2006-04-20 14:19:17 +04:00
|
|
|
|
/* Process declarations and variables for C++ compiler.
|
|
|
|
|
Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
|
|
|
|
1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
|
|
|
|
|
Hacked by Michael Tiemann (tiemann@cygnus.com)
|
|
|
|
|
|
|
|
|
|
This file is part of GCC.
|
|
|
|
|
|
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
|
|
|
any later version.
|
|
|
|
|
|
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
|
along with GCC; see the file COPYING. If not, write to
|
|
|
|
|
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
|
|
|
|
|
Boston, MA 02110-1301, USA. */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Process declarations and symbol lookup for C++ front end.
|
|
|
|
|
Also constructs types; the standard scalar types at initialization,
|
|
|
|
|
and structure, union, array and enum types when they are declared. */
|
|
|
|
|
|
|
|
|
|
/* ??? not all decl nodes are given the most useful possible
|
|
|
|
|
line numbers. For example, the CONST_DECLs for enum values. */
|
|
|
|
|
|
|
|
|
|
#include "config.h"
|
|
|
|
|
#include "system.h"
|
|
|
|
|
#include "coretypes.h"
|
|
|
|
|
#include "tm.h"
|
|
|
|
|
#include "tree.h"
|
|
|
|
|
#include "rtl.h"
|
|
|
|
|
#include "expr.h"
|
|
|
|
|
#include "flags.h"
|
|
|
|
|
#include "cp-tree.h"
|
|
|
|
|
#include "decl.h"
|
|
|
|
|
#include "output.h"
|
|
|
|
|
#include "except.h"
|
|
|
|
|
#include "toplev.h"
|
|
|
|
|
#include "timevar.h"
|
|
|
|
|
#include "cpplib.h"
|
|
|
|
|
#include "target.h"
|
|
|
|
|
#include "c-common.h"
|
|
|
|
|
#include "tree-mudflap.h"
|
|
|
|
|
#include "cgraph.h"
|
|
|
|
|
#include "tree-inline.h"
|
|
|
|
|
#include "c-pragma.h"
|
|
|
|
|
#include "tree-dump.h"
|
|
|
|
|
#include "intl.h"
|
|
|
|
|
|
|
|
|
|
extern cpp_reader *parse_in;
|
|
|
|
|
|
|
|
|
|
/* This structure contains information about the initializations
|
|
|
|
|
and/or destructions required for a particular priority level. */
|
|
|
|
|
typedef struct priority_info_s {
|
|
|
|
|
/* Nonzero if there have been any initializations at this priority
|
|
|
|
|
throughout the translation unit. */
|
|
|
|
|
int initializations_p;
|
|
|
|
|
/* Nonzero if there have been any destructions at this priority
|
|
|
|
|
throughout the translation unit. */
|
|
|
|
|
int destructions_p;
|
|
|
|
|
} *priority_info;
|
|
|
|
|
|
|
|
|
|
static void mark_vtable_entries (tree);
|
|
|
|
|
static bool maybe_emit_vtables (tree);
|
|
|
|
|
static bool acceptable_java_type (tree);
|
|
|
|
|
static tree start_objects (int, int);
|
|
|
|
|
static void finish_objects (int, int, tree);
|
|
|
|
|
static tree start_static_storage_duration_function (unsigned);
|
|
|
|
|
static void finish_static_storage_duration_function (tree);
|
|
|
|
|
static priority_info get_priority_info (int);
|
|
|
|
|
static void do_static_initialization_or_destruction (tree, bool);
|
|
|
|
|
static void one_static_initialization_or_destruction (tree, tree, bool);
|
|
|
|
|
static void generate_ctor_or_dtor_function (bool, int, location_t *);
|
|
|
|
|
static int generate_ctor_and_dtor_functions_for_priority (splay_tree_node,
|
|
|
|
|
void *);
|
|
|
|
|
static tree prune_vars_needing_no_initialization (tree *);
|
|
|
|
|
static void write_out_vars (tree);
|
|
|
|
|
static void import_export_class (tree);
|
|
|
|
|
static tree get_guard_bits (tree);
|
|
|
|
|
|
|
|
|
|
/* A list of static class variables. This is needed, because a
|
|
|
|
|
static class variable can be declared inside the class without
|
|
|
|
|
an initializer, and then initialized, statically, outside the class. */
|
|
|
|
|
static GTY(()) VEC(tree,gc) *pending_statics;
|
|
|
|
|
|
|
|
|
|
/* A list of functions which were declared inline, but which we
|
|
|
|
|
may need to emit outline anyway. */
|
|
|
|
|
static GTY(()) VEC(tree,gc) *deferred_fns;
|
|
|
|
|
|
|
|
|
|
/* Nonzero if we're done parsing and into end-of-file activities. */
|
|
|
|
|
|
|
|
|
|
int at_eof;
|
|
|
|
|
|
|
|
|
|
/* Functions called along with real static constructors and destructors. */
|
|
|
|
|
|
|
|
|
|
tree static_ctors;
|
|
|
|
|
tree static_dtors;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Incorporate `const' and `volatile' qualifiers for member functions.
|
|
|
|
|
FUNCTION is a TYPE_DECL or a FUNCTION_DECL.
|
|
|
|
|
QUALS is a list of qualifiers. Returns any explicit
|
|
|
|
|
top-level qualifiers of the method's this pointer, anything other than
|
|
|
|
|
TYPE_UNQUALIFIED will be an extension. */
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
|
grok_method_quals (tree ctype, tree function, cp_cv_quals quals)
|
|
|
|
|
{
|
|
|
|
|
tree fntype = TREE_TYPE (function);
|
|
|
|
|
tree raises = TYPE_RAISES_EXCEPTIONS (fntype);
|
|
|
|
|
int type_quals = TYPE_UNQUALIFIED;
|
|
|
|
|
int this_quals = TYPE_UNQUALIFIED;
|
|
|
|
|
|
|
|
|
|
type_quals = quals & ~TYPE_QUAL_RESTRICT;
|
|
|
|
|
this_quals = quals & TYPE_QUAL_RESTRICT;
|
|
|
|
|
|
2006-06-03 09:21:35 +04:00
|
|
|
|
if (fntype == error_mark_node || ctype == error_mark_node)
|
|
|
|
|
{
|
|
|
|
|
TREE_TYPE (function) = error_mark_node;
|
|
|
|
|
return this_quals;
|
|
|
|
|
}
|
|
|
|
|
|
2006-04-20 14:19:17 +04:00
|
|
|
|
ctype = cp_build_qualified_type (ctype, type_quals);
|
|
|
|
|
fntype = build_method_type_directly (ctype, TREE_TYPE (fntype),
|
|
|
|
|
(TREE_CODE (fntype) == METHOD_TYPE
|
|
|
|
|
? TREE_CHAIN (TYPE_ARG_TYPES (fntype))
|
|
|
|
|
: TYPE_ARG_TYPES (fntype)));
|
|
|
|
|
if (raises)
|
|
|
|
|
fntype = build_exception_variant (fntype, raises);
|
|
|
|
|
|
|
|
|
|
TREE_TYPE (function) = fntype;
|
|
|
|
|
return this_quals;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Build a PARM_DECL with NAME and TYPE, and set DECL_ARG_TYPE
|
|
|
|
|
appropriately. */
|
|
|
|
|
|
|
|
|
|
tree
|
|
|
|
|
cp_build_parm_decl (tree name, tree type)
|
|
|
|
|
{
|
|
|
|
|
tree parm = build_decl (PARM_DECL, name, type);
|
|
|
|
|
/* DECL_ARG_TYPE is only used by the back end and the back end never
|
|
|
|
|
sees templates. */
|
|
|
|
|
if (!processing_template_decl)
|
|
|
|
|
DECL_ARG_TYPE (parm) = type_passed_as (type);
|
|
|
|
|
return parm;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Returns a PARM_DECL for a parameter of the indicated TYPE, with the
|
|
|
|
|
indicated NAME. */
|
|
|
|
|
|
|
|
|
|
static tree
|
|
|
|
|
build_artificial_parm (tree name, tree type)
|
|
|
|
|
{
|
|
|
|
|
tree parm = cp_build_parm_decl (name, type);
|
|
|
|
|
DECL_ARTIFICIAL (parm) = 1;
|
|
|
|
|
/* All our artificial parms are implicitly `const'; they cannot be
|
|
|
|
|
assigned to. */
|
|
|
|
|
TREE_READONLY (parm) = 1;
|
|
|
|
|
return parm;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Constructors for types with virtual baseclasses need an "in-charge" flag
|
|
|
|
|
saying whether this constructor is responsible for initialization of
|
|
|
|
|
virtual baseclasses or not. All destructors also need this "in-charge"
|
|
|
|
|
flag, which additionally determines whether or not the destructor should
|
|
|
|
|
free the memory for the object.
|
|
|
|
|
|
|
|
|
|
This function adds the "in-charge" flag to member function FN if
|
|
|
|
|
appropriate. It is called from grokclassfn and tsubst.
|
|
|
|
|
FN must be either a constructor or destructor.
|
|
|
|
|
|
|
|
|
|
The in-charge flag follows the 'this' parameter, and is followed by the
|
|
|
|
|
VTT parm (if any), then the user-written parms. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
maybe_retrofit_in_chrg (tree fn)
|
|
|
|
|
{
|
|
|
|
|
tree basetype, arg_types, parms, parm, fntype;
|
|
|
|
|
|
|
|
|
|
/* If we've already add the in-charge parameter don't do it again. */
|
|
|
|
|
if (DECL_HAS_IN_CHARGE_PARM_P (fn))
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
/* When processing templates we can't know, in general, whether or
|
|
|
|
|
not we're going to have virtual baseclasses. */
|
|
|
|
|
if (processing_template_decl)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
/* We don't need an in-charge parameter for constructors that don't
|
|
|
|
|
have virtual bases. */
|
|
|
|
|
if (DECL_CONSTRUCTOR_P (fn)
|
|
|
|
|
&& !CLASSTYPE_VBASECLASSES (DECL_CONTEXT (fn)))
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
arg_types = TYPE_ARG_TYPES (TREE_TYPE (fn));
|
|
|
|
|
basetype = TREE_TYPE (TREE_VALUE (arg_types));
|
|
|
|
|
arg_types = TREE_CHAIN (arg_types);
|
|
|
|
|
|
|
|
|
|
parms = TREE_CHAIN (DECL_ARGUMENTS (fn));
|
|
|
|
|
|
|
|
|
|
/* If this is a subobject constructor or destructor, our caller will
|
|
|
|
|
pass us a pointer to our VTT. */
|
|
|
|
|
if (CLASSTYPE_VBASECLASSES (DECL_CONTEXT (fn)))
|
|
|
|
|
{
|
|
|
|
|
parm = build_artificial_parm (vtt_parm_identifier, vtt_parm_type);
|
|
|
|
|
|
|
|
|
|
/* First add it to DECL_ARGUMENTS between 'this' and the real args... */
|
|
|
|
|
TREE_CHAIN (parm) = parms;
|
|
|
|
|
parms = parm;
|
|
|
|
|
|
|
|
|
|
/* ...and then to TYPE_ARG_TYPES. */
|
|
|
|
|
arg_types = hash_tree_chain (vtt_parm_type, arg_types);
|
|
|
|
|
|
|
|
|
|
DECL_HAS_VTT_PARM_P (fn) = 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Then add the in-charge parm (before the VTT parm). */
|
|
|
|
|
parm = build_artificial_parm (in_charge_identifier, integer_type_node);
|
|
|
|
|
TREE_CHAIN (parm) = parms;
|
|
|
|
|
parms = parm;
|
|
|
|
|
arg_types = hash_tree_chain (integer_type_node, arg_types);
|
|
|
|
|
|
|
|
|
|
/* Insert our new parameter(s) into the list. */
|
|
|
|
|
TREE_CHAIN (DECL_ARGUMENTS (fn)) = parms;
|
|
|
|
|
|
|
|
|
|
/* And rebuild the function type. */
|
|
|
|
|
fntype = build_method_type_directly (basetype, TREE_TYPE (TREE_TYPE (fn)),
|
|
|
|
|
arg_types);
|
|
|
|
|
if (TYPE_RAISES_EXCEPTIONS (TREE_TYPE (fn)))
|
|
|
|
|
fntype = build_exception_variant (fntype,
|
|
|
|
|
TYPE_RAISES_EXCEPTIONS (TREE_TYPE (fn)));
|
|
|
|
|
TREE_TYPE (fn) = fntype;
|
|
|
|
|
|
|
|
|
|
/* Now we've got the in-charge parameter. */
|
|
|
|
|
DECL_HAS_IN_CHARGE_PARM_P (fn) = 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Classes overload their constituent function names automatically.
