NetBSD/sys/kern/kern_rndq.c

1089 lines
27 KiB
C
Raw Normal View History

/* $NetBSD: kern_rndq.c,v 1.14 2013/06/23 02:35:24 riastradh Exp $ */
/*-
* Copyright (c) 1997-2013 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
* by Michael Graff <explorer@flame.org> and Thor Lancelot Simon.
* This code uses ideas and algorithms from the Linux driver written by
* Ted Ts'o.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
2001-11-13 08:32:49 +03:00
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_rndq.c,v 1.14 2013/06/23 02:35:24 riastradh Exp $");
2001-11-13 08:32:49 +03:00
#include <sys/param.h>
#include <sys/ioctl.h>
#include <sys/fcntl.h>
#include <sys/select.h>
#include <sys/poll.h>
#include <sys/kmem.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/conf.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/intr.h>
#include <sys/rnd.h>
#include <sys/rndsink.h>
#include <sys/vnode.h>
#include <sys/pool.h>
2006-05-15 01:42:26 +04:00
#include <sys/kauth.h>
#include <sys/once.h>
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
#include <sys/rngtest.h>
#include <sys/cpu.h> /* XXX temporary, see rnd_detach_source */
#include <dev/rnd_private.h>
#if defined(__HAVE_CPU_COUNTER) && !defined(_RUMPKERNEL) /* XXX: bad pooka */
#include <machine/cpu_counter.h>
2000-06-06 03:42:34 +04:00
#endif
#ifdef RND_DEBUG
2001-09-09 04:32:52 +04:00
#define DPRINTF(l,x) if (rnd_debug & (l)) printf x
int rnd_debug = 0;
#else
2001-09-09 04:32:52 +04:00
#define DPRINTF(l,x)
#endif
2001-09-09 04:32:52 +04:00
#define RND_DEBUG_WRITE 0x0001
#define RND_DEBUG_READ 0x0002
#define RND_DEBUG_IOCTL 0x0004
#define RND_DEBUG_SNOOZE 0x0008
/*
* list devices attached
*/
2001-09-09 04:32:52 +04:00
#if 0
#define RND_VERBOSE
#endif
/*
* This is a little bit of state information attached to each device that we
* collect entropy from. This is simply a collection buffer, and when it
* is full it will be "detached" from the source and added to the entropy
* pool after entropy is distilled as much as possible.
*/
2001-09-09 04:32:52 +04:00
#define RND_SAMPLE_COUNT 64 /* collect N samples, then compress */
typedef struct _rnd_sample_t {
2001-09-09 04:32:52 +04:00
SIMPLEQ_ENTRY(_rnd_sample_t) next;
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
krndsource_t *source;
int cursor;
int entropy;
u_int32_t ts[RND_SAMPLE_COUNT];
u_int32_t values[RND_SAMPLE_COUNT];
} rnd_sample_t;
/*
2000-06-06 03:42:34 +04:00
* The event queue. Fields are altered at an interrupt level.
* All accesses must be protected with the mutex.
*/
SIMPLEQ_HEAD(, _rnd_sample_t) rnd_samples;
kmutex_t rnd_mtx;
/*
* Memory pool for sample buffers
*/
static pool_cache_t rnd_mempc;
/*
2000-06-06 03:42:34 +04:00
* Our random pool. This is defined here rather than using the general
* purpose one defined in rndpool.c.
*
* Samples are collected and queued into a separate mutex-protected queue
2000-06-06 03:42:34 +04:00
* (rnd_samples, see above), and processed in a timeout routine; therefore,
* the mutex protecting the random pool is at IPL_SOFTCLOCK() as well.
*/
2001-09-09 04:32:52 +04:00
rndpool_t rnd_pool;
kmutex_t rndpool_mtx;
kcondvar_t rndpool_cv;
/*
* This source is used to easily "remove" queue entries when the source
* which actually generated the events is going away.
