2007-10-11 01:24:53 +04:00
|
|
|
/* $NetBSD: sched_4bsd.c,v 1.7 2007/10/10 21:24:53 rmind Exp $ */
|
2007-05-17 18:51:11 +04:00
|
|
|
|
|
|
|
/*-
|
|
|
|
* Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
|
|
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
|
|
|
|
* NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
|
|
|
|
* Daniel Sieger.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
|
|
* must display the following acknowledgement:
|
|
|
|
* This product includes software developed by the NetBSD
|
|
|
|
* Foundation, Inc. and its contributors.
|
|
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
|
|
* contributors may be used to endorse or promote products derived
|
|
|
|
* from this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*-
|
|
|
|
* Copyright (c) 1982, 1986, 1990, 1991, 1993
|
|
|
|
* The Regents of the University of California. All rights reserved.
|
|
|
|
* (c) UNIX System Laboratories, Inc.
|
|
|
|
* All or some portions of this file are derived from material licensed
|
|
|
|
* to the University of California by American Telephone and Telegraph
|
|
|
|
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
|
|
|
|
* the permission of UNIX System Laboratories, Inc.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
|
|
* may be used to endorse or promote products derived from this software
|
|
|
|
* without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/cdefs.h>
|
2007-10-11 01:24:53 +04:00
|
|
|
__KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.7 2007/10/10 21:24:53 rmind Exp $");
|
2007-05-17 18:51:11 +04:00
|
|
|
|
|
|
|
#include "opt_ddb.h"
|
|
|
|
#include "opt_lockdebug.h"
|
|
|
|
#include "opt_perfctrs.h"
|
|
|
|
|
|
|
|
#define __MUTEX_PRIVATE
|
|
|
|
|
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/systm.h>
|
|
|
|
#include <sys/callout.h>
|
|
|
|
#include <sys/cpu.h>
|
|
|
|
#include <sys/proc.h>
|
|
|
|
#include <sys/kernel.h>
|
|
|
|
#include <sys/signalvar.h>
|
|
|
|
#include <sys/resourcevar.h>
|
|
|
|
#include <sys/sched.h>
|
|
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <sys/kauth.h>
|
|
|
|
#include <sys/lockdebug.h>
|
|
|
|
#include <sys/kmem.h>
|
2007-10-09 00:06:17 +04:00
|
|
|
#include <sys/intr.h>
|
2007-05-17 18:51:11 +04:00
|
|
|
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Run queues.
|
|
|
|
*
|
|
|
|
* We have 32 run queues in descending priority of 0..31. We maintain
|
|
|
|
* a bitmask of non-empty queues in order speed up finding the first
|
|
|
|
* runnable process. The bitmask is maintained only by machine-dependent
|
|
|
|
* code, allowing the most efficient instructions to be used to find the
|
|
|
|
* first non-empty queue.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define RUNQUE_NQS 32 /* number of runqueues */
|
|
|
|
#define PPQ (128 / RUNQUE_NQS) /* priorities per queue */
|
|
|
|
|
|
|
|
typedef struct subqueue {
|
|
|
|
TAILQ_HEAD(, lwp) sq_queue;
|
|
|
|
} subqueue_t;
|
|
|
|
typedef struct runqueue {
|
|
|
|
subqueue_t rq_subqueues[RUNQUE_NQS]; /* run queues */
|
|
|
|
uint32_t rq_bitmap; /* bitmap of non-empty queues */
|
|
|
|
} runqueue_t;
|
|
|
|
static runqueue_t global_queue;
|
|
|
|
|
|
|
|
static void updatepri(struct lwp *);
|
|
|
|
static void resetpriority(struct lwp *);
|
|
|
|
static void resetprocpriority(struct proc *);
|
|
|
|
|
2007-10-09 23:00:13 +04:00
|
|
|
fixpt_t decay_cpu(fixpt_t, fixpt_t);
|
|
|
|
|
2007-05-17 18:51:11 +04:00
|
|
|
extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
|
|
|
|
|
|
|
|
/* The global scheduler state */
|
|
|
|
kmutex_t sched_mutex;
|
|
|
|
|
|
|
|
/* Number of hardclock ticks per sched_tick() */
|
|
|
|
int rrticks;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Force switch among equal priority processes every 100ms.
|
|
|
|
* Called from hardclock every hz/10 == rrticks hardclock ticks.