|
|
|
|
|
When a function name is declared in a record structure,
|
|
|
|
|
its name is changed to it overloaded name. Since names for
|
|
|
|
|
constructors and destructors can conflict, we place a leading
|
|
|
|
|
'$' for destructors.
|
|
|
|
|
|
|
|
|
|
CNAME is the name of the class we are grokking for.
|
|
|
|
|
|
|
|
|
|
FUNCTION is a FUNCTION_DECL. It was created by `grokdeclarator'.
|
|
|
|
|
|
|
|
|
|
FLAGS contains bits saying what's special about today's
|
|
|
|
|
arguments. 1 == DESTRUCTOR. 2 == OPERATOR.
|
|
|
|
|
|
|
|
|
|
If FUNCTION is a destructor, then we must add the `auto-delete' field
|
|
|
|
|
as a second parameter. There is some hair associated with the fact
|
|
|
|
|
that we must "declare" this variable in the manner consistent with the
|
|
|
|
|
way the rest of the arguments were declared.
|
|
|
|
|
|
|
|
|
|
QUALS are the qualifiers for the this pointer. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
grokclassfn (tree ctype, tree function, enum overload_flags flags,
|
|
|
|
|
cp_cv_quals quals)
|
|
|
|
|
{
|
|
|
|
|
tree fn_name = DECL_NAME (function);
|
|
|
|
|
cp_cv_quals this_quals = TYPE_UNQUALIFIED;
|
|
|
|
|
|
|
|
|
|
/* Even within an `extern "C"' block, members get C++ linkage. See
|
|
|
|
|
[dcl.link] for details. */
|
|
|
|
|
SET_DECL_LANGUAGE (function, lang_cplusplus);
|
|
|
|
|
|
|
|
|
|
if (fn_name == NULL_TREE)
|
|
|
|
|
{
|
|
|
|
|
error ("name missing for member function");
|
|
|
|
|
fn_name = get_identifier ("<anonymous>");
|
|
|
|
|
DECL_NAME (function) = fn_name;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (quals)
|
|
|
|
|
this_quals = grok_method_quals (ctype, function, quals);
|
|
|
|
|
|
|
|
|
|
if (TREE_CODE (TREE_TYPE (function)) == METHOD_TYPE)
|
|
|
|
|
{
|
|
|
|
|
/* Must add the class instance variable up front. */
|
|
|
|
|
/* Right now we just make this a pointer. But later
|
|
|
|
|
we may wish to make it special. */
|
|
|
|
|
tree type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (function)));
|
|
|
|
|
tree qual_type;
|
|
|
|
|
tree parm;
|
|
|
|
|
|
|
|
|
|
/* The `this' parameter is implicitly `const'; it cannot be
|
|
|
|
|
assigned to. */
|
|
|
|
|
this_quals |= TYPE_QUAL_CONST;
|
|
|
|
|
qual_type = cp_build_qualified_type (type, this_quals);
|
|
|
|
|
parm = build_artificial_parm (this_identifier, qual_type);
|
|
|
|
|
cp_apply_type_quals_to_decl (this_quals, parm);
|
|
|
|
|
TREE_CHAIN (parm) = DECL_ARGUMENTS (function);
|
|
|
|
|
DECL_ARGUMENTS (function) = parm;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
DECL_CONTEXT (function) = ctype;
|
|
|
|
|
|
|
|
|
|
if (flags == DTOR_FLAG)
|
|
|
|
|
DECL_DESTRUCTOR_P (function) = 1;
|
|
|
|
|
|
|
|
|
|
if (flags == DTOR_FLAG || DECL_CONSTRUCTOR_P (function))
|
|
|
|
|
maybe_retrofit_in_chrg (function);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Create an ARRAY_REF, checking for the user doing things backwards
|
|
|
|
|
along the way. */
|
|
|
|
|
|
|
|
|
|
tree
|
|
|
|
|
grok_array_decl (tree array_expr, tree index_exp)
|
|
|
|
|
{
|
|
|
|
|
tree type;
|
|
|
|
|
tree expr;
|
|
|
|
|
tree orig_array_expr = array_expr;
|
|
|
|
|
tree orig_index_exp = index_exp;
|
|
|
|
|
|
|
|
|
|
if (error_operand_p (array_expr) || error_operand_p (index_exp))
|
|
|
|
|
return error_mark_node;
|
|
|
|
|
|
|
|
|
|
if (processing_template_decl)
|
|
|
|
|
{
|
|
|
|
|
if (type_dependent_expression_p (array_expr)
|
|
|
|
|
|| type_dependent_expression_p (index_exp))
|
|
|
|
|
return build_min_nt (ARRAY_REF, array_expr, index_exp,
|
|
|
|
|
NULL_TREE, NULL_TREE);
|
|
|
|
|
array_expr = build_non_dependent_expr (array_expr);
|
|
|
|
|
index_exp = build_non_dependent_expr (index_exp);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
type = TREE_TYPE (array_expr);
|
|
|
|
|
gcc_assert (type);
|
|
|
|
|
type = non_reference (type);
|
|
|
|
|
|
|
|
|
|
/* If they have an `operator[]', use that. */
|
|
|
|
|
if (IS_AGGR_TYPE (type) || IS_AGGR_TYPE (TREE_TYPE (index_exp)))
|
|
|
|
|
expr = build_new_op (ARRAY_REF, LOOKUP_NORMAL,
|
|
|
|
|
array_expr, index_exp, NULL_TREE,
|
|
|
|
|
/*overloaded_p=*/NULL);
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
tree p1, p2, i1, i2;
|
|
|
|
|
|
|
|
|
|
/* Otherwise, create an ARRAY_REF for a pointer or array type.
|
|
|
|
|
It is a little-known fact that, if `a' is an array and `i' is
|
|
|
|
|
an int, you can write `i[a]', which means the same thing as
|
|
|
|
|
`a[i]'. */
|
|
|
|
|
if (TREE_CODE (type) == ARRAY_TYPE)
|
|
|
|
|
p1 = array_expr;
|
|
|
|
|
else
|
|
|
|
|
p1 = build_expr_type_conversion (WANT_POINTER, array_expr, false);
|
|
|
|
|
|
|
|
|
|
if (TREE_CODE (TREE_TYPE (index_exp)) == ARRAY_TYPE)
|
|
|
|
|
p2 = index_exp;
|
|
|
|
|
else
|
|
|
|
|
p2 = build_expr_type_conversion (WANT_POINTER, index_exp, false);
|
|
|
|
|
|
|
|
|
|
i1 = build_expr_type_conversion (WANT_INT | WANT_ENUM, array_expr,
|
|
|
|
|
false);
|
|
|
|
|
i2 = build_expr_type_conversion (WANT_INT | WANT_ENUM, index_exp,
|
|
|
|
|
false);
|
|
|
|
|
|
|
|
|
|
if ((p1 && i2) && (i1 && p2))
|
|
|
|
|
error ("ambiguous conversion for array subscript");
|
|
|
|
|
|
|
|
|
|
if (p1 && i2)
|
|
|
|
|
array_expr = p1, index_exp = i2;
|
|
|
|
|
else if (i1 && p2)
|
|
|
|
|
array_expr = p2, index_exp = i1;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
error ("invalid types %<%T[%T]%> for array subscript",
|
|
|
|
|
type, TREE_TYPE (index_exp));
|
|
|
|
|
return error_mark_node;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (array_expr == error_mark_node || index_exp == error_mark_node)
|
|
|
|
|
error ("ambiguous conversion for array subscript");
|
|
|
|
|
|
|
|
|
|
expr = build_array_ref (array_expr, index_exp);
|
|
|
|
|
}
|
|
|
|
|
if (processing_template_decl && expr != error_mark_node)
|
|
|
|
|
return build_min_non_dep (ARRAY_REF, expr, orig_array_expr, orig_index_exp,
|
|
|
|
|
NULL_TREE, NULL_TREE);
|
|
|
|
|
return expr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Given the cast expression EXP, checking out its validity. Either return
|
|
|
|
|
an error_mark_node if there was an unavoidable error, return a cast to
|
|
|
|
|
void for trying to delete a pointer w/ the value 0, or return the
|
|
|
|
|
call to delete. If DOING_VEC is true, we handle things differently
|
|
|
|
|
for doing an array delete.
|
|
|
|
|
Implements ARM $5.3.4. This is called from the parser. */
|
|
|
|
|
|
|
|
|
|
tree
|
|
|
|
|
delete_sanity (tree exp, tree size, bool doing_vec, int use_global_delete)
|
|
|
|
|
{
|
|
|
|
|
tree t, type;
|
|
|
|
|
|
|
|
|
|
if (exp == error_mark_node)
|
|
|
|
|
return exp;
|
|
|
|
|
|
|
|
|
|
if (processing_template_decl)
|
|
|
|
|
{
|
|
|
|
|
t = build_min (DELETE_EXPR, void_type_node, exp, size);
|
|
|
|
|
DELETE_EXPR_USE_GLOBAL (t) = use_global_delete;
|
|
|
|
|
DELETE_EXPR_USE_VEC (t) = doing_vec;
|
|
|
|
|
TREE_SIDE_EFFECTS (t) = 1;
|
|
|
|
|
return t;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* An array can't have been allocated by new, so complain. */
|
|
|
|
|
if (TREE_CODE (exp) == VAR_DECL
|
|
|
|
|
&& TREE_CODE (TREE_TYPE (exp)) == ARRAY_TYPE)
|
|
|
|
|
warning (0, "deleting array %q#D", exp);
|
|
|
|
|
|
|
|
|
|
t = build_expr_type_conversion (WANT_POINTER, exp, true);
|
|
|
|
|
|
|
|
|
|
if (t == NULL_TREE || t == error_mark_node)
|
|
|
|
|
{
|
|
|
|
|
error ("type %q#T argument given to %<delete%>, expected pointer",
|
|
|
|
|
TREE_TYPE (exp));
|
|
|
|
|
return error_mark_node;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
type = TREE_TYPE (t);
|
|
|
|
|
|
|
|
|
|
/* As of Valley Forge, you can delete a pointer to const. */
|
|
|
|
|
|
|
|
|
|
/* You can't delete functions. */
|
|
|
|
|
if (TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE)
|
|
|
|
|
{
|
|
|
|
|
error ("cannot delete a function. Only pointer-to-objects are "
|
|
|
|
|
"valid arguments to %<delete%>");
|
|
|
|
|
return error_mark_node;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Deleting ptr to void is undefined behavior [expr.delete/3]. */
|
|
|
|
|
if (TREE_CODE (TREE_TYPE (type)) == VOID_TYPE)
|
|
|
|
|
{
|
|
|
|
|
warning (0, "deleting %qT is undefined", type);
|
|
|
|
|
doing_vec = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Deleting a pointer with the value zero is valid and has no effect. */
|
|
|
|
|
if (integer_zerop (t))
|
|
|
|
|
return build1 (NOP_EXPR, void_type_node, t);
|
|
|
|
|
|
|
|
|
|
if (doing_vec)
|
|
|
|
|
return build_vec_delete (t, /*maxindex=*/NULL_TREE,
|
|
|
|
|
sfk_deleting_destructor,
|
|
|
|
|
use_global_delete);
|
|
|
|
|
else
|
|
|
|
|
return build_delete (type, t, sfk_deleting_destructor,
|
|
|
|
|
LOOKUP_NORMAL, use_global_delete);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Report an error if the indicated template declaration is not the
|
|
|
|
|
sort of thing that should be a member template. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
check_member_template (tree tmpl)
|
|
|
|
|
{
|
|
|
|
|
tree decl;
|
|
|
|
|
|
|
|
|
|
gcc_assert (TREE_CODE (tmpl) == TEMPLATE_DECL);
|
|
|
|
|
decl = DECL_TEMPLATE_RESULT (tmpl);
|
|
|
|
|
|
|
|
|
|
if (TREE_CODE (decl) == FUNCTION_DECL
|
|
|
|
|
|| (TREE_CODE (decl) == TYPE_DECL
|
|
|
|
|
&& IS_AGGR_TYPE (TREE_TYPE (decl))))
|
|
|
|
|
{
|
2007-01-11 05:42:35 +03:00
|
|
|
|
/* The parser rejects template declarations in local classes. */
|
|
|
|
|
gcc_assert (!current_function_decl);
|
2006-04-20 14:19:17 +04:00
|
|
|
|
if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VIRTUAL_P (decl))
|
|
|
|
|
{
|
|
|
|
|
/* 14.5.2.3 [temp.mem]
|
|
|
|
|
|
|
|
|
|
A member function template shall not be virtual. */
|
|
|
|
|
error
|
|
|
|
|
("invalid use of %<virtual%> in template declaration of %q#D",
|
|
|
|
|
decl);
|
|
|
|
|
DECL_VIRTUAL_P (decl) = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* The debug-information generating code doesn't know what to do
|
|
|
|
|
with member templates. */
|
|
|
|
|
DECL_IGNORED_P (tmpl) = 1;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
error ("template declaration of %q#D", decl);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return true iff TYPE is a valid Java parameter or return type. */
|
|
|
|
|
|
|
|
|
|
static bool
|
|
|
|
|
acceptable_java_type (tree type)
|
|
|
|
|
{
|
|
|
|
|
if (TREE_CODE (type) == VOID_TYPE || TYPE_FOR_JAVA (type))
|
|
|
|
|
return 1;
|
|
|
|
|
if (TREE_CODE (type) == POINTER_TYPE || TREE_CODE (type) == REFERENCE_TYPE)
|
|
|
|
|
{
|
|
|
|
|
type = TREE_TYPE (type);
|
|
|
|
|
if (TREE_CODE (type) == RECORD_TYPE)
|
|
|
|
|
{
|
|
|
|
|
tree args; int i;
|
|
|
|
|
if (! TYPE_FOR_JAVA (type))
|
|
|
|
|
return false;
|
|
|
|
|
if (! CLASSTYPE_TEMPLATE_INFO (type))
|
|
|
|
|
return true;
|
|
|
|
|
args = CLASSTYPE_TI_ARGS (type);
|
|
|
|
|
i = TREE_VEC_LENGTH (args);
|
|
|
|
|
while (--i >= 0)
|
|
|
|
|
{
|
|
|
|
|
type = TREE_VEC_ELT (args, i);
|
|
|
|
|
if (TREE_CODE (type) == POINTER_TYPE)
|
|
|
|
|
type = TREE_TYPE (type);
|
|
|
|
|
if (! TYPE_FOR_JAVA (type))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* For a METHOD in a Java class CTYPE, return true if
|
|
|
|
|
the parameter and return types are valid Java types.