*/
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
static krndsource_t rnd_source_no_collect = {
/* LIST_ENTRY list */
.name = { 'N', 'o', 'C', 'o', 'l', 'l', 'e', 'c', 't',
0, 0, 0, 0, 0, 0, 0 },
.last_time = 0, .last_delta = 0, .last_delta2 = 0, .total = 0,
.type = RND_TYPE_UNKNOWN,
.flags = (RND_FLAG_NO_COLLECT |
RND_FLAG_NO_ESTIMATE |
RND_TYPE_UNKNOWN),
.state = NULL,
.test_cnt = 0,
.test = NULL
};
void *rnd_process, *rnd_wakeup;
struct callout skew_callout;
void rnd_wakeup_readers(void);
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
static inline u_int32_t rnd_estimate_entropy(krndsource_t *, u_int32_t);
static inline u_int32_t rnd_counter(void);
static void rnd_intr(void *);
static void rnd_wake(void *);
static void rnd_process_events(void);
u_int32_t rnd_extract_data_locked(void *, u_int32_t, u_int32_t); /* XXX */
static void rnd_add_data_ts(krndsource_t *, const void *const,
uint32_t, uint32_t, uint32_t);
int rnd_ready = 0;
int rnd_initial_entropy = 0;
#ifdef DIAGNOSTIC
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
static int rnd_tested = 0;
static rngtest_t rnd_rt;
static uint8_t rnd_testbits[sizeof(rnd_rt.rt_b)];
#endif
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
LIST_HEAD(, krndsource) rnd_sources;
rndsave_t *boot_rsp;
void
rnd_init_softint(void) {
rnd_process = softint_establish(SOFTINT_SERIAL|SOFTINT_MPSAFE,
rnd_intr, NULL);
}
/*
2011-07-01 00:09:15 +04:00
* Generate a 32-bit counter. This should be more machine dependent,
* using cycle counters and the like when possible.
*/
static inline u_int32_t
2001-09-09 04:32:52 +04:00
rnd_counter(void)
{
2001-09-09 04:32:52 +04:00
struct timeval tv;
#if defined(__HAVE_CPU_COUNTER) && !defined(_RUMPKERNEL) /* XXX: bad pooka */
if (cpu_hascounter())
return (cpu_counter32());
2000-06-06 03:42:34 +04:00
#endif
if (rnd_ready) {
microtime(&tv);
return (tv.tv_sec * 1000000 + tv.tv_usec);
2005-02-27 03:26:58 +03:00
}
/* when called from rnd_init, its too early to call microtime safely */
return (0);
}
/*
* We may be called from low IPL -- protect our softint.
*/
static inline void
rnd_schedule_softint(void *softint)
{
kpreempt_disable();
softint_schedule(softint);
kpreempt_enable();
}
static inline void
rnd_schedule_process(void)
{
if (__predict_true(rnd_process)) {
rnd_schedule_softint(rnd_process);
return;
}
rnd_process_events();
}
static inline void
rnd_schedule_wakeup(void)
{
if (__predict_true(rnd_wakeup)) {
rnd_schedule_softint(rnd_wakeup);
return;
}
if (!cold) {
rnd_wakeup = softint_establish(SOFTINT_CLOCK|SOFTINT_MPSAFE,
rnd_wake, NULL);
}
rnd_wakeup_readers();
}
/*
* Tell any sources with "feed me" callbacks that we are hungry.
*/
void
rnd_getmore(size_t byteswanted)
{
krndsource_t *rs;
KASSERT(mutex_owned(&rndpool_mtx));
LIST_FOREACH(rs, &rnd_sources, list) {
if (rs->flags & RND_FLAG_HASCB) {
KASSERT(rs->get != NULL);
KASSERT(rs->getarg != NULL);
rs->get((size_t)byteswanted, rs->getarg);
#ifdef RND_VERBOSE
printf("rnd: asking source %s for %d bytes\n",
rs->name, (int)byteswanted);
#endif
}
}
}
/*
* Check to see if there are readers waiting on us. If so, kick them.
*/
void
2001-09-09 04:32:52 +04:00
rnd_wakeup_readers(void)
{
2001-09-09 04:32:52 +04:00
/*
* XXX This bookkeeping shouldn't be here -- this is not where
* the rnd_empty/rnd_initial_entropy state change actually
* happens.
*/
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
mutex_spin_enter(&rndpool_mtx);
const size_t entropy_count = rndpool_get_entropy_count(&rnd_pool);
if (entropy_count < RND_ENTROPY_THRESHOLD * 8) {
rnd_empty = 1;
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
mutex_spin_exit(&rndpool_mtx);
return;
} else {
#ifdef RND_VERBOSE
if (__predict_false(!rnd_initial_entropy))
printf("rnd: have initial entropy (%zu)\n",
entropy_count);
#endif
rnd_empty = 0;
rnd_initial_entropy = 1;
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
}
mutex_spin_exit(&rndpool_mtx);
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
rndsinks_distribute();
}
/*
* Use the timing of the event to estimate the entropy gathered.
