxgpiovar.h>
void gpio_test(void)
void
gpio_test(void)
{
int left, right;
gpio_set_direction(GPIO_NO(2, 22), GPIO_DIR_IN);
gpio_set_direction(GPIO_NO(2, 23), GPIO_DIR_IN);
for (;;) {
left = gpio_data_read(GPIO_NO(2, 22));
right = gpio_data_read(GPIO_NO(2, 23));
printf("\r%s %s",
left ? "off" : "ON ",
right ? "off" : "ON ");
}
}
#endif