|
|
|
|
|
Otherwise, print appropriate error messages, and return false. */
|
|
|
|
|
|
|
|
|
|
bool
|
|
|
|
|
check_java_method (tree method)
|
|
|
|
|
{
|
|
|
|
|
bool jerr = false;
|
|
|
|
|
tree arg_types = TYPE_ARG_TYPES (TREE_TYPE (method));
|
|
|
|
|
tree ret_type = TREE_TYPE (TREE_TYPE (method));
|
|
|
|
|
|
|
|
|
|
if (!acceptable_java_type (ret_type))
|
|
|
|
|
{
|
|
|
|
|
error ("Java method %qD has non-Java return type %qT",
|
|
|
|
|
method, ret_type);
|
|
|
|
|
jerr = true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
arg_types = TREE_CHAIN (arg_types);
|
|
|
|
|
if (DECL_HAS_IN_CHARGE_PARM_P (method))
|
|
|
|
|
arg_types = TREE_CHAIN (arg_types);
|
|
|
|
|
if (DECL_HAS_VTT_PARM_P (method))
|
|
|
|
|
arg_types = TREE_CHAIN (arg_types);
|
|
|
|
|
|
|
|
|
|
for (; arg_types != NULL_TREE; arg_types = TREE_CHAIN (arg_types))
|
|
|
|
|
{
|
|
|
|
|
tree type = TREE_VALUE (arg_types);
|
|
|
|
|
if (!acceptable_java_type (type))
|
|
|
|
|
{
|
|
|
|
|
error ("Java method %qD has non-Java parameter type %qT",
|
|
|
|
|
method, type);
|
|
|
|
|
jerr = true;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return !jerr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Sanity check: report error if this function FUNCTION is not
|
|
|
|
|
really a member of the class (CTYPE) it is supposed to belong to.
|
|
|
|
|
TEMPLATE_PARMS is used to specify the template parameters of a member
|
|
|
|
|
template passed as FUNCTION_DECL. If the member template is passed as a
|
|
|
|
|
TEMPLATE_DECL, it can be NULL since the parameters can be extracted
|
|
|
|
|
from the declaration. If the function is not a function template, it
|
|
|
|
|
must be NULL.
|
|
|
|
|
It returns the original declaration for the function, or NULL_TREE
|
|
|
|
|
if no declaration was found (and an error was emitted). */
|
|
|
|
|
|
|
|
|
|
tree
|
|
|
|
|
check_classfn (tree ctype, tree function, tree template_parms)
|
|
|
|
|
{
|
|
|
|
|
int ix;
|
|
|
|
|
bool is_template;
|
2006-10-22 02:45:05 +04:00
|
|
|
|
tree pushed_scope;
|
|
|
|
|
|
2006-04-20 14:19:17 +04:00
|
|
|
|
if (DECL_USE_TEMPLATE (function)
|
|
|
|
|
&& !(TREE_CODE (function) == TEMPLATE_DECL
|
|
|
|
|
&& DECL_TEMPLATE_SPECIALIZATION (function))
|
|
|
|
|
&& DECL_MEMBER_TEMPLATE_P (DECL_TI_TEMPLATE (function)))
|
|
|
|
|
/* Since this is a specialization of a member template,
|
|
|
|
|
we're not going to find the declaration in the class.
|
|
|
|
|
For example, in:
|
|
|
|
|
|
|
|
|
|
struct S { template <typename T> void f(T); };
|
|
|
|
|
template <> void S::f(int);
|
|
|
|
|
|
|
|
|
|
we're not going to find `S::f(int)', but there's no
|
|
|
|
|
reason we should, either. We let our callers know we didn't
|
|
|
|
|
find the method, but we don't complain. */
|
|
|
|
|
return NULL_TREE;
|
|
|
|
|
|
|
|
|
|
/* Basic sanity check: for a template function, the template parameters
|
|
|
|
|
either were not passed, or they are the same of DECL_TEMPLATE_PARMS. */
|
|
|
|
|
if (TREE_CODE (function) == TEMPLATE_DECL)
|
|
|
|
|
{
|
|
|
|
|
gcc_assert (!template_parms
|
|
|
|
|
|| comp_template_parms (template_parms,
|
|
|
|
|
DECL_TEMPLATE_PARMS (function)));
|
|
|
|
|
template_parms = DECL_TEMPLATE_PARMS (function);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* OK, is this a definition of a member template? */
|
|
|
|
|
is_template = (template_parms != NULL_TREE);
|
|
|
|
|
|
2006-10-22 02:45:05 +04:00
|
|
|
|
/* We must enter the scope here, because conversion operators are
|
|
|
|
|
named by target type, and type equivalence relies on typenames
|
|
|
|
|
resolving within the scope of CTYPE. */
|
|
|
|
|
pushed_scope = push_scope (ctype);
|
2006-04-20 14:19:17 +04:00
|
|
|
|
ix = class_method_index_for_fn (complete_type (ctype), function);
|
|
|
|
|
if (ix >= 0)
|
|
|
|
|
{
|
|
|
|
|
VEC(tree,gc) *methods = CLASSTYPE_METHOD_VEC (ctype);
|
|
|
|
|
tree fndecls, fndecl = 0;
|
|
|
|
|
bool is_conv_op;
|
|
|
|
|
const char *format = NULL;
|
|
|
|
|
|
|
|
|
|
for (fndecls = VEC_index (tree, methods, ix);
|
|
|
|
|
fndecls; fndecls = OVL_NEXT (fndecls))
|
|
|
|
|
{
|
|
|
|
|
tree p1, p2;
|
|
|
|
|
|
|
|
|
|
fndecl = OVL_CURRENT (fndecls);
|
|
|
|
|
p1 = TYPE_ARG_TYPES (TREE_TYPE (function));
|
|
|
|
|
p2 = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
|
|
|
|
|
|
|
|
|
|
/* We cannot simply call decls_match because this doesn't
|
|
|
|
|
work for static member functions that are pretending to
|
|
|
|
|
be methods, and because the name may have been changed by
|
|
|
|
|
asm("new_name"). */
|
|
|
|
|
|
|
|
|
|
/* Get rid of the this parameter on functions that become
|
|
|
|
|
static. */
|
|
|
|
|
if (DECL_STATIC_FUNCTION_P (fndecl)
|
|
|
|
|
&& TREE_CODE (TREE_TYPE (function)) == METHOD_TYPE)
|
|
|
|
|
p1 = TREE_CHAIN (p1);
|
|
|
|
|
|
|
|
|
|
/* A member template definition only matches a member template
|
|
|
|
|
declaration. */
|
|
|
|
|
if (is_template != (TREE_CODE (fndecl) == TEMPLATE_DECL))
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
if (same_type_p (TREE_TYPE (TREE_TYPE (function)),
|
|
|
|
|
TREE_TYPE (TREE_TYPE (fndecl)))
|
|
|
|
|
&& compparms (p1, p2)
|
|
|
|
|
&& (!is_template
|
|
|
|
|
|| comp_template_parms (template_parms,
|
|
|
|
|
DECL_TEMPLATE_PARMS (fndecl)))
|
|
|
|
|
&& (DECL_TEMPLATE_SPECIALIZATION (function)
|
|
|
|
|
== DECL_TEMPLATE_SPECIALIZATION (fndecl))
|
|
|
|
|
&& (!DECL_TEMPLATE_SPECIALIZATION (function)
|
|
|
|
|
|| (DECL_TI_TEMPLATE (function)
|
|
|
|
|
== DECL_TI_TEMPLATE (fndecl))))
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
if (fndecls)
|
2006-10-22 02:45:05 +04:00
|
|
|
|
{
|
|
|
|
|
if (pushed_scope)
|
|
|
|
|
pop_scope (pushed_scope);
|
|
|
|
|
return OVL_CURRENT (fndecls);
|
|
|
|
|
}
|
|
|
|
|
|
2006-04-20 14:19:17 +04:00
|
|
|
|
error ("prototype for %q#D does not match any in class %qT",
|
|
|
|
|
function, ctype);
|
|
|
|
|
is_conv_op = DECL_CONV_FN_P (fndecl);
|
|
|
|
|
|
|
|
|
|
if (is_conv_op)
|
|
|
|
|
ix = CLASSTYPE_FIRST_CONVERSION_SLOT;
|
|
|
|
|
fndecls = VEC_index (tree, methods, ix);
|
|
|
|
|
while (fndecls)
|
|
|
|
|
{
|
|
|
|
|
fndecl = OVL_CURRENT (fndecls);
|
|
|
|
|
fndecls = OVL_NEXT (fndecls);
|
|
|
|
|
|
|
|
|
|
if (!fndecls && is_conv_op)
|
|
|
|
|
{
|
|
|
|
|
if (VEC_length (tree, methods) > (size_t) ++ix)
|
|
|
|
|
{
|
|
|
|
|
fndecls = VEC_index (tree, methods, ix);
|
|
|
|
|
if (!DECL_CONV_FN_P (OVL_CURRENT (fndecls)))
|
|
|
|
|
{
|
|
|
|
|
fndecls = NULL_TREE;
|
|
|
|
|
is_conv_op = false;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
is_conv_op = false;
|
|
|
|
|
}
|
|
|
|
|
if (format)
|
|
|
|
|
format = " %+#D";
|
|
|
|
|
else if (fndecls)
|
|
|
|
|
format = N_("candidates are: %+#D");
|
|
|
|
|
else
|
|
|
|
|
format = N_("candidate is: %+#D");
|
|
|
|
|
error (format, fndecl);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else if (!COMPLETE_TYPE_P (ctype))
|
|
|
|
|
cxx_incomplete_type_error (function, ctype);
|
|
|
|
|
else
|
2006-10-22 02:45:05 +04:00
|
|
|
|
{
|
|
|
|
|
error ("no %q#D member function declared in class %qT",
|
|
|
|
|
function, ctype);
|
|
|
|
|
}
|
2006-04-20 14:19:17 +04:00
|
|
|
|
|
|
|
|
|
/* If we did not find the method in the class, add it to avoid
|
|
|
|
|
spurious errors (unless the CTYPE is not yet defined, in which
|
|
|
|
|
case we'll only confuse ourselves when the function is declared
|
|
|
|
|
properly within the class. */
|
|
|
|
|
if (COMPLETE_TYPE_P (ctype))
|
|
|
|
|
add_method (ctype, function, NULL_TREE);
|
2006-10-22 02:45:05 +04:00
|
|
|
|
|
|
|
|
|
if (pushed_scope)
|
|
|
|
|
pop_scope (pushed_scope);
|
2006-04-20 14:19:17 +04:00
|
|
|
|
return NULL_TREE;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* DECL is a function with vague linkage. Remember it so that at the
|
|
|
|
|
end of the translation unit we can decide whether or not to emit
|
|
|
|
|
it. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
note_vague_linkage_fn (tree decl)
|
|
|
|
|
{
|
|
|
|
|
if (!DECL_DEFERRED_FN (decl))
|
|
|
|
|
{
|
|
|
|
|
DECL_DEFERRED_FN (decl) = 1;
|
|
|
|
|
DECL_DEFER_OUTPUT (decl) = 1;
|
|
|
|
|
VEC_safe_push (tree, gc, deferred_fns, decl);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Like note_vague_linkage_fn but for variables. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
note_vague_linkage_var (tree var)
|
|
|
|
|
{
|
|
|
|
|
VEC_safe_push (tree, gc, pending_statics, var);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* We have just processed the DECL, which is a static data member.