* If all the differentials (first, second, and third) are non-zero, return
* non-zero. If any of these are zero, return zero.
*/
static inline u_int32_t
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
rnd_estimate_entropy(krndsource_t *rs, u_int32_t t)
{
2001-09-09 04:32:52 +04:00
int32_t delta, delta2, delta3;
/*
* If the time counter has overflowed, calculate the real difference.
* If it has not, it is simplier.
*/
if (t < rs->last_time)
delta = UINT_MAX - rs->last_time + t;
else
delta = rs->last_time - t;
if (delta < 0)
delta = -delta;
/*
* Calculate the second and third order differentials
*/
delta2 = rs->last_delta - delta;
if (delta2 < 0)
delta2 = -delta2;
delta3 = rs->last_delta2 - delta2;
if (delta3 < 0)
delta3 = -delta3;
rs->last_time = t;
rs->last_delta = delta;
rs->last_delta2 = delta2;
/*
* If any delta is 0, we got no entropy. If all are non-zero, we
* might have something.
*/
if (delta == 0 || delta2 == 0 || delta3 == 0)
2001-09-09 04:32:52 +04:00
return (0);
2001-09-09 04:32:52 +04:00
return (1);
}
#if defined(__HAVE_CPU_COUNTER) && !defined(_RUMPKERNEL)
static void
rnd_skew(void *arg)
{
static krndsource_t skewsrc;
static int live, flipflop;
/*
* Only one instance of this callout will ever be scheduled
* at a time (it is only ever scheduled by itself). So no
* locking is required here.
*/
/*
* Even on systems with seemingly stable clocks, the
* entropy estimator seems to think we get 1 bit here
* about every 2 calls. That seems like too much. Set
* NO_ESTIMATE on this source until we can better analyze
* the entropy of its output.
*/
if (__predict_false(!live)) {
rnd_attach_source(&skewsrc, "callout", RND_TYPE_SKEW,
RND_FLAG_NO_ESTIMATE);
live = 1;
}
flipflop = !flipflop;
if (flipflop) {
rnd_add_uint32(&skewsrc, rnd_counter());
callout_schedule(&skew_callout, hz);
} else {
callout_schedule(&skew_callout, 1);
}
}
#endif
/*
* initialize the global random pool for our use.
* rnd_init() must be called very early on in the boot process, so
* the pool is ready for other devices to attach as sources.
*/
void
rnd_init(void)
{
2002-10-07 06:38:41 +04:00
u_int32_t c;
if (rnd_ready)
return;
mutex_init(&rnd_mtx, MUTEX_DEFAULT, IPL_VM);
rndsinks_init();
2005-02-27 03:26:58 +03:00
/*
* take a counter early, hoping that there's some variance in
2005-02-27 03:26:58 +03:00
* the following operations
*/
2002-10-07 06:38:41 +04:00
c = rnd_counter();
LIST_INIT(&rnd_sources);
SIMPLEQ_INIT(&rnd_samples);
rndpool_init(&rnd_pool);
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
mutex_init(&rndpool_mtx, MUTEX_DEFAULT, IPL_VM);
cv_init(&rndpool_cv, "rndread");
rnd_mempc = pool_cache_init(sizeof(rnd_sample_t), 0, 0, 0,
"rndsample", NULL, IPL_VM,
NULL, NULL, NULL);
/*
* Set resource limit. The rnd_process_events() function
* is called every tick and process the sample queue.
* Without limitation, if a lot of rnd_add_*() are called,
* all kernel memory may be eaten up.
*/
pool_cache_sethardlimit(rnd_mempc, RND_POOLBITS, NULL, 0);
/*
* Mix *something*, *anything* into the pool to help it get started.
* However, it's not safe for rnd_counter() to call microtime() yet,
* so on some platforms we might just end up with zeros anyway.
2002-10-07 06:38:41 +04:00
* XXX more things to add would be nice.