|
2007-10-09 00:06:17 +04:00
|
|
|
*
|
|
|
|
* There's no need to lock anywhere in this routine, as it's
|
|
|
|
* CPU-local and runs at IPL_SCHED (called from clock interrupt).
|
2007-05-17 18:51:11 +04:00
|
|
|
*/
|
|
|
|
/* ARGSUSED */
|
|
|
|
void
|
|
|
|
sched_tick(struct cpu_info *ci)
|
|
|
|
{
|
|
|
|
struct schedstate_percpu *spc = &ci->ci_schedstate;
|
|
|
|
|
|
|
|
spc->spc_ticks = rrticks;
|
|
|
|
|
2007-10-11 01:24:53 +04:00
|
|
|
if (CURCPU_IDLE_P())
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (spc->spc_flags & SPCF_SEENRR) {
|
|
|
|
/*
|
|
|
|
* The process has already been through a roundrobin
|
|
|
|
* without switching and may be hogging the CPU.
|
|
|
|
* Indicate that the process should yield.
|
|
|
|
*/
|
|
|
|
spc->spc_flags |= SPCF_SHOULDYIELD;
|
|
|
|
} else
|
|
|
|
spc->spc_flags |= SPCF_SEENRR;
|
|
|
|
|
|
|
|
cpu_need_resched(ci, 0);
|
2007-05-17 18:51:11 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
#define NICE_WEIGHT 2 /* priorities per nice level */
|
|
|
|
|
|
|
|
#define ESTCPU_SHIFT 11
|
|
|
|
#define ESTCPU_MAX ((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
|
|
|
|
#define ESTCPULIM(e) min((e), ESTCPU_MAX)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Constants for digital decay and forget:
|
|
|
|
* 90% of (p_estcpu) usage in 5 * loadav time
|
|
|
|
* 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
|
|
|
|
* Note that, as ps(1) mentions, this can let percentages
|
|
|
|
* total over 100% (I've seen 137.9% for 3 processes).
|
|
|
|
*
|
|
|
|
* Note that hardclock updates p_estcpu and p_cpticks independently.
|
|
|
|
*
|
|
|
|
* We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
|
|
|
|
* That is, the system wants to compute a value of decay such
|
|
|
|
* that the following for loop:
|
|
|
|
* for (i = 0; i < (5 * loadavg); i++)
|
|
|
|
* p_estcpu *= decay;
|
|
|
|
* will compute
|
|
|
|
* p_estcpu *= 0.1;
|
|
|
|
* for all values of loadavg:
|
|
|
|
*
|
|
|
|
* Mathematically this loop can be expressed by saying:
|
|
|
|
* decay ** (5 * loadavg) ~= .1
|
|
|
|
*
|
|
|
|
* The system computes decay as:
|
|
|
|
* decay = (2 * loadavg) / (2 * loadavg + 1)
|
|
|
|
*
|
|
|
|
* We wish to prove that the system's computation of decay
|
|
|
|
* will always fulfill the equation:
|
|
|
|
* decay ** (5 * loadavg) ~= .1
|
|
|
|
*
|
|
|
|
* If we compute b as:
|
|
|
|
* b = 2 * loadavg
|
|
|
|
* then
|
|
|
|
* decay = b / (b + 1)
|
|
|
|
*
|
|
|
|
* We now need to prove two things:
|
|
|
|
* 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
|
|
|
|
* 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
|
|
|
|
*
|
|
|
|
* Facts:
|
|
|
|
* For x close to zero, exp(x) =~ 1 + x, since
|
|
|
|
* exp(x) = 0! + x**1/1! + x**2/2! + ... .