|
|
|
|
|
The other parameters are as for cp_finish_decl. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
finish_static_data_member_decl (tree decl,
|
|
|
|
|
tree init, bool init_const_expr_p,
|
|
|
|
|
tree asmspec_tree,
|
|
|
|
|
int flags)
|
|
|
|
|
{
|
|
|
|
|
gcc_assert (TREE_PUBLIC (decl));
|
|
|
|
|
|
|
|
|
|
DECL_CONTEXT (decl) = current_class_type;
|
|
|
|
|
|
|
|
|
|
/* We cannot call pushdecl here, because that would fill in the
|
|
|
|
|
TREE_CHAIN of our decl. Instead, we modify cp_finish_decl to do
|
|
|
|
|
the right thing, namely, to put this decl out straight away. */
|
|
|
|
|
/* current_class_type can be NULL_TREE in case of error. */
|
|
|
|
|
if (!asmspec_tree && current_class_type)
|
|
|
|
|
DECL_INITIAL (decl) = error_mark_node;
|
|
|
|
|
|
|
|
|
|
if (! processing_template_decl)
|
|
|
|
|
note_vague_linkage_var (decl);
|
|
|
|
|
|
|
|
|
|
if (LOCAL_CLASS_P (current_class_type))
|
|
|
|
|
pedwarn ("local class %q#T shall not have static data member %q#D",
|
|
|
|
|
current_class_type, decl);
|
|
|
|
|
|
|
|
|
|
/* Static consts need not be initialized in the class definition. */
|
|
|
|
|
if (init != NULL_TREE && TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (decl)))
|
|
|
|
|
{
|
|
|
|
|
static int explained = 0;
|
|
|
|
|
|
|
|
|
|
error ("initializer invalid for static member with constructor");
|
|
|
|
|
if (!explained)
|
|
|
|
|
{
|
|
|
|
|
error ("(an out of class initialization is required)");
|
|
|
|
|
explained = 1;
|
|
|
|
|
}
|
|
|
|
|
init = NULL_TREE;
|
|
|
|
|
}
|
|
|
|
|
/* Force the compiler to know when an uninitialized static const
|
|
|
|
|
member is being used. */
|
|
|
|
|
if (CP_TYPE_CONST_P (TREE_TYPE (decl)) && init == 0)
|
|
|
|
|
TREE_USED (decl) = 1;
|
|
|
|
|
DECL_INITIAL (decl) = init;
|
|
|
|
|
DECL_IN_AGGR_P (decl) = 1;
|
|
|
|
|
|
|
|
|
|
cp_finish_decl (decl, init, init_const_expr_p, asmspec_tree, flags);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* DECLARATOR and DECLSPECS correspond to a class member. The othe
|
|
|
|
|
parameters are as for cp_finish_decl. Return the DECL for the
|
|
|
|
|
class member declared. */
|
|
|
|
|
|
|
|
|
|
tree
|
|
|
|
|
grokfield (const cp_declarator *declarator,
|
|
|
|
|
cp_decl_specifier_seq *declspecs,
|
|
|
|
|
tree init, bool init_const_expr_p,
|
|
|
|
|
tree asmspec_tree,
|
|
|
|
|
tree attrlist)
|
|
|
|
|
{
|
|
|
|
|
tree value;
|
|
|
|
|
const char *asmspec = 0;
|
|
|
|
|
int flags = LOOKUP_ONLYCONVERTING;
|
|
|
|
|
|
|
|
|
|
if (init
|
|
|
|
|
&& TREE_CODE (init) == TREE_LIST
|
|
|
|
|
&& TREE_VALUE (init) == error_mark_node
|
|
|
|
|
&& TREE_CHAIN (init) == NULL_TREE)
|
|
|
|
|
init = NULL_TREE;
|
|
|
|
|
|
|
|
|
|
value = grokdeclarator (declarator, declspecs, FIELD, init != 0, &attrlist);
|
|
|
|
|
if (! value || error_operand_p (value))
|
|
|
|
|
/* friend or constructor went bad. */
|
|
|
|
|
return error_mark_node;
|
|
|
|
|
|
|
|
|
|
if (TREE_CODE (value) == TYPE_DECL && init)
|
|
|
|
|
{
|
|
|
|
|
error ("typedef %qD is initialized (use __typeof__ instead)", value);
|
|
|
|
|
init = NULL_TREE;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Pass friendly classes back. */
|
|
|
|
|
if (value == void_type_node)
|
|
|
|
|
return value;
|
|
|
|
|
|
|
|
|
|
/* Pass friend decls back. */
|
|
|
|
|
if ((TREE_CODE (value) == FUNCTION_DECL
|
|
|
|
|
|| TREE_CODE (value) == TEMPLATE_DECL)
|
|
|
|
|
&& DECL_CONTEXT (value) != current_class_type)
|
|
|
|
|
return value;
|
|
|
|
|
|
|
|
|
|
if (DECL_NAME (value) != NULL_TREE
|
|
|
|
|
&& IDENTIFIER_POINTER (DECL_NAME (value))[0] == '_'
|
|
|
|
|
&& ! strcmp (IDENTIFIER_POINTER (DECL_NAME (value)), "_vptr"))
|
|
|
|
|
error ("member %qD conflicts with virtual function table field name",
|
|
|
|
|
value);
|
|
|
|
|
|
|
|
|
|
/* Stash away type declarations. */
|
|
|
|
|
if (TREE_CODE (value) == TYPE_DECL)
|
|
|
|
|
{
|
|
|
|
|
DECL_NONLOCAL (value) = 1;
|
|
|
|
|
DECL_CONTEXT (value) = current_class_type;
|
|
|
|
|
|
|
|
|
|
if (processing_template_decl)
|
|
|
|
|
value = push_template_decl (value);
|
|
|
|
|
|
|
|
|
|
if (attrlist)
|
|
|
|
|
{
|
|
|
|
|
/* Avoid storing attributes in template parameters:
|
|
|
|
|
tsubst is not ready to handle them. */
|
|
|
|
|
tree type = TREE_TYPE (value);
|
|
|
|
|
if (TREE_CODE (type) == TEMPLATE_TYPE_PARM
|
|
|
|
|
|| TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM)
|
|
|
|
|
sorry ("applying attributes to template parameters is not implemented");
|
|
|
|
|
else
|
|
|
|
|
cplus_decl_attributes (&value, attrlist, 0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return value;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (DECL_IN_AGGR_P (value))
|
|
|
|
|
{
|
|
|
|
|
error ("%qD is already defined in %qT", value, DECL_CONTEXT (value));
|
|
|
|
|
return void_type_node;
|
|
|
|
|
}
|
|
|
|
|
|
2006-10-22 02:45:05 +04:00
|
|
|
|
if (asmspec_tree && asmspec_tree != error_mark_node)
|
2006-04-20 14:19:17 +04:00
|
|
|
|
asmspec = TREE_STRING_POINTER (asmspec_tree);
|
|
|
|
|
|
|
|
|
|
if (init)
|
|
|
|
|
{
|
|
|
|
|
if (TREE_CODE (value) == FUNCTION_DECL)
|
|
|
|
|
{
|
|
|
|
|
/* Initializers for functions are rejected early in the parser.
|
|
|
|
|
If we get here, it must be a pure specifier for a method. */
|
|
|
|
|
if (TREE_CODE (TREE_TYPE (value)) == METHOD_TYPE)
|
|
|
|
|
{
|
|
|
|
|
gcc_assert (error_operand_p (init) || integer_zerop (init));
|
|
|
|
|
DECL_PURE_VIRTUAL_P (value) = 1;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
gcc_assert (TREE_CODE (TREE_TYPE (value)) == FUNCTION_TYPE);
|
|
|
|
|
error ("initializer specified for static member function %qD",
|
|
|
|
|
value);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else if (pedantic && TREE_CODE (value) != VAR_DECL)
|
|
|
|
|
/* Already complained in grokdeclarator. */
|
|
|
|
|
init = NULL_TREE;
|
|
|
|
|
else if (!processing_template_decl)
|
|
|
|
|
{
|
|
|
|
|
if (TREE_CODE (init) == CONSTRUCTOR)
|
|
|
|
|
init = digest_init (TREE_TYPE (value), init);
|
|
|
|
|
else
|
|
|
|
|
init = integral_constant_value (init);
|
|
|
|
|
|
|
|
|
|
if (init != error_mark_node && !TREE_CONSTANT (init))
|
|
|
|
|
{
|
|
|
|
|
/* We can allow references to things that are effectively
|
|
|
|
|
static, since references are initialized with the
|
|
|
|
|
address. */
|
|
|
|
|
if (TREE_CODE (TREE_TYPE (value)) != REFERENCE_TYPE
|
|
|
|
|
|| (TREE_STATIC (init) == 0
|
|
|
|
|
&& (!DECL_P (init) || DECL_EXTERNAL (init) == 0)))
|
|
|
|
|
{
|
|
|
|
|
error ("field initializer is not constant");
|
|
|
|
|
init = error_mark_node;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (processing_template_decl
|
|
|
|
|
&& (TREE_CODE (value) == VAR_DECL || TREE_CODE (value) == FUNCTION_DECL))
|
|
|
|
|
{
|
|
|
|
|
value = push_template_decl (value);
|
|
|
|
|
if (error_operand_p (value))
|
|
|
|
|
return error_mark_node;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (attrlist)
|
|
|
|
|
cplus_decl_attributes (&value, attrlist, 0);
|
|
|
|
|
|
|
|
|
|
switch (TREE_CODE (value))
|
|
|
|
|
{
|
|
|
|
|
case VAR_DECL:
|
|
|
|
|
finish_static_data_member_decl (value, init, init_const_expr_p,
|
|
|
|
|
asmspec_tree, flags);
|
|
|
|
|
return value;
|
|
|
|
|
|
|
|
|
|
case FIELD_DECL:
|
|
|
|
|
if (asmspec)
|
|
|
|
|
error ("%<asm%> specifiers are not permitted on non-static data members");
|
|
|
|
|
if (DECL_INITIAL (value) == error_mark_node)
|
|
|
|
|
init = error_mark_node;
|
|
|
|
|
cp_finish_decl (value, init, /*init_const_expr_p=*/false,
|
|
|
|
|
NULL_TREE, flags);
|
|
|
|
|
DECL_INITIAL (value) = init;
|
|
|
|
|
DECL_IN_AGGR_P (value) = 1;
|
|
|
|
|
return value;
|
|
|
|
|
|
|
|
|
|
case FUNCTION_DECL:
|
|
|
|
|
if (asmspec)
|
|
|
|
|
set_user_assembler_name (value, asmspec);
|
|
|
|
|
if (!DECL_FRIEND_P (value))
|
|
|
|
|
grok_special_member_properties (value);
|
|
|
|
|
|
|
|
|
|
cp_finish_decl (value, init, /*init_const_expr_p=*/false,
|
|
|
|
|
asmspec_tree, flags);
|
|
|
|
|
|
|
|
|
|
/* Pass friends back this way. */
|
|
|
|
|
if (DECL_FRIEND_P (value))
|
|
|
|
|
return void_type_node;
|
|
|
|
|
|
|
|
|
|
DECL_IN_AGGR_P (value) = 1;
|
|
|
|
|
return value;
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
|
gcc_unreachable ();
|
|
|
|
|
}
|
|
|
|
|
return NULL_TREE;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Like `grokfield', but for bitfields.