2005-02-27 03:26:58 +03:00
*/
if (c) {
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
mutex_spin_enter(&rndpool_mtx);
rndpool_add_data(&rnd_pool, &c, sizeof(c), 1);
c = rnd_counter();
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
rndpool_add_data(&rnd_pool, &c, sizeof(c), 1);
mutex_spin_exit(&rndpool_mtx);
}
rnd_ready = 1;
/*
* If we have a cycle counter, take its error with respect
* to the callout mechanism as a source of entropy, ala
* TrueRand.
*
* XXX This will do little when the cycle counter *is* what's
* XXX clocking the callout mechanism. How to get this right
* XXX without unsightly spelunking in the timecounter code?
*/
#if defined(__HAVE_CPU_COUNTER) && !defined(_RUMPKERNEL) /* XXX: bad pooka */
callout_init(&skew_callout, CALLOUT_MPSAFE);
callout_setfunc(&skew_callout, rnd_skew, NULL);
rnd_skew(NULL);
#endif
#ifdef RND_VERBOSE
printf("rnd: initialised (%u)%s", RND_POOLBITS,
c ? " with counter\n" : "\n");
#endif
if (boot_rsp != NULL) {
mutex_spin_enter(&rndpool_mtx);
rndpool_add_data(&rnd_pool, boot_rsp->data,
sizeof(boot_rsp->data),
MIN(boot_rsp->entropy,
RND_POOLBITS / 2));
if (rndpool_get_entropy_count(&rnd_pool) >
RND_ENTROPY_THRESHOLD * 8) {
rnd_initial_entropy = 1;
}
mutex_spin_exit(&rndpool_mtx);
#ifdef RND_VERBOSE
printf("rnd: seeded with %d bits\n",
MIN(boot_rsp->entropy, RND_POOLBITS / 2));
#endif
memset(boot_rsp, 0, sizeof(*boot_rsp));
}
}
static rnd_sample_t *
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
rnd_sample_allocate(krndsource_t *source)
{
rnd_sample_t *c;
c = pool_cache_get(rnd_mempc, PR_WAITOK);
if (c == NULL)
return (NULL);
c->source = source;
c->cursor = 0;
c->entropy = 0;
return (c);
}
/*
2001-09-09 04:32:52 +04:00
* Don't wait on allocation. To be used in an interrupt context.
*/
static rnd_sample_t *
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
rnd_sample_allocate_isr(krndsource_t *source)
{
rnd_sample_t *c;
c = pool_cache_get(rnd_mempc, PR_NOWAIT);
if (c == NULL)
return (NULL);
c->source = source;
c->cursor = 0;
c->entropy = 0;
return (c);
}
static void
rnd_sample_free(rnd_sample_t *c)
{
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
memset(c, 0, sizeof(*c));
pool_cache_put(rnd_mempc, c);
}
/*
2001-09-09 04:32:52 +04:00
* Add a source to our list of sources.
*/
void
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
rnd_attach_source(krndsource_t *rs, const char *name, u_int32_t type,
2001-09-09 04:32:52 +04:00
u_int32_t flags)
{
u_int32_t ts;
ts = rnd_counter();
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
strlcpy(rs->name, name, sizeof(rs->name));
rs->last_time = ts;
rs->last_delta = 0;
rs->last_delta2 = 0;
rs->total = 0;
/*
* Some source setup, by type
*/
rs->test = NULL;
rs->test_cnt = -1;
switch (type) {
case RND_TYPE_NET: /* Don't collect by default */
flags |= (RND_FLAG_NO_COLLECT | RND_FLAG_NO_ESTIMATE);
break;
case RND_TYPE_RNG: /* Space for statistical testing */
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
rs->test = kmem_alloc(sizeof(rngtest_t), KM_NOSLEEP);
rs->test_cnt = 0;
/* FALLTHRU */
case RND_TYPE_VM: /* Process samples in bulk always */
flags |= RND_FLAG_FAST;
break;
default:
break;
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
}
rs->type = type;
rs->flags = flags;
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
rs->state = rnd_sample_allocate(rs);
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
mutex_spin_enter(&rndpool_mtx);
LIST_INSERT_HEAD(&rnd_sources, rs, list);
#ifdef RND_VERBOSE
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
printf("rnd: %s attached as an entropy source (", rs->name);
if (!(flags & RND_FLAG_NO_COLLECT)) {
printf("collecting");
if (flags & RND_FLAG_NO_ESTIMATE)
printf(" without estimation");
}
else
printf("off");
printf(")\n");
#endif
2005-02-27 03:26:58 +03:00
/*
* Again, put some more initial junk in the pool.