|
|
|
|
* therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
|
|
|
|
* For x close to zero, ln(1+x) =~ x, since
|
|
|
|
* ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
|
|
|
|
* therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
|
|
|
|
* ln(.1) =~ -2.30
|
|
|
|
*
|
|
|
|
* Proof of (1):
|
|
|
|
* Solve (factor)**(power) =~ .1 given power (5*loadav):
|
|
|
|
* solving for factor,
|
|
|
|
* ln(factor) =~ (-2.30/5*loadav), or
|
|
|
|
* factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
|
|
|
|
* exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
|
|
|
|
*
|
|
|
|
* Proof of (2):
|
|
|
|
* Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
|
|
|
|
* solving for power,
|
|
|
|
* power*ln(b/(b+1)) =~ -2.30, or
|
|
|
|
* power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
|
|
|
|
*
|
|
|
|
* Actual power values for the implemented algorithm are as follows:
|
|
|
|
* loadav: 1 2 3 4
|
|
|
|
* power: 5.68 10.32 14.94 19.55
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
|
|
|
|
#define loadfactor(loadav) (2 * (loadav))
|
|
|
|
|
2007-10-09 23:00:13 +04:00
|
|
|
fixpt_t
|
2007-05-17 18:51:11 +04:00
|
|
|
decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (estcpu == 0) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if !defined(_LP64)
|
|
|
|
/* avoid 64bit arithmetics. */
|
|
|
|
#define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
|
|
|
|
if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
|
|
|
|
return estcpu * loadfac / (loadfac + FSCALE);
|
|
|
|
}
|
|
|
|
#endif /* !defined(_LP64) */
|
|
|
|
|
|
|
|
return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
|
|
|
|
* sleeping for at least seven times the loadfactor will decay p_estcpu to
|
|
|
|
* less than (1 << ESTCPU_SHIFT).
|
|
|
|
*
|
|
|
|
* note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
|
|
|
|
*/
|
|
|
|
static fixpt_t
|
|
|
|
decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
|
|
|
|
{
|
|
|
|
|
|
|
|
if ((n << FSHIFT) >= 7 * loadfac) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
while (estcpu != 0 && n > 1) {
|
|
|
|
estcpu = decay_cpu(loadfac, estcpu);
|
|
|
|
n--;
|
|
|
|
}
|
|
|
|
|
|
|
|
return estcpu;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* sched_pstats_hook:
|
|
|
|
*
|
|
|
|
* Periodically called from sched_pstats(); used to recalculate priorities.
|
|
|
|
*/
|
|
|
|
void
|
2007-10-09 23:00:13 +04:00
|
|
|
sched_pstats_hook(struct lwp *l)
|
2007-05-17 18:51:11 +04:00
|
|
|
{
|
|
|
|
|
2007-10-09 23:00:13 +04:00
|
|
|
if (l->l_slptime <= 1 && l->l_priority >= PUSER)
|
|
|
|
resetpriority(l);
|
2007-05-17 18:51:11 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Recalculate the priority of a process after it has slept for a while.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
updatepri(struct lwp *l)
|
|
|
|
{
|
|
|
|
struct proc *p = l->l_proc;
|
|
|
|
fixpt_t loadfac;
|
|
|
|
|
2007-07-10 00:51:58 +04:00
|
|
|
KASSERT(lwp_locked(l, NULL));
|
2007-05-17 18:51:11 +04:00
|
|
|
KASSERT(l->l_slptime > 1);
|
|
|
|
|
|
|
|
loadfac = loadfactor(averunnable.ldavg[0]);
|
|
|
|
|
|
|
|
l->l_slptime--; /* the first time was done in sched_pstats */
|
|
|
|
/* XXX NJWLWP */
|
|
|
|
/* XXXSMP occasionally unlocked, should be per-LWP */
|
|
|
|
p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
|
|
|
|
resetpriority(l);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* On some architectures, it's faster to use a MSB ordering for the priorites
|
|
|
|
* than the traditional LSB ordering.
|
|
|
|
*/
|
|
|
|
#define RQMASK(n) (0x00000001 << (n))
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The primitives that manipulate the run queues. whichqs tells which
|
|
|
|
* of the 32 queues qs have processes in them. sched_enqueue() puts processes
|
|
|
|
* into queues, sched_dequeue removes them from queues. The running process is
|
|
|
|
* on no queue, other processes are on a queue related to p->p_priority,
|
|
|
|
* divided by 4 actually to shrink the 0-127 range of priorities into the 32
|
|
|
|
* available queues.