|
|
|
|
|
WIDTH is non-NULL for bit fields only, and is an INTEGER_CST node. */
|
|
|
|
|
|
|
|
|
|
tree
|
|
|
|
|
grokbitfield (const cp_declarator *declarator,
|
|
|
|
|
cp_decl_specifier_seq *declspecs, tree width)
|
|
|
|
|
{
|
|
|
|
|
tree value = grokdeclarator (declarator, declspecs, BITFIELD, 0, NULL);
|
|
|
|
|
|
|
|
|
|
if (! value) return NULL_TREE; /* friends went bad. */
|
|
|
|
|
|
|
|
|
|
/* Pass friendly classes back. */
|
|
|
|
|
if (TREE_CODE (value) == VOID_TYPE)
|
|
|
|
|
return void_type_node;
|
|
|
|
|
|
|
|
|
|
if (TREE_CODE (value) == TYPE_DECL)
|
|
|
|
|
{
|
|
|
|
|
error ("cannot declare %qD to be a bit-field type", value);
|
|
|
|
|
return NULL_TREE;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Usually, finish_struct_1 catches bitfields with invalid types.
|
|
|
|
|
But, in the case of bitfields with function type, we confuse
|
|
|
|
|
ourselves into thinking they are member functions, so we must
|
|
|
|
|
check here. */
|
|
|
|
|
if (TREE_CODE (value) == FUNCTION_DECL)
|
|
|
|
|
{
|
|
|
|
|
error ("cannot declare bit-field %qD with function type",
|
|
|
|
|
DECL_NAME (value));
|
|
|
|
|
return NULL_TREE;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (DECL_IN_AGGR_P (value))
|
|
|
|
|
{
|
|
|
|
|
error ("%qD is already defined in the class %qT", value,
|
|
|
|
|
DECL_CONTEXT (value));
|
|
|
|
|
return void_type_node;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (TREE_STATIC (value))
|
|
|
|
|
{
|
|
|
|
|
error ("static member %qD cannot be a bit-field", value);
|
|
|
|
|
return NULL_TREE;
|
|
|
|
|
}
|
|
|
|
|
finish_decl (value, NULL_TREE, NULL_TREE);
|
|
|
|
|
|
|
|
|
|
if (width != error_mark_node)
|
|
|
|
|
{
|
|
|
|
|
constant_expression_warning (width);
|
|
|
|
|
DECL_INITIAL (value) = width;
|
|
|
|
|
SET_DECL_C_BIT_FIELD (value);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
DECL_IN_AGGR_P (value) = 1;
|
|
|
|
|
return value;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
cplus_decl_attributes (tree *decl, tree attributes, int flags)
|
|
|
|
|
{
|
|
|
|
|
if (*decl == NULL_TREE || *decl == void_type_node)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
if (TREE_CODE (*decl) == TEMPLATE_DECL)
|
|
|
|
|
decl = &DECL_TEMPLATE_RESULT (*decl);
|
|
|
|
|
|
|
|
|
|
decl_attributes (decl, attributes, flags);
|
|
|
|
|
|
|
|
|
|
if (TREE_CODE (*decl) == TYPE_DECL)
|
|
|
|
|
SET_IDENTIFIER_TYPE_VALUE (DECL_NAME (*decl), TREE_TYPE (*decl));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Walks through the namespace- or function-scope anonymous union
|
|
|
|
|
OBJECT, with the indicated TYPE, building appropriate VAR_DECLs.
|
|
|
|
|
Returns one of the fields for use in the mangled name. */
|
|
|
|
|
|
|
|
|
|
static tree
|
|
|
|
|
build_anon_union_vars (tree type, tree object)
|
|
|
|
|
{
|
|
|
|
|
tree main_decl = NULL_TREE;
|
|
|
|
|
tree field;
|
|
|
|
|
|
|
|
|
|
/* Rather than write the code to handle the non-union case,
|
|
|
|
|
just give an error. */
|
|
|
|
|
if (TREE_CODE (type) != UNION_TYPE)
|
|
|
|
|
error ("anonymous struct not inside named type");
|
|
|
|
|
|
|
|
|
|
for (field = TYPE_FIELDS (type);
|
|
|
|
|
field != NULL_TREE;
|
|
|
|
|
field = TREE_CHAIN (field))
|
|
|
|
|
{
|
|
|
|
|
tree decl;
|
|
|
|
|
tree ref;
|
|
|
|
|
|
|
|
|
|
if (DECL_ARTIFICIAL (field))
|
|
|
|
|
continue;
|
|
|
|
|
if (TREE_CODE (field) != FIELD_DECL)
|
|
|
|
|
{
|
|
|
|
|
pedwarn ("%q+#D invalid; an anonymous union can only "
|
|
|
|
|
"have non-static data members", field);
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (TREE_PRIVATE (field))
|
|
|
|
|
pedwarn ("private member %q+#D in anonymous union", field);
|
|
|
|
|
else if (TREE_PROTECTED (field))
|
|
|
|
|
pedwarn ("protected member %q+#D in anonymous union", field);
|
|
|
|
|
|
|
|
|
|
if (processing_template_decl)
|
|
|
|
|
ref = build_min_nt (COMPONENT_REF, object,
|
|
|
|
|
DECL_NAME (field), NULL_TREE);
|
|
|
|
|
else
|
|
|
|
|
ref = build_class_member_access_expr (object, field, NULL_TREE,
|
|
|
|
|
false);
|
|
|
|
|
|
|
|
|
|
if (DECL_NAME (field))
|
|
|
|
|
{
|
|
|
|
|
tree base;
|
|
|
|
|
|
|
|
|
|
decl = build_decl (VAR_DECL, DECL_NAME (field), TREE_TYPE (field));
|
|
|
|
|
|
|
|
|
|
base = get_base_address (object);
|
|
|
|
|
TREE_PUBLIC (decl) = TREE_PUBLIC (base);
|
|
|
|
|
TREE_STATIC (decl) = TREE_STATIC (base);
|
|
|
|
|
DECL_EXTERNAL (decl) = DECL_EXTERNAL (base);
|
|
|
|
|
|
|
|
|
|
SET_DECL_VALUE_EXPR (decl, ref);
|
|
|
|
|
DECL_HAS_VALUE_EXPR_P (decl) = 1;
|
|
|
|
|
|
|
|
|
|
decl = pushdecl (decl);
|
|
|
|
|
}
|
|
|
|
|
else if (ANON_AGGR_TYPE_P (TREE_TYPE (field)))
|
|
|
|
|
decl = build_anon_union_vars (TREE_TYPE (field), ref);
|
|
|
|
|
else
|
|
|
|
|
decl = 0;
|
|
|
|
|
|
|
|
|
|
if (main_decl == NULL_TREE)
|
|
|
|
|
main_decl = decl;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return main_decl;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Finish off the processing of a UNION_TYPE structure. If the union is an
|
|
|
|
|
anonymous union, then all members must be laid out together. PUBLIC_P
|
|
|
|
|
is nonzero if this union is not declared static. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
finish_anon_union (tree anon_union_decl)
|
|
|
|
|
{
|
|
|
|
|
tree type;
|
|
|
|
|
tree main_decl;
|
|
|
|
|
bool public_p;
|
|
|
|
|
|
|
|
|
|
if (anon_union_decl == error_mark_node)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
type = TREE_TYPE (anon_union_decl);
|
|
|
|
|
public_p = TREE_PUBLIC (anon_union_decl);
|
|
|
|
|
|
|
|
|
|
/* The VAR_DECL's context is the same as the TYPE's context. */
|
|
|
|
|
DECL_CONTEXT (anon_union_decl) = DECL_CONTEXT (TYPE_NAME (type));
|
|
|
|
|
|
|
|
|
|
if (TYPE_FIELDS (type) == NULL_TREE)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
if (public_p)
|
|
|
|
|
{
|
|
|
|
|
error ("namespace-scope anonymous aggregates must be static");
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
main_decl = build_anon_union_vars (type, anon_union_decl);
|
2006-06-28 16:10:26 +04:00
|
|
|
|
if (main_decl == error_mark_node)
|
|
|
|
|
return;
|
2006-04-20 14:19:17 +04:00
|
|
|
|
if (main_decl == NULL_TREE)
|
|
|
|
|
{
|
|
|
|
|
warning (0, "anonymous union with no members");
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!processing_template_decl)
|
|
|
|
|
{
|
|
|
|
|
/* Use main_decl to set the mangled name. */
|
|
|
|
|
DECL_NAME (anon_union_decl) = DECL_NAME (main_decl);
|
|
|
|
|
mangle_decl (anon_union_decl);
|
|
|
|
|
DECL_NAME (anon_union_decl) = NULL_TREE;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pushdecl (anon_union_decl);
|
|
|
|
|
if (building_stmt_tree ()
|
|
|
|
|
&& at_function_scope_p ())
|
|
|
|
|
add_decl_expr (anon_union_decl);
|
|
|
|
|
else if (!processing_template_decl)
|
|
|
|
|
rest_of_decl_compilation (anon_union_decl,
|
|
|
|
|
toplevel_bindings_p (), at_eof);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Auxiliary functions to make type signatures for
|
|
|
|
|
`operator new' and `operator delete' correspond to
|
|
|
|
|
what compiler will be expecting. */
|
|
|
|
|
|
|
|
|
|
tree
|
|
|
|
|
coerce_new_type (tree type)
|
|
|
|
|
{
|
|
|
|
|
int e = 0;
|
|
|
|
|
tree args = TYPE_ARG_TYPES (type);
|
|
|
|
|
|
|
|
|
|
gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
|
|
|
|
|
|
|
|
|
|
if (!same_type_p (TREE_TYPE (type), ptr_type_node))
|
|
|
|
|
{
|
|
|
|
|
e = 1;
|
|
|
|
|
error ("%<operator new%> must return type %qT", ptr_type_node);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!args || args == void_list_node
|
|
|
|
|
|| !same_type_p (TREE_VALUE (args), size_type_node))
|
|
|
|
|
{
|
|
|
|
|
e = 2;
|
|
|
|
|
if (args && args != void_list_node)
|
|
|
|
|
args = TREE_CHAIN (args);
|
|
|
|
|
pedwarn ("%<operator new%> takes type %<size_t%> (%qT) "
|
|
|
|
|
"as first parameter", size_type_node);
|
|
|
|
|
}
|
|
|
|
|
switch (e)
|
|
|
|
|
{
|
|
|
|
|
case 2:
|
|
|
|
|
args = tree_cons (NULL_TREE, size_type_node, args);
|
|
|
|
|
/* Fall through. */
|
|
|
|
|
case 1:
|
|
|
|
|
type = build_exception_variant
|
|
|
|
|
(build_function_type (ptr_type_node, args),
|
|
|
|
|
TYPE_RAISES_EXCEPTIONS (type));
|
|
|
|
|
/* Fall through. */
|
|
|
|
|
default:;
|
|
|
|
|
}
|
|
|
|
|
return type;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
tree
|
|
|
|
|
coerce_delete_type (tree type)
|
|
|
|
|
{
|
|
|
|
|
int e = 0;
|
|
|
|
|
tree args = TYPE_ARG_TYPES (type);
|
|
|
|
|
|
|
|
|
|
gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
|
|
|
|
|
|
|
|
|
|
if (!same_type_p (TREE_TYPE (type), void_type_node))
|
|
|
|
|
{
|
|
|
|
|
e = 1;
|
|
|
|
|
error ("%<operator delete%> must return type %qT", void_type_node);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!args || args == void_list_node
|
|
|
|
|
|| !same_type_p (TREE_VALUE (args), ptr_type_node))
|
|
|
|
|
{
|
|
|
|
|
e = 2;
|
|
|
|
|
if (args && args != void_list_node)
|
|
|
|
|
args = TREE_CHAIN (args);
|
|
|
|
|
error ("%<operator delete%> takes type %qT as first parameter",
|
|
|
|
|
ptr_type_node);
|
|
|
|
|
}
|
|
|
|
|
switch (e)
|
|
|
|
|
{
|
|
|
|
|
case 2:
|
|
|
|
|
args = tree_cons (NULL_TREE, ptr_type_node, args);
|
|
|
|
|
/* Fall through. */
|
|
|
|
|
case 1:
|
|
|
|
|
type = build_exception_variant
|
|
|
|
|
(build_function_type (void_type_node, args),
|
|
|
|
|
TYPE_RAISES_EXCEPTIONS (type));
|
|
|
|
|
/* Fall through. */
|
|
|
|
|
default:;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return type;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
mark_vtable_entries (tree decl)
|
|
|
|
|
{
|
|
|
|
|
tree fnaddr;
|
|
|
|
|
unsigned HOST_WIDE_INT idx;
|
|
|
|
|
|
|
|
|
|
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
|
|
|
|
|
idx, fnaddr)
|
|
|
|
|
{
|
|
|
|
|
tree fn;
|
|
|
|
|
|
|
|
|
|
STRIP_NOPS (fnaddr);
|
|
|
|
|
|
|
|
|
|
if (TREE_CODE (fnaddr) != ADDR_EXPR
|
|
|
|
|
&& TREE_CODE (fnaddr) != FDESC_EXPR)
|
|
|
|
|
/* This entry is an offset: a virtual base class offset, a
|
|
|
|
|
virtual call offset, an RTTI offset, etc. */
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