* XXX Bogus, but harder to guess than zeros.
*/
rndpool_add_data(&rnd_pool, &ts, sizeof(u_int32_t), 1);
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
mutex_spin_exit(&rndpool_mtx);
}
/*
2001-09-09 04:32:52 +04:00
* Remove a source from our list of sources.
*/
void
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
rnd_detach_source(krndsource_t *source)
{
2001-09-09 04:32:52 +04:00
rnd_sample_t *sample;
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
mutex_spin_enter(&rnd_mtx);
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
LIST_REMOVE(source, list);
/*
* If there are samples queued up "remove" them from the sample queue
* by setting the source to the no-collect pseudosource.
*/
sample = SIMPLEQ_FIRST(&rnd_samples);
while (sample != NULL) {
if (sample->source == source)
sample->source = &rnd_source_no_collect;
sample = SIMPLEQ_NEXT(sample, next);
}
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
mutex_spin_exit(&rnd_mtx);
if (!cpu_softintr_p()) { /* XXX XXX very temporary "fix" */
if (source->state) {
rnd_sample_free(source->state);
source->state = NULL;
}
if (source->test) {
kmem_free(source->test, sizeof(rngtest_t));
}
}
#ifdef RND_VERBOSE
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
printf("rnd: %s detached as an entropy source\n", source->name);
#endif
}
2001-09-09 04:32:52 +04:00
/*
* Add a 32-bit value to the entropy pool. The rs parameter should point to
* the source-specific source structure.
*/
void
_rnd_add_uint32(krndsource_t *rs, u_int32_t val)
{
2001-09-09 04:32:52 +04:00
u_int32_t ts;
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
u_int32_t entropy = 0;
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
if (rs->flags & RND_FLAG_NO_COLLECT)
return;
2000-06-06 03:42:34 +04:00
/*
* Sample the counter as soon as possible to avoid
2000-06-06 03:42:34 +04:00
* entropy overestimation.
*/
ts = rnd_counter();
2000-06-06 03:42:34 +04:00
/*
2000-06-06 03:42:34 +04:00
* If we are estimating entropy on this source,
* calculate differentials.
*/
2000-06-06 03:42:34 +04:00
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
if ((rs->flags & RND_FLAG_NO_ESTIMATE) == 0) {
entropy = rnd_estimate_entropy(rs, ts);
}
rnd_add_data_ts(rs, &val, sizeof(val), entropy, ts);
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
}
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
void
rnd_add_data(krndsource_t *rs, const void *const data, uint32_t len,
uint32_t entropy)
{
/*
* This interface is meant for feeding data which is,
* itself, random. Don't estimate entropy based on
* timestamp, just directly add the data.
*/
rnd_add_data_ts(rs, data, len, entropy, rnd_counter());
}
static void
rnd_add_data_ts(krndsource_t *rs, const void *const data, u_int32_t len,
u_int32_t entropy, uint32_t ts)
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
{
rnd_sample_t *state = NULL;
const uint32_t *dint = data;
int todo, done, filled = 0;
int sample_count;
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
SIMPLEQ_HEAD(, _rnd_sample_t) tmp_samples =
SIMPLEQ_HEAD_INITIALIZER(tmp_samples);
if (rs->flags & RND_FLAG_NO_COLLECT) {
return;
}
todo = len / sizeof(*dint);
/*
* Let's try to be efficient: if we are warm, and a source
* is adding entropy at a rate of at least 1 bit every 10 seconds,
* mark it as "fast" and add its samples in bulk.
*/
if (__predict_true(rs->flags & RND_FLAG_FAST)) {
sample_count = RND_SAMPLE_COUNT;
} else {
if (!cold && rnd_initial_entropy) {
struct timeval upt;
getmicrouptime(&upt);
if ((todo >= RND_SAMPLE_COUNT) ||
(rs->total > upt.tv_sec * 10) ||
(upt.tv_sec > 10 && rs->total > upt.tv_sec) ||
(upt.tv_sec > 100 &&
rs->total > upt.tv_sec / 10)) {
#ifdef RND_VERBOSE
printf("rnd: source %s is fast (%d samples "
"at once, %d bits in %lld seconds), "
"processing samples in bulk.\n",
rs->name, todo, rs->total,
(long long int)upt.tv_sec);
#endif
rs->flags |= RND_FLAG_FAST;
}
}
sample_count = 2;
}
/*
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
* Loop over data packaging it into sample buffers.