|
|
|
|
*/
|
|
|
|
#ifdef RQDEBUG
|
|
|
|
static void
|
|
|
|
runqueue_check(const runqueue_t *rq, int whichq, struct lwp *l)
|
|
|
|
{
|
|
|
|
const subqueue_t * const sq = &rq->rq_subqueues[whichq];
|
|
|
|
const uint32_t bitmap = rq->rq_bitmap;
|
|
|
|
struct lwp *l2;
|
|
|
|
int found = 0;
|
|
|
|
int die = 0;
|
|
|
|
int empty = 1;
|
|
|
|
|
|
|
|
TAILQ_FOREACH(l2, &sq->sq_queue, l_runq) {
|
|
|
|
if (l2->l_stat != LSRUN) {
|
|
|
|
printf("runqueue_check[%d]: lwp %p state (%d) "
|
|
|
|
" != LSRUN\n", whichq, l2, l2->l_stat);
|
|
|
|
}
|
|
|
|
if (l2 == l)
|
|
|
|
found = 1;
|
|
|
|
empty = 0;
|
|
|
|
}
|
|
|
|
if (empty && (bitmap & RQMASK(whichq)) != 0) {
|
|
|
|
printf("runqueue_check[%d]: bit set for empty run-queue %p\n",
|
|
|
|
whichq, rq);
|
|
|
|
die = 1;
|
|
|
|
} else if (!empty && (bitmap & RQMASK(whichq)) == 0) {
|
|
|
|
printf("runqueue_check[%d]: bit clear for non-empty "
|
|
|
|
"run-queue %p\n", whichq, rq);
|
|
|
|
die = 1;
|
|
|
|
}
|
|
|
|
if (l != NULL && (bitmap & RQMASK(whichq)) == 0) {
|
|
|
|
printf("runqueue_check[%d]: bit clear for active lwp %p\n",
|
|
|
|
whichq, l);
|
|
|
|
die = 1;
|
|
|
|
}
|
|
|
|
if (l != NULL && empty) {
|
|
|
|
printf("runqueue_check[%d]: empty run-queue %p with "
|
|
|
|
"active lwp %p\n", whichq, rq, l);
|
|
|
|
die = 1;
|
|
|
|
}
|
|
|
|
if (l != NULL && !found) {
|
|
|
|
printf("runqueue_check[%d]: lwp %p not in runqueue %p!",
|
|
|
|
whichq, l, rq);
|
|
|
|
die = 1;
|
|
|
|
}
|
|
|
|
if (die)
|
|
|
|
panic("runqueue_check: inconsistency found");
|
|
|
|
}
|
|
|
|
#else /* RQDEBUG */
|
|
|
|
#define runqueue_check(a, b, c) /* nothing */
|
|
|
|
#endif /* RQDEBUG */
|
|
|
|
|
|
|
|
static void
|
|
|
|
runqueue_init(runqueue_t *rq)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < RUNQUE_NQS; i++)
|
|
|
|
TAILQ_INIT(&rq->rq_subqueues[i].sq_queue);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
runqueue_enqueue(runqueue_t *rq, struct lwp *l)
|
|
|
|
{
|
|
|
|
subqueue_t *sq;
|
|
|
|
const int whichq = lwp_eprio(l) / PPQ;
|
|
|
|
|
|
|
|
KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
|
|
|
|
|
|
|
|
runqueue_check(rq, whichq, NULL);
|
|
|
|
rq->rq_bitmap |= RQMASK(whichq);
|
|
|
|
sq = &rq->rq_subqueues[whichq];
|
|
|
|
TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_runq);
|
|
|
|
runqueue_check(rq, whichq, l);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
runqueue_dequeue(runqueue_t *rq, struct lwp *l)
|
|
|
|
{
|
|
|
|
subqueue_t *sq;
|
|
|
|
const int whichq = lwp_eprio(l) / PPQ;
|
|
|
|
|
|
|
|
KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
|
|
|
|
|
|
|
|
runqueue_check(rq, whichq, l);
|
|
|
|
KASSERT((rq->rq_bitmap & RQMASK(whichq)) != 0);
|
|
|
|
sq = &rq->rq_subqueues[whichq];
|
|
|
|
TAILQ_REMOVE(&sq->sq_queue, l, l_runq);
|
|
|
|
if (TAILQ_EMPTY(&sq->sq_queue))
|
|
|
|
rq->rq_bitmap &= ~RQMASK(whichq);
|
|
|
|
runqueue_check(rq, whichq, NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct lwp *
|
|
|
|
runqueue_nextlwp(runqueue_t *rq)
|
|
|
|
{
|
|
|
|
const uint32_t bitmap = rq->rq_bitmap;
|
|
|
|
int whichq;
|
|
|
|
|
|
|
|
if (bitmap == 0) {
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
whichq = ffs(bitmap) - 1;
|
|
|
|
return TAILQ_FIRST(&rq->rq_subqueues[whichq].sq_queue);
|
|
|
|
}
|
|
|
|
|
|
|
|
#if defined(DDB)
|
|
|
|
static void
|
|
|
|
runqueue_print(const runqueue_t *rq, void (*pr)(const char *, ...))