fn = TREE_OPERAND (fnaddr, 0);
|
|
|
|
|
TREE_ADDRESSABLE (fn) = 1;
|
|
|
|
|
/* When we don't have vcall offsets, we output thunks whenever
|
|
|
|
|
we output the vtables that contain them. With vcall offsets,
|
|
|
|
|
we know all the thunks we'll need when we emit a virtual
|
|
|
|
|
function, so we emit the thunks there instead. */
|
|
|
|
|
if (DECL_THUNK_P (fn))
|
|
|
|
|
use_thunk (fn, /*emit_p=*/0);
|
|
|
|
|
mark_used (fn);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Set DECL up to have the closest approximation of "initialized common"
|
|
|
|
|
linkage available. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
comdat_linkage (tree decl)
|
|
|
|
|
{
|
|
|
|
|
if (flag_weak)
|
|
|
|
|
make_decl_one_only (decl);
|
|
|
|
|
else if (TREE_CODE (decl) == FUNCTION_DECL
|
|
|
|
|
|| (TREE_CODE (decl) == VAR_DECL && DECL_ARTIFICIAL (decl)))
|
|
|
|
|
/* We can just emit function and compiler-generated variables
|
|
|
|
|
statically; having multiple copies is (for the most part) only
|
|
|
|
|
a waste of space.
|
|
|
|
|
|
|
|
|
|
There are two correctness issues, however: the address of a
|
|
|
|
|
template instantiation with external linkage should be the
|
|
|
|
|
same, independent of what translation unit asks for the
|
|
|
|
|
address, and this will not hold when we emit multiple copies of
|
|
|
|
|
the function. However, there's little else we can do.
|
|
|
|
|
|
|
|
|
|
Also, by default, the typeinfo implementation assumes that
|
|
|
|
|
there will be only one copy of the string used as the name for
|
|
|
|
|
each type. Therefore, if weak symbols are unavailable, the
|
|
|
|
|
run-time library should perform a more conservative check; it
|
|
|
|
|
should perform a string comparison, rather than an address
|
|
|
|
|
comparison. */
|
|
|
|
|
TREE_PUBLIC (decl) = 0;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Static data member template instantiations, however, cannot
|
|
|
|
|
have multiple copies. */
|
|
|
|
|
if (DECL_INITIAL (decl) == 0
|
|
|
|
|
|| DECL_INITIAL (decl) == error_mark_node)
|
|
|
|
|
DECL_COMMON (decl) = 1;
|
|
|
|
|
else if (EMPTY_CONSTRUCTOR_P (DECL_INITIAL (decl)))
|
|
|
|
|
{
|
|
|
|
|
DECL_COMMON (decl) = 1;
|
|
|
|
|
DECL_INITIAL (decl) = error_mark_node;
|
|
|
|
|
}
|
|
|
|
|
else if (!DECL_EXPLICIT_INSTANTIATION (decl))
|
|
|
|
|
{
|
|
|
|
|
/* We can't do anything useful; leave vars for explicit
|
|
|
|
|
instantiation. */
|
|
|
|
|
DECL_EXTERNAL (decl) = 1;
|
|
|
|
|
DECL_NOT_REALLY_EXTERN (decl) = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (DECL_LANG_SPECIFIC (decl))
|
|
|
|
|
DECL_COMDAT (decl) = 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* For win32 we also want to put explicit instantiations in
|
|
|
|
|
linkonce sections, so that they will be merged with implicit
|
|
|
|
|
instantiations; otherwise we get duplicate symbol errors.
|
|
|
|
|
For Darwin we do not want explicit instantiations to be
|
|
|
|
|
linkonce. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
maybe_make_one_only (tree decl)
|
|
|
|
|
{
|
|
|
|
|
/* We used to say that this was not necessary on targets that support weak
|
|
|
|
|
symbols, because the implicit instantiations will defer to the explicit
|
|
|
|
|
one. However, that's not actually the case in SVR4; a strong definition
|
|
|
|
|
after a weak one is an error. Also, not making explicit
|
|
|
|
|
instantiations one_only means that we can end up with two copies of
|
|
|
|
|
some template instantiations. */
|
|
|
|
|
if (! flag_weak)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
/* We can't set DECL_COMDAT on functions, or cp_finish_file will think
|
|
|
|
|
we can get away with not emitting them if they aren't used. We need
|
|
|
|
|
to for variables so that cp_finish_decl will update their linkage,
|
|
|
|
|
because their DECL_INITIAL may not have been set properly yet. */
|
|
|
|
|
|
|
|
|
|
if (!TARGET_WEAK_NOT_IN_ARCHIVE_TOC
|
|
|
|
|
|| (! DECL_EXPLICIT_INSTANTIATION (decl)
|
|
|
|
|
&& ! DECL_TEMPLATE_SPECIALIZATION (decl)))
|
|
|
|
|
{
|
|
|
|
|
make_decl_one_only (decl);
|
|
|
|
|
|
|
|
|
|
if (TREE_CODE (decl) == VAR_DECL)
|
|
|
|
|
{
|
|
|
|
|
DECL_COMDAT (decl) = 1;
|
|
|
|
|
/* Mark it needed so we don't forget to emit it. */
|
|
|
|
|
mark_decl_referenced (decl);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Determine whether or not we want to specifically import or export CTYPE,
|
|
|
|
|
using various heuristics. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
import_export_class (tree ctype)
|
|
|
|
|
{
|
|
|
|
|
/* -1 for imported, 1 for exported. */
|
|
|
|
|
int import_export = 0;
|
|
|
|
|
|
|
|
|
|
/* It only makes sense to call this function at EOF. The reason is
|
|
|
|
|
that this function looks at whether or not the first non-inline
|
|
|
|
|
non-abstract virtual member function has been defined in this
|
|
|
|
|
translation unit. But, we can't possibly know that until we've
|
|
|
|
|
seen the entire translation unit. */
|
|
|
|
|
gcc_assert (at_eof);
|
|
|
|
|
|
|
|
|
|
if (CLASSTYPE_INTERFACE_KNOWN (ctype))
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
/* If MULTIPLE_SYMBOL_SPACES is set and we saw a #pragma interface,
|
|
|
|
|
we will have CLASSTYPE_INTERFACE_ONLY set but not
|
|
|
|
|
CLASSTYPE_INTERFACE_KNOWN. In that case, we don't want to use this
|
|
|
|
|
heuristic because someone will supply a #pragma implementation
|
|
|
|
|
elsewhere, and deducing it here would produce a conflict. */
|
|
|
|
|
if (CLASSTYPE_INTERFACE_ONLY (ctype))
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
if (lookup_attribute ("dllimport", TYPE_ATTRIBUTES (ctype)))
|
|
|
|
|
import_export = -1;
|
|
|
|
|
else if (lookup_attribute ("dllexport", TYPE_ATTRIBUTES (ctype)))
|
|
|
|
|
import_export = 1;
|
|
|
|
|
else if (CLASSTYPE_IMPLICIT_INSTANTIATION (ctype)
|
|
|
|
|
&& !flag_implicit_templates)
|
|
|
|
|
/* For a template class, without -fimplicit-templates, check the
|
|
|
|
|
repository. If the virtual table is assigned to this
|
|
|
|
|
translation unit, then export the class; otherwise, import
|
|
|
|
|
it. */
|
|
|
|
|
import_export = repo_export_class_p (ctype) ? 1 : -1;
|
|
|
|
|
else if (TYPE_POLYMORPHIC_P (ctype))
|
|
|
|
|
{
|
|
|
|
|
/* The ABI specifies that the virtual table and associated
|
|
|
|
|
information are emitted with the key method, if any. */
|
|
|
|
|
tree method = CLASSTYPE_KEY_METHOD (ctype);
|
|
|
|
|
/* If weak symbol support is not available, then we must be
|
|
|
|
|
careful not to emit the vtable when the key function is
|
|
|
|
|
inline. An inline function can be defined in multiple
|
|
|
|
|
translation units. If we were to emit the vtable in each
|
|
|
|
|
translation unit containing a definition, we would get
|
|
|
|
|
multiple definition errors at link-time. */
|
|
|
|
|
if (method && (flag_weak || ! DECL_DECLARED_INLINE_P (method)))
|
|
|
|
|
import_export = (DECL_REALLY_EXTERN (method) ? -1 : 1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* When MULTIPLE_SYMBOL_SPACES is set, we cannot count on seeing
|
|
|
|
|
a definition anywhere else. */
|
|
|
|
|
if (MULTIPLE_SYMBOL_SPACES && import_export == -1)
|
|
|
|
|
import_export = 0;
|
|
|
|
|
|
|
|
|
|
/* Allow backends the chance to overrule the decision. */
|
|
|
|
|
if (targetm.cxx.import_export_class)
|
|
|
|
|
import_export = targetm.cxx.import_export_class (ctype, import_export);
|
|
|
|
|
|
|
|
|
|
if (import_export)
|
|
|
|
|
{
|
|
|
|
|
SET_CLASSTYPE_INTERFACE_KNOWN (ctype);
|
|
|
|
|
CLASSTYPE_INTERFACE_ONLY (ctype) = (import_export < 0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return true if VAR has already been provided to the back end; in that
|
|
|
|
|
case VAR should not be modified further by the front end. */
|
|
|
|
|
static bool
|
|
|
|
|
var_finalized_p (tree var)
|
|
|
|
|
{
|
|
|
|
|
return cgraph_varpool_node (var)->finalized;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* DECL is a VAR_DECL or FUNCTION_DECL which, for whatever reason,
|
|
|
|
|
must be emitted in this translation unit. Mark it as such. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
mark_needed (tree decl)
|
|
|
|
|
{
|
|
|
|
|
/* It's possible that we no longer need to set
|
|
|
|
|
TREE_SYMBOL_REFERENCED here directly, but doing so is
|
|
|
|
|
harmless. */
|
|
|
|
|
TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl)) = 1;
|
|
|
|
|
mark_decl_referenced (decl);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* DECL is either a FUNCTION_DECL or a VAR_DECL. This function
|
|
|
|
|
returns true if a definition of this entity should be provided in
|
|
|
|
|
this object file. Callers use this function to determine whether
|
|
|
|
|
or not to let the back end know that a definition of DECL is
|
|
|
|
|
available in this translation unit. */
|
|
|
|
|
|
|
|
|
|
bool
|
|
|
|
|
decl_needed_p (tree decl)
|
|
|
|
|
{
|
|
|
|
|
gcc_assert (TREE_CODE (decl) == VAR_DECL
|
|
|
|
|
|| TREE_CODE (decl) == FUNCTION_DECL);
|
|
|
|
|
/* This function should only be called at the end of the translation
|
|
|
|
|
unit. We cannot be sure of whether or not something will be
|
|
|
|
|
COMDAT until that point. */
|
|
|
|
|
gcc_assert (at_eof);
|
|
|
|
|
|
|
|
|
|
/* All entities with external linkage that are not COMDAT should be
|
|
|
|
|
emitted; they may be referred to from other object files. */
|
|
|
|
|
if (TREE_PUBLIC (decl) && !DECL_COMDAT (decl))
|
|
|
|
|
return true;
|
|
|
|
|
/* If this entity was used, let the back-end see it; it will decide
|
|
|
|
|
whether or not to emit it into the object file. */
|
|
|
|
|
if (TREE_USED (decl)
|
|
|
|
|
|| (DECL_ASSEMBLER_NAME_SET_P (decl)
|
|
|
|
|
&& TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl))))
|
|
|
|
|
return true;
|
|
|
|
|
/* Otherwise, DECL does not need to be emitted -- yet. A subsequent
|
|
|
|
|
reference to DECL might cause it to be emitted later. */
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If necessary, write out the vtables for the dynamic class CTYPE.