* If a sample buffer allocation fails, drop all data.
*/
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
for (done = 0; done < todo ; done++) {
state = rs->state;
if (state == NULL) {
state = rnd_sample_allocate_isr(rs);
if (__predict_false(state == NULL)) {
break;
}
rs->state = state;
}
state->ts[state->cursor] = ts;
state->values[state->cursor] = dint[done];
state->cursor++;
if (state->cursor == sample_count) {
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
SIMPLEQ_INSERT_HEAD(&tmp_samples, state, next);
filled++;
rs->state = NULL;
}
}
if (__predict_false(state == NULL)) {
while ((state = SIMPLEQ_FIRST(&tmp_samples))) {
SIMPLEQ_REMOVE_HEAD(&tmp_samples, next);
rnd_sample_free(state);
}
return;
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
}
/*
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
* Claim all the entropy on the last one we send to
* the pool, so we don't rely on it being evenly distributed
* in the supplied data.
*
* XXX The rndpool code must accept samples with more
* XXX claimed entropy than bits for this to work right.
*/
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
state->entropy += entropy;
rs->total += entropy;
2000-06-06 03:42:34 +04:00
/*
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
* If we didn't finish any sample buffers, we're done.
2000-06-06 03:42:34 +04:00
*/
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
if (!filled) {
return;
}
mutex_spin_enter(&rnd_mtx);
while ((state = SIMPLEQ_FIRST(&tmp_samples))) {
SIMPLEQ_REMOVE_HEAD(&tmp_samples, next);
SIMPLEQ_INSERT_HEAD(&rnd_samples, state, next);
}
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
mutex_spin_exit(&rnd_mtx);
/* Cause processing of queued samples */
rnd_schedule_process();
}
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
static int
rnd_hwrng_test(rnd_sample_t *sample)
{
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
krndsource_t *source = sample->source;
size_t cmplen;
uint8_t *v1, *v2;
size_t resid, totest;
KASSERT(source->type == RND_TYPE_RNG);
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
/*
* Continuous-output test: compare two halves of the
* sample buffer to each other. The sample buffer (64 ints,
* so either 256 or 512 bytes on any modern machine) should be
* much larger than a typical hardware RNG output, so this seems
* a reasonable way to do it without retaining extra data.
*/
cmplen = sizeof(sample->values) / 2;
v1 = (uint8_t *)sample->values;
v2 = (uint8_t *)sample->values + cmplen;
if (__predict_false(!memcmp(v1, v2, cmplen))) {
printf("rnd: source \"%s\" failed continuous-output test.\n",
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
source->name);
return 1;
}
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
/*
* FIPS 140 statistical RNG test. We must accumulate 20,000 bits.
*/
if (__predict_true(source->test_cnt == -1)) {
/* already passed the test */
return 0;
}
resid = FIPS140_RNG_TEST_BYTES - source->test_cnt;
totest = MIN(RND_SAMPLE_COUNT * 4, resid);
memcpy(source->test->rt_b + source->test_cnt, sample->values, totest);
resid -= totest;
source->test_cnt += totest;
if (resid == 0) {
strlcpy(source->test->rt_name, source->name,
sizeof(source->test->rt_name));
if (rngtest(source->test)) {
printf("rnd: source \"%s\" failed statistical test.",
source->name);
return 1;
}
source->test_cnt = -1;
memset(source->test, 0, sizeof(*source->test));
}
return 0;
}
1997-10-20 19:05:05 +04:00
/*
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
* Process the events in the ring buffer. Called by rnd_timeout or
* by the add routines directly if the callout has never fired (that
* is, if we are "cold" -- just booted).
*
1997-10-20 19:05:05 +04:00
*/
static void
rnd_process_events(void)
{
rnd_sample_t *sample = NULL;
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
krndsource_t *source, *badsource = NULL;
static krndsource_t *last_source;
2001-09-09 04:32:52 +04:00
u_int32_t entropy;
size_t pool_entropy;
int found = 0, wake = 0;
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
SIMPLEQ_HEAD(, _rnd_sample_t) dq_samples =
SIMPLEQ_HEAD_INITIALIZER(dq_samples);
SIMPLEQ_HEAD(, _rnd_sample_t) df_samples =
SIMPLEQ_HEAD_INITIALIZER(df_samples);
2000-06-06 03:42:34 +04:00
/*
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
* Sample queue is protected by rnd_mtx, drain to onstack queue
* and drop lock.