|
|
|
|
{
|
|
|
|
const uint32_t bitmap = rq->rq_bitmap;
|
|
|
|
struct lwp *l;
|
|
|
|
int i, first;
|
|
|
|
|
|
|
|
for (i = 0; i < RUNQUE_NQS; i++) {
|
|
|
|
const subqueue_t *sq;
|
|
|
|
first = 1;
|
|
|
|
sq = &rq->rq_subqueues[i];
|
|
|
|
TAILQ_FOREACH(l, &sq->sq_queue, l_runq) {
|
|
|
|
if (first) {
|
|
|
|
(*pr)("%c%d",
|
|
|
|
(bitmap & RQMASK(i)) ? ' ' : '!', i);
|
|
|
|
first = 0;
|
|
|
|
}
|
|
|
|
(*pr)("\t%d.%d (%s) pri=%d usrpri=%d\n",
|
|
|
|
l->l_proc->p_pid,
|
|
|
|
l->l_lid, l->l_proc->p_comm,
|
|
|
|
(int)l->l_priority, (int)l->l_usrpri);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif /* defined(DDB) */
|
|
|
|
#undef RQMASK
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialize the (doubly-linked) run queues
|
|
|
|
* to be empty.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
sched_rqinit()
|
|
|
|
{
|
|
|
|
|
|
|
|
runqueue_init(&global_queue);
|
|
|
|
mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
|
|
|
|
/* Initialize the lock pointer for lwp0 */
|
|
|
|
lwp0.l_mutex = &curcpu()->ci_schedstate.spc_lwplock;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
sched_cpuattach(struct cpu_info *ci)
|
|
|
|
{
|
|
|
|
runqueue_t *rq;
|
|
|
|
|
|
|
|
ci->ci_schedstate.spc_mutex = &sched_mutex;
|
|
|
|
rq = kmem_zalloc(sizeof(*rq), KM_NOSLEEP);
|
|
|
|
runqueue_init(rq);
|
|
|
|
ci->ci_schedstate.spc_sched_info = rq;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
sched_setup()
|
|
|
|
{
|
|
|
|
|
|
|
|
rrticks = hz / 10;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
sched_setrunnable(struct lwp *l)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (l->l_slptime > 1)
|
|
|
|
updatepri(l);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool
|
|
|
|
sched_curcpu_runnable_p(void)
|
|
|
|
{
|
2007-08-04 15:02:56 +04:00
|
|
|
struct schedstate_percpu *spc;
|
|
|
|
runqueue_t *rq;
|
|
|
|
|
|
|
|
spc = &curcpu()->ci_schedstate;
|
|
|
|
rq = spc->spc_sched_info;
|
2007-05-17 18:51:11 +04:00
|
|
|
|
2007-08-04 15:02:56 +04:00
|
|
|
if (__predict_true((spc->spc_flags & SPCF_OFFLINE) == 0))
|
|
|
|
return (global_queue.rq_bitmap | rq->rq_bitmap) != 0;
|
|
|
|
return rq->rq_bitmap != 0;
|
2007-05-17 18:51:11 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
sched_nice(struct proc *chgp, int n)
|
|
|
|
{
|
|
|
|
|
|
|
|
chgp->p_nice = n;
|
|
|
|
(void)resetprocpriority(chgp);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Compute the priority of a process when running in user mode.