|
|
|
|
|
Returns true if any vtables were emitted. */
|
|
|
|
|
|
|
|
|
|
static bool
|
|
|
|
|
maybe_emit_vtables (tree ctype)
|
|
|
|
|
{
|
|
|
|
|
tree vtbl;
|
|
|
|
|
tree primary_vtbl;
|
|
|
|
|
int needed = 0;
|
|
|
|
|
|
|
|
|
|
/* If the vtables for this class have already been emitted there is
|
|
|
|
|
nothing more to do. */
|
|
|
|
|
primary_vtbl = CLASSTYPE_VTABLES (ctype);
|
|
|
|
|
if (var_finalized_p (primary_vtbl))
|
|
|
|
|
return false;
|
|
|
|
|
/* Ignore dummy vtables made by get_vtable_decl. */
|
|
|
|
|
if (TREE_TYPE (primary_vtbl) == void_type_node)
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* On some targets, we cannot determine the key method until the end
|
|
|
|
|
of the translation unit -- which is when this function is
|
|
|
|
|
called. */
|
|
|
|
|
if (!targetm.cxx.key_method_may_be_inline ())
|
|
|
|
|
determine_key_method (ctype);
|
|
|
|
|
|
|
|
|
|
/* See if any of the vtables are needed. */
|
|
|
|
|
for (vtbl = CLASSTYPE_VTABLES (ctype); vtbl; vtbl = TREE_CHAIN (vtbl))
|
|
|
|
|
{
|
|
|
|
|
import_export_decl (vtbl);
|
|
|
|
|
if (DECL_NOT_REALLY_EXTERN (vtbl) && decl_needed_p (vtbl))
|
|
|
|
|
needed = 1;
|
|
|
|
|
}
|
|
|
|
|
if (!needed)
|
|
|
|
|
{
|
|
|
|
|
/* If the references to this class' vtables are optimized away,
|
|
|
|
|
still emit the appropriate debugging information. See
|
|
|
|
|
dfs_debug_mark. */
|
|
|
|
|
if (DECL_COMDAT (primary_vtbl)
|
|
|
|
|
&& CLASSTYPE_DEBUG_REQUESTED (ctype))
|
|
|
|
|
note_debug_info_needed (ctype);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* The ABI requires that we emit all of the vtables if we emit any
|
|
|
|
|
of them. */
|
|
|
|
|
for (vtbl = CLASSTYPE_VTABLES (ctype); vtbl; vtbl = TREE_CHAIN (vtbl))
|
|
|
|
|
{
|
|
|
|
|
/* Mark entities references from the virtual table as used. */
|
|
|
|
|
mark_vtable_entries (vtbl);
|
|
|
|
|
|
|
|
|
|
if (TREE_TYPE (DECL_INITIAL (vtbl)) == 0)
|
|
|
|
|
{
|
|
|
|
|
tree expr = store_init_value (vtbl, DECL_INITIAL (vtbl));
|
|
|
|
|
|
|
|
|
|
/* It had better be all done at compile-time. */
|
|
|
|
|
gcc_assert (!expr);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Write it out. */
|
|
|
|
|
DECL_EXTERNAL (vtbl) = 0;
|
|
|
|
|
rest_of_decl_compilation (vtbl, 1, 1);
|
|
|
|
|
|
|
|
|
|
/* Because we're only doing syntax-checking, we'll never end up
|
|
|
|
|
actually marking the variable as written. */
|
|
|
|
|
if (flag_syntax_only)
|
|
|
|
|
TREE_ASM_WRITTEN (vtbl) = 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Since we're writing out the vtable here, also write the debug
|
|
|
|
|
info. */
|
|
|
|
|
note_debug_info_needed (ctype);
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Like c_determine_visibility, but with additional C++-specific
|
|
|
|
|
behavior. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
determine_visibility (tree decl)
|
|
|
|
|
{
|
|
|
|
|
tree class_type;
|
|
|
|
|
|
|
|
|
|
/* Cloned constructors and destructors get the same visibility as
|
|
|
|
|
the underlying function. That should be set up in
|
|
|
|
|
maybe_clone_body. */
|
|
|
|
|
gcc_assert (!DECL_CLONED_FUNCTION_P (decl));
|
|
|
|
|
|
|
|
|
|
/* Give the common code a chance to make a determination. */
|
|
|
|
|
if (c_determine_visibility (decl))
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
/* If DECL is a member of a class, visibility specifiers on the
|
|
|
|
|
class can influence the visibility of the DECL. */
|
|
|
|
|
if (DECL_CLASS_SCOPE_P (decl))
|
|
|
|
|
class_type = DECL_CONTEXT (decl);
|
|
|
|
|
else if (TREE_CODE (decl) == VAR_DECL
|
|
|
|
|
&& DECL_TINFO_P (decl)
|
|
|
|
|
&& CLASS_TYPE_P (TREE_TYPE (DECL_NAME (decl))))
|
|
|
|
|
class_type = TREE_TYPE (DECL_NAME (decl));
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Virtual tables have DECL_CONTEXT set to their associated class,
|
|
|
|
|
so they are automatically handled above. */
|
|
|
|
|
gcc_assert (TREE_CODE (decl) != VAR_DECL
|
|
|
|
|
|| !DECL_VTABLE_OR_VTT_P (decl));
|
|
|
|
|
/* Entities not associated with any class just get the
|
|
|
|
|
visibility specified by their attributes. */
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* By default, static data members and function members receive
|
|
|
|
|
the visibility of their containing class. */
|
|
|
|
|
if (class_type)
|
|
|
|
|
{
|
|
|
|
|
if (TARGET_DLLIMPORT_DECL_ATTRIBUTES
|
|
|
|
|
&& lookup_attribute ("dllexport", TYPE_ATTRIBUTES (class_type)))
|
|
|
|
|
{
|
|
|
|
|
DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
|
|
|
|
|
DECL_VISIBILITY_SPECIFIED (decl) = 1;
|
|
|
|
|
}
|
|
|
|
|
else if (TREE_CODE (decl) == FUNCTION_DECL
|
|
|
|
|
&& DECL_DECLARED_INLINE_P (decl)
|
|
|
|
|
&& visibility_options.inlines_hidden)
|
|
|
|
|
{
|
|
|
|
|
/* Don't change it if it has been set explicitly by user. */
|
|
|
|
|
if (!DECL_VISIBILITY_SPECIFIED (decl))
|
|
|
|
|
{
|
|
|
|
|
DECL_VISIBILITY (decl) = VISIBILITY_HIDDEN;
|
|
|
|
|
DECL_VISIBILITY_SPECIFIED (decl) = 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else if (CLASSTYPE_VISIBILITY_SPECIFIED (class_type))
|
|
|
|
|
{
|
|
|
|
|
DECL_VISIBILITY (decl) = CLASSTYPE_VISIBILITY (class_type);
|
|
|
|
|
DECL_VISIBILITY_SPECIFIED (decl) = 1;
|
|
|
|
|
}
|
|
|
|
|
else if (!DECL_VISIBILITY_SPECIFIED (decl))
|
|
|
|
|
{
|
|
|
|
|
DECL_VISIBILITY (decl) = CLASSTYPE_VISIBILITY (class_type);
|
|
|
|
|
DECL_VISIBILITY_SPECIFIED (decl) = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* DECL is a FUNCTION_DECL or VAR_DECL. If the object file linkage
|
|
|
|
|
for DECL has not already been determined, do so now by setting
|
|
|
|
|
DECL_EXTERNAL, DECL_COMDAT and other related flags. Until this
|
|
|
|
|
function is called entities with vague linkage whose definitions
|
|
|
|
|
are available must have TREE_PUBLIC set.
|
|
|
|
|
|
|
|
|
|
If this function decides to place DECL in COMDAT, it will set
|
|
|
|
|
appropriate flags -- but will not clear DECL_EXTERNAL. It is up to
|
|
|
|
|
the caller to decide whether or not to clear DECL_EXTERNAL. Some
|
|
|
|
|
callers defer that decision until it is clear that DECL is actually
|
|
|
|
|
required. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
import_export_decl (tree decl)
|
|
|
|
|
{
|
|
|
|
|
int emit_p;
|
|
|
|
|
bool comdat_p;
|
|
|
|
|
bool import_p;
|
|
|
|
|
tree class_type = NULL_TREE;
|
|
|
|
|
|
|
|
|
|
if (DECL_INTERFACE_KNOWN (decl))
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
/* We cannot determine what linkage to give to an entity with vague
|
|
|
|
|
linkage until the end of the file. For example, a virtual table
|
|
|
|
|
for a class will be defined if and only if the key method is
|
|
|
|
|
defined in this translation unit. As a further example, consider
|
|
|
|
|
that when compiling a translation unit that uses PCH file with
|
|
|
|
|
"-frepo" it would be incorrect to make decisions about what
|
|
|
|
|
entities to emit when building the PCH; those decisions must be
|
|
|
|
|
delayed until the repository information has been processed. */
|
|
|
|
|
gcc_assert (at_eof);
|
|
|
|
|
/* Object file linkage for explicit instantiations is handled in
|
|
|
|
|
mark_decl_instantiated. For static variables in functions with
|
|
|
|
|
vague linkage, maybe_commonize_var is used.