2000-06-06 03:42:34 +04:00
*/
mutex_spin_enter(&rnd_mtx);
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
while ((sample = SIMPLEQ_FIRST(&rnd_samples))) {
found++;
SIMPLEQ_REMOVE_HEAD(&rnd_samples, next);
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
/*
* We repeat this check here, since it is possible
* the source was disabled before we were called, but
* after the entry was queued.
*/
if (__predict_false(sample->source->flags
& RND_FLAG_NO_COLLECT)) {
SIMPLEQ_INSERT_TAIL(&df_samples, sample, next);
} else {
SIMPLEQ_INSERT_TAIL(&dq_samples, sample, next);
}
}
mutex_spin_exit(&rnd_mtx);
2001-09-09 04:32:52 +04:00
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
/* Don't thrash the rndpool mtx either. Hold, add all samples. */
mutex_spin_enter(&rndpool_mtx);
pool_entropy = rndpool_get_entropy_count(&rnd_pool);
if (pool_entropy > RND_ENTROPY_THRESHOLD * 8) {
wake++;
} else {
rnd_empty = 1;
rnd_getmore((RND_POOLBITS - pool_entropy) / 8);
#ifdef RND_VERBOSE
printf("rnd: empty, asking for %d bits\n",
(int)((RND_POOLBITS - pool_entropy) / 8));
#endif
}
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
while ((sample = SIMPLEQ_FIRST(&dq_samples))) {
SIMPLEQ_REMOVE_HEAD(&dq_samples, next);
source = sample->source;
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
entropy = sample->entropy;
/*
* Don't provide a side channel for timing attacks on
* low-rate sources: require mixing with some other
* source before we schedule a wakeup.
*/
if (!wake &&
(source != last_source || source->flags & RND_FLAG_FAST)) {
wake++;
}
last_source = source;
/*
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
* Hardware generators are great but sometimes they
* have...hardware issues. Don't use any data from
* them unless it passes some tests.
*/
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
if (source->type == RND_TYPE_RNG) {
if (__predict_false(rnd_hwrng_test(sample))) {
/*
* Detach the bad source. See below.
*/
badsource = source;
printf("rnd: detaching source \"%s\".",
badsource->name);
break;
}
}
rndpool_add_data(&rnd_pool, sample->values,
RND_SAMPLE_COUNT * 4, 0);
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
rndpool_add_data(&rnd_pool, sample->ts,
RND_SAMPLE_COUNT * 4, entropy);
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
source->total += sample->entropy;
SIMPLEQ_INSERT_TAIL(&df_samples, sample, next);
}
mutex_spin_exit(&rndpool_mtx);
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
/* Now we hold no locks: clean up. */
if (__predict_false(badsource)) {
/*
* The detach routine frees any samples we have not
* dequeued ourselves. For sanity's sake, we simply
* free (without using) all dequeued samples from the
* point at which we detected a problem onwards.
*/
rnd_detach_source(badsource);
while ((sample = SIMPLEQ_FIRST(&dq_samples))) {
SIMPLEQ_REMOVE_HEAD(&dq_samples, next);
rnd_sample_free(sample);
2000-06-06 03:42:34 +04:00
}
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
}
while ((sample = SIMPLEQ_FIRST(&df_samples))) {
SIMPLEQ_REMOVE_HEAD(&df_samples, next);
rnd_sample_free(sample);
}
/*
2001-09-09 04:32:52 +04:00
* Wake up any potential readers waiting.