|
|
|
|
* Arrange to reschedule if the resulting priority is better
|
|
|
|
* than that of the current process.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
resetpriority(struct lwp *l)
|
|
|
|
{
|
|
|
|
unsigned int newpriority;
|
|
|
|
struct proc *p = l->l_proc;
|
|
|
|
|
|
|
|
/* XXXSMP LOCK_ASSERT(mutex_owned(&p->p_stmutex)); */
|
|
|
|
LOCK_ASSERT(lwp_locked(l, NULL));
|
|
|
|
|
|
|
|
if ((l->l_flag & LW_SYSTEM) != 0)
|
|
|
|
return;
|
|
|
|
|
|
|
|
newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
|
|
|
|
NICE_WEIGHT * (p->p_nice - NZERO);
|
|
|
|
newpriority = min(newpriority, MAXPRI);
|
|
|
|
lwp_changepri(l, newpriority);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Recompute priority for all LWPs in a process.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
resetprocpriority(struct proc *p)
|
|
|
|
{
|
|
|
|
struct lwp *l;
|
|
|
|
|
2007-07-10 00:51:58 +04:00
|
|
|
KASSERT(mutex_owned(&p->p_stmutex));
|
2007-05-17 18:51:11 +04:00
|
|
|
|
|
|
|
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
|
|
|
|
lwp_lock(l);
|
|
|
|
resetpriority(l);
|
|
|
|
lwp_unlock(l);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We adjust the priority of the current process. The priority of a process
|
|
|
|
* gets worse as it accumulates CPU time. The CPU usage estimator (p_estcpu)
|
|
|
|
* is increased here. The formula for computing priorities (in kern_synch.c)
|
|
|
|
* will compute a different value each time p_estcpu increases. This can
|
|
|
|
* cause a switch, but unless the priority crosses a PPQ boundary the actual
|
|
|
|
* queue will not change. The CPU usage estimator ramps up quite quickly
|
|
|
|
* when the process is running (linearly), and decays away exponentially, at
|
|
|
|
* a rate which is proportionally slower when the system is busy. The basic
|
|
|
|
* principle is that the system will 90% forget that the process used a lot
|
|
|
|
* of CPU time in 5 * loadav seconds. This causes the system to favor
|
|
|
|
* processes which haven't run much recently, and to round-robin among other
|
|
|
|
* processes.
|
|
|
|
*/
|
|
|
|
|
|
|
|
void
|
|
|
|
sched_schedclock(struct lwp *l)
|
|
|
|
{
|
|
|
|
struct proc *p = l->l_proc;
|
|
|
|
|
|
|
|
KASSERT(!CURCPU_IDLE_P());
|
|
|
|
mutex_spin_enter(&p->p_stmutex);
|
|
|
|
p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
|
|
|
|
lwp_lock(l);
|
|
|
|
resetpriority(l);
|
|
|
|
mutex_spin_exit(&p->p_stmutex);
|
|
|
|
if ((l->l_flag & LW_SYSTEM) == 0 && l->l_priority >= PUSER)
|
|
|
|
l->l_priority = l->l_usrpri;
|
|
|
|
lwp_unlock(l);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* sched_proc_fork:
|
|
|
|
*
|
|
|
|
* Inherit the parent's scheduler history.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
sched_proc_fork(struct proc *parent, struct proc *child)
|
|
|
|
{
|
|
|
|
|
2007-07-10 00:51:58 +04:00
|
|
|
KASSERT(mutex_owned(&parent->p_smutex));
|
2007-05-17 18:51:11 +04:00
|
|
|
|
|
|
|
child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
|
|
|
|
child->p_forktime = sched_pstats_ticks;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* sched_proc_exit:
|
|
|
|
*
|
|
|
|
* Chargeback parents for the sins of their children.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
sched_proc_exit(struct proc *parent, struct proc *child)
|
|
|
|
{
|
|
|
|
fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
|
|
|
|
fixpt_t estcpu;
|
|
|
|
|
|
|
|
/* XXX Only if parent != init?? */
|
|
|
|
|
|
|
|
mutex_spin_enter(&parent->p_stmutex);
|
|
|
|
estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
|
|
|
|
sched_pstats_ticks - child->p_forktime);
|
|
|
|
if (child->p_estcpu > estcpu)
|
|
|
|
parent->p_estcpu =
|
|
|
|
ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