*/
if (wake) {
rnd_schedule_wakeup();
}
}
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
static void
rnd_intr(void *arg)
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
{
rnd_process_events();
}
static void
rnd_wake(void *arg)
{
rnd_wakeup_readers();
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
}
u_int32_t
rnd_extract_data_locked(void *p, u_int32_t len, u_int32_t flags)
{
static int timed_in;
int entropy_count;
KASSERT(mutex_owned(&rndpool_mtx));
if (__predict_false(!timed_in)) {
if (boottime.tv_sec) {
rndpool_add_data(&rnd_pool, &boottime,
sizeof(boottime), 0);
}
timed_in++;
}
if (__predict_false(!rnd_initial_entropy)) {
u_int32_t c;
#ifdef RND_VERBOSE
printf("rnd: WARNING! initial entropy low (%u).\n",
rndpool_get_entropy_count(&rnd_pool));
#endif
/* Try once again to put something in the pool */
c = rnd_counter();
rndpool_add_data(&rnd_pool, &c, sizeof(u_int32_t), 1);
}
#ifdef DIAGNOSTIC
while (!rnd_tested) {
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
entropy_count = rndpool_get_entropy_count(&rnd_pool);
#ifdef RND_VERBOSE
printf("rnd: starting statistical RNG test, entropy = %d.\n",
entropy_count);
#endif
if (rndpool_extract_data(&rnd_pool, rnd_rt.rt_b,
sizeof(rnd_rt.rt_b), RND_EXTRACT_ANY)
!= sizeof(rnd_rt.rt_b)) {
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
panic("rnd: could not get bits for statistical test");
}
/*
* Stash the tested bits so we can put them back in the
* pool, restoring the entropy count. DO NOT rely on
* rngtest to maintain the bits pristine -- we could end
* up adding back non-random data claiming it were pure
* entropy.
*/
memcpy(rnd_testbits, rnd_rt.rt_b, sizeof(rnd_rt.rt_b));
strlcpy(rnd_rt.rt_name, "entropy pool", sizeof(rnd_rt.rt_name));
if (rngtest(&rnd_rt)) {
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
/*
* The probabiliity of a Type I error is 3/10000,
* but note this can only happen at boot time.
* The relevant standard says to reset the module,
* but developers objected...
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
*/
printf("rnd: WARNING, ENTROPY POOL FAILED "
"STATISTICAL TEST!\n");
continue;
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
}
memset(&rnd_rt, 0, sizeof(rnd_rt));
rndpool_add_data(&rnd_pool, rnd_testbits, sizeof(rnd_testbits),
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
entropy_count);
memset(rnd_testbits, 0, sizeof(rnd_testbits));
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
#ifdef RND_VERBOSE
printf("rnd: statistical RNG test done, entropy = %d.\n",
rndpool_get_entropy_count(&rnd_pool));
#endif
rnd_tested++;
}
#endif
entropy_count = rndpool_get_entropy_count(&rnd_pool);
if (entropy_count < (RND_ENTROPY_THRESHOLD * 2 + len) * 8) {
rnd_getmore(RND_POOLBITS - entropy_count * 8);
}
return rndpool_extract_data(&rnd_pool, p, len, flags);
}
u_int32_t
rnd_extract_data(void *p, u_int32_t len, u_int32_t flags)
{
uint32_t retval;
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
mutex_spin_enter(&rndpool_mtx);
retval = rnd_extract_data_locked(p, len, flags);
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
mutex_spin_exit(&rndpool_mtx);
return retval;
}
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
void
rnd_seed(void *base, size_t len)
{
SHA1_CTX s;
uint8_t digest[SHA1_DIGEST_LENGTH];
if (len != sizeof(*boot_rsp)) {
aprint_error("rnd: bad seed length %d\n", (int)len);
return;
}
boot_rsp = (rndsave_t *)base;
SHA1Init(&s);
SHA1Update(&s, (uint8_t *)&boot_rsp->entropy,
sizeof(boot_rsp->entropy));
SHA1Update(&s, boot_rsp->data, sizeof(boot_rsp->data));
SHA1Final(digest, &s);
if (memcmp(digest, boot_rsp->digest, sizeof(digest))) {
aprint_error("rnd: bad seed checksum\n");
return;
}
/*
* It's not really well-defined whether bootloader-supplied
* modules run before or after rnd_init(). Handle both cases.
*/
if (rnd_ready) {
#ifdef RND_VERBOSE
printf("rnd: ready, feeding in seed data directly.\n");
#endif
mutex_spin_enter(&rndpool_mtx);
rndpool_add_data(&rnd_pool, boot_rsp->data,
sizeof(boot_rsp->data),
MIN(boot_rsp->entropy, RND_POOLBITS / 2));
memset(boot_rsp, 0, sizeof(*boot_rsp));
mutex_spin_exit(&rndpool_mtx);
} else {
#ifdef RND_VERBOSE
printf("rnd: not ready, deferring seed feed.\n");
#endif
}
}