|
|
|
|
mutex_spin_exit(&parent->p_stmutex);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
sched_enqueue(struct lwp *l, bool ctxswitch)
|
|
|
|
{
|
|
|
|
|
|
|
|
if ((l->l_flag & LW_BOUND) != 0)
|
|
|
|
runqueue_enqueue(l->l_cpu->ci_schedstate.spc_sched_info, l);
|
|
|
|
else
|
|
|
|
runqueue_enqueue(&global_queue, l);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* XXXSMP When LWP dispatch (cpu_switch()) is changed to use sched_dequeue(),
|
|
|
|
* drop of the effective priority level from kernel to user needs to be
|
|
|
|
* moved here from userret(). The assignment in userret() is currently
|
|
|
|
* done unlocked.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
sched_dequeue(struct lwp *l)
|
|
|
|
{
|
|
|
|
|
|
|
|
if ((l->l_flag & LW_BOUND) != 0)
|
|
|
|
runqueue_dequeue(l->l_cpu->ci_schedstate.spc_sched_info, l);
|
|
|
|
else
|
|
|
|
runqueue_dequeue(&global_queue, l);
|
|
|
|
}
|
|
|
|
|
|
|
|
struct lwp *
|
|
|
|
sched_nextlwp(void)
|
|
|
|
{
|
2007-08-04 15:02:56 +04:00
|
|
|
struct schedstate_percpu *spc;
|
2007-05-17 18:51:11 +04:00
|
|
|
lwp_t *l1, *l2;
|
|
|
|
|
2007-08-04 15:02:56 +04:00
|
|
|
spc = &curcpu()->ci_schedstate;
|
|
|
|
|
2007-05-17 18:51:11 +04:00
|
|
|
/* For now, just pick the highest priority LWP. */
|
2007-08-04 15:02:56 +04:00
|
|
|
l1 = runqueue_nextlwp(spc->spc_sched_info);
|
|
|
|
if (__predict_false((spc->spc_flags & SPCF_OFFLINE) != 0))
|
|
|
|
return l1;
|
2007-05-17 18:51:11 +04:00
|
|
|
l2 = runqueue_nextlwp(&global_queue);
|
|
|
|
|
|
|
|
if (l1 == NULL)
|
|
|
|
return l2;
|
|
|
|
if (l2 == NULL)
|
|
|
|
return l1;
|
|
|
|
if (lwp_eprio(l2) < lwp_eprio(l1))
|
|
|
|
return l2;
|
|
|
|
else
|
|
|
|
return l1;
|
|
|
|
}
|
|
|
|
|
2007-10-09 23:00:13 +04:00
|
|
|
/*
|
|
|
|
* Dummy.
|
|
|
|
*/
|
|
|
|
|
|
|
|
struct cpu_info *
|
|
|
|
sched_takecpu(struct lwp *l)
|
|
|
|
{
|
|
|
|
|
|
|
|
return l->l_cpu;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
sched_wakeup(struct lwp *l)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
sched_slept(struct lwp *l)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
2007-05-17 18:51:11 +04:00
|
|
|
void
|
|
|
|
sched_lwp_fork(struct lwp *l)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
sched_lwp_exit(struct lwp *l)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
2007-10-09 00:06:17 +04:00
|
|
|
/*
|
|
|
|
* sysctl setup. XXX This should be split with kern_synch.c.
|
|
|
|
*/
|
2007-05-17 18:51:11 +04:00
|
|
|
SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
|
|
|
|
{
|
|
|
|
const struct sysctlnode *node = NULL;
|
|
|
|
|
|
|
|
sysctl_createv(clog, 0, NULL, NULL,
|
|
|
|
CTLFLAG_PERMANENT,
|
|
|
|
CTLTYPE_NODE, "kern", NULL,
|
|
|
|
NULL, 0, NULL, 0,
|
|
|
|
CTL_KERN, CTL_EOL);
|
|
|
|
sysctl_createv(clog, 0, NULL, &node,
|
|
|
|
CTLFLAG_PERMANENT,
|
|
|
|
CTLTYPE_NODE, "sched",
|
|
|
|
SYSCTL_DESCR("Scheduler options"),
|
|
|
|
NULL, 0, NULL, 0,
|
|
|
|
CTL_KERN, CTL_CREATE, CTL_EOL);
|
|
|
|
|
2007-10-09 00:06:17 +04:00
|
|
|
KASSERT(node != NULL);
|
|
|
|
|
|
|
|
sysctl_createv(clog, 0, &node, NULL,
|
|
|
|
CTLFLAG_PERMANENT,
|
|
|
|
CTLTYPE_STRING, "name", NULL,
|
|
|
|
NULL, 0, __UNCONST("4.4BSD"), 0,
|
|
|
|
CTL_CREATE, CTL_EOL);
|
|
|
|
sysctl_createv(clog, 0, &node, NULL,
|
|
|
|
CTLFLAG_READWRITE,
|
|
|
|
CTLTYPE_INT, "timesoftints",
|
|
|
|
SYSCTL_DESCR("Track CPU time for soft interrupts"),
|
|
|
|
NULL, 0, &softint_timing, 0,
|
|
|
|
CTL_CREATE, CTL_EOL);
|
2007-05-17 18:51:11 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
#if defined(DDB)
|
|
|
|
void
|
|
|
|
sched_print_runqueue(void (*pr)(const char *, ...))
|
|
|
|
{
|
|
|
|
|
|
|
|
runqueue_print(&global_queue, pr);
|
|
|
|
}
|
|
|
|
#endif /* defined(DDB) */
|