|
|
|
|
|
|
|
|
|
|
Therefore, the only declarations that should be provided to this
|
|
|
|
|
function are those with external linkage that are:
|
|
|
|
|
|
|
|
|
|
* implicit instantiations of function templates
|
|
|
|
|
|
|
|
|
|
* inline function
|
|
|
|
|
|
|
|
|
|
* implicit instantiations of static data members of class
|
|
|
|
|
templates
|
|
|
|
|
|
|
|
|
|
* virtual tables
|
|
|
|
|
|
|
|
|
|
* typeinfo objects
|
|
|
|
|
|
|
|
|
|
Furthermore, all entities that reach this point must have a
|
|
|
|
|
definition available in this translation unit.
|
|
|
|
|
|
|
|
|
|
The following assertions check these conditions. */
|
|
|
|
|
gcc_assert (TREE_CODE (decl) == FUNCTION_DECL
|
|
|
|
|
|| TREE_CODE (decl) == VAR_DECL);
|
|
|
|
|
/* Any code that creates entities with TREE_PUBLIC cleared should
|
|
|
|
|
also set DECL_INTERFACE_KNOWN. */
|
|
|
|
|
gcc_assert (TREE_PUBLIC (decl));
|
|
|
|
|
if (TREE_CODE (decl) == FUNCTION_DECL)
|
|
|
|
|
gcc_assert (DECL_IMPLICIT_INSTANTIATION (decl)
|
|
|
|
|
|| DECL_FRIEND_PSEUDO_TEMPLATE_INSTANTIATION (decl)
|
|
|
|
|
|| DECL_DECLARED_INLINE_P (decl));
|
|
|
|
|
else
|
|
|
|
|
gcc_assert (DECL_IMPLICIT_INSTANTIATION (decl)
|
|
|
|
|
|| DECL_VTABLE_OR_VTT_P (decl)
|
|
|
|
|
|| DECL_TINFO_P (decl));
|
|
|
|
|
/* Check that a definition of DECL is available in this translation
|
|
|
|
|
unit. */
|
|
|
|
|
gcc_assert (!DECL_REALLY_EXTERN (decl));
|
|
|
|
|
|
|
|
|
|
/* Assume that DECL will not have COMDAT linkage. */
|
|
|
|
|
comdat_p = false;
|
|
|
|
|
/* Assume that DECL will not be imported into this translation
|
|
|
|
|
unit. */
|
|
|
|
|
import_p = false;
|
|
|
|
|
|
|
|
|
|
/* See if the repository tells us whether or not to emit DECL in
|
|
|
|
|
this translation unit. */
|
|
|
|
|
emit_p = repo_emit_p (decl);
|
|
|
|
|
if (emit_p == 0)
|
|
|
|
|
import_p = true;
|
|
|
|
|
else if (emit_p == 1)
|
|
|
|
|
{
|
|
|
|
|
/* The repository indicates that this entity should be defined
|
|
|
|
|
here. Make sure the back end honors that request. */
|
|
|
|
|
if (TREE_CODE (decl) == VAR_DECL)
|
|
|
|
|
mark_needed (decl);
|
|
|
|
|
else if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (decl)
|
|
|
|
|
|| DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (decl))
|
|
|
|
|
{
|
|
|
|
|
tree clone;
|
|
|
|
|
FOR_EACH_CLONE (clone, decl)
|
|
|
|
|
mark_needed (clone);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
mark_needed (decl);
|
|
|
|
|
/* Output the definition as an ordinary strong definition. */
|
|
|
|
|
DECL_EXTERNAL (decl) = 0;
|
|
|
|
|
DECL_INTERFACE_KNOWN (decl) = 1;
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (import_p)
|
|
|
|
|
/* We have already decided what to do with this DECL; there is no
|
|
|
|
|
need to check anything further. */
|
|
|
|
|
;
|
|
|
|
|
else if (TREE_CODE (decl) == VAR_DECL && DECL_VTABLE_OR_VTT_P (decl))
|
|
|
|
|
{
|
|
|
|
|
class_type = DECL_CONTEXT (decl);
|
|
|
|
|
import_export_class (class_type);
|
|
|
|
|
if (TYPE_FOR_JAVA (class_type))
|
|
|
|
|
import_p = true;
|
|
|
|
|
else if (CLASSTYPE_INTERFACE_KNOWN (class_type)
|
|
|
|
|
&& CLASSTYPE_INTERFACE_ONLY (class_type))
|
|
|
|
|
import_p = true;
|
|
|
|
|
else if ((!flag_weak || TARGET_WEAK_NOT_IN_ARCHIVE_TOC)
|
|
|
|
|
&& !CLASSTYPE_USE_TEMPLATE (class_type)
|
|
|
|
|
&& CLASSTYPE_KEY_METHOD (class_type)
|
|
|
|
|
&& !DECL_DECLARED_INLINE_P (CLASSTYPE_KEY_METHOD (class_type)))
|
|
|
|
|
/* The ABI requires that all virtual tables be emitted with
|
|
|
|
|
COMDAT linkage. However, on systems where COMDAT symbols
|
|
|
|
|
don't show up in the table of contents for a static
|
|
|
|
|
archive, or on systems without weak symbols (where we
|
|
|
|
|
approximate COMDAT linkage by using internal linkage), the
|
|
|
|
|
linker will report errors about undefined symbols because
|
|
|
|
|
it will not see the virtual table definition. Therefore,
|
|
|
|
|
in the case that we know that the virtual table will be
|
|
|
|
|
emitted in only one translation unit, we make the virtual
|
|
|
|
|
table an ordinary definition with external linkage. */
|
|
|
|
|
DECL_EXTERNAL (decl) = 0;
|
|
|
|
|
else if (CLASSTYPE_INTERFACE_KNOWN (class_type))
|
|
|
|
|
{
|
|
|
|
|
/* CLASS_TYPE is being exported from this translation unit,
|
|
|
|
|
so DECL should be defined here. */
|
|
|
|
|
if (!flag_weak && CLASSTYPE_EXPLICIT_INSTANTIATION (class_type))
|
|
|
|
|
/* If a class is declared in a header with the "extern
|
|
|
|
|
template" extension, then it will not be instantiated,
|
|
|
|
|
even in translation units that would normally require
|
|
|
|
|
it. Often such classes are explicitly instantiated in
|
|
|
|
|
one translation unit. Therefore, the explicit
|
|
|
|
|
instantiation must be made visible to other translation
|
|
|
|
|
units. */
|
|
|
|
|
DECL_EXTERNAL (decl) = 0;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* The generic C++ ABI says that class data is always
|
|
|
|
|
COMDAT, even if there is a key function. Some
|
|
|
|
|
variants (e.g., the ARM EABI) says that class data
|
|
|
|
|
only has COMDAT linkage if the class data might
|
|
|
|
|
be emitted in more than one translation unit. */
|
|
|
|
|
if (!CLASSTYPE_KEY_METHOD (class_type)
|
|
|
|
|
|| targetm.cxx.class_data_always_comdat ())
|
|
|
|
|
{
|
|
|
|
|
/* The ABI requires COMDAT linkage. Normally, we
|
|
|
|
|
only emit COMDAT things when they are needed;
|
|
|
|
|
make sure that we realize that this entity is
|
|
|
|
|
indeed needed. */
|
|
|
|
|
comdat_p = true;
|
|
|
|
|
mark_needed (decl);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else if (!flag_implicit_templates
|
|
|
|
|
&& CLASSTYPE_IMPLICIT_INSTANTIATION (class_type))
|
|
|
|
|
import_p = true;
|
|
|
|
|
else
|
|
|
|
|
comdat_p = true;
|
|
|
|
|
}
|
|
|
|
|
else if (TREE_CODE (decl) == VAR_DECL && DECL_TINFO_P (decl))
|
|
|
|
|
{
|
|
|
|
|
tree type = TREE_TYPE (DECL_NAME (decl));
|
|
|
|
|
if (CLASS_TYPE_P (type))
|
|
|
|
|
{
|
|
|
|
|
class_type = type;
|
|
|
|
|
import_export_class (type);
|
|
|
|
|
if (CLASSTYPE_INTERFACE_KNOWN (type)
|
|
|
|
|
&& TYPE_POLYMORPHIC_P (type)
|
|
|
|
|
&& CLASSTYPE_INTERFACE_ONLY (type)
|
|
|
|
|
/* If -fno-rtti was specified, then we cannot be sure
|
|
|
|
|
that RTTI information will be emitted with the
|
|
|
|
|
virtual table of the class, so we must emit it
|
|
|
|
|
wherever it is used. */
|
|
|
|
|
&& flag_rtti)
|
|
|
|
|
import_p = true;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (CLASSTYPE_INTERFACE_KNOWN (type)
|
|
|
|
|
&& !CLASSTYPE_INTERFACE_ONLY (type))
|
|
|
|
|
{
|
|
|
|
|
comdat_p = targetm.cxx.class_data_always_comdat ();
|
|
|
|
|
mark_needed (decl);
|
|
|
|
|
if (!flag_weak)
|
|
|
|
|
{
|
|
|
|
|
comdat_p = false;
|
|
|
|
|
DECL_EXTERNAL (decl) = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
comdat_p = true;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
comdat_p = true;
|
|
|
|
|
}
|
|
|
|
|
else if (DECL_TEMPLATE_INSTANTIATION (decl)
|
|
|
|
|
|| DECL_FRIEND_PSEUDO_TEMPLATE_INSTANTIATION (decl))
|
|
|
|
|
{
|
|
|
|
|
/* DECL is an implicit instantiation of a function or static
|
|
|
|
|
data member. */
|
|
|
|
|
if (flag_implicit_templates
|
|
|
|
|
|| (flag_implicit_inline_templates
|
|
|
|
|
&& TREE_CODE (decl) == FUNCTION_DECL
|
|
|
|
|
&& DECL_DECLARED_INLINE_P (decl)))
|
|
|
|
|
comdat_p = true;
|
|
|
|
|
else
|
|
|
|
|
/* If we are not implicitly generating templates, then mark
|
|
|
|
|
this entity as undefined in this translation unit. */
|
|
|
|
|
import_p = true;
|
|
|
|
|
}
|
|
|
|
|
else if (DECL_FUNCTION_MEMBER_P (decl))
|
|
|
|
|
{
|
|
|
|
|
if (!DECL_DECLARED_INLINE_P (decl))
|
|
|
|
|
{
|
|
|
|
|
tree ctype = DECL_CONTEXT (decl);
|
|
|
|
|
import_export_class (ctype);
|
|
|
|
|
if (CLASSTYPE_INTERFACE_KNOWN (ctype))
|
|
|
|
|
{
|
|
|
|
|
DECL_NOT_REALLY_EXTERN (decl)
|
|
|
|
|
= ! (CLASSTYPE_INTERFACE_ONLY (ctype)
|
|
|
|
|
|| (DECL_DECLARED_INLINE_P (decl)
|
|
|
|
|
&& ! flag_implement_inlines
|
|
|
|
|
&& !DECL_VINDEX (decl)));
|
|
|
|
|
|
|
|
|
|
if (!DECL_NOT_REALLY_EXTERN (decl))
|
|
|
|
|
DECL_EXTERNAL (decl) = 1;
|
|
|
|
|
|
|
|
|
|
/* Always make artificials weak. */
|
|
|
|
|
if (DECL_ARTIFICIAL (decl) && flag_weak)
|
|
|
|
|
comdat_p = true;
|
|
|
|
|
else
|
|
|
|
|
maybe_make_one_only (decl);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
comdat_p = true;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
comdat_p = true;
|
|
|
|
|
|
|
|
|
|
if (import_p)
|
|
|
|
|
{
|
|
|
|
|
/* If we are importing DECL into this translation unit, mark is
|
|
|
|
|
an undefined here. */
|
|
|
|
|
DECL_EXTERNAL (decl) = 1;
|
|
|
|
|
DECL_NOT_REALLY_EXTERN (decl) = 0;
|
|
|
|
|
}
|
|
|
|
|
else if (comdat_p)
|
|
|
|
|
{
|
|
|
|
|
/* If we decided to put DECL in COMDAT, mark it accordingly at
|
|
|
|
|
this point. */
|
|
|
|
|
comdat_linkage (decl);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Give the target a chance to override the visibility associated
|
|
|
|
|
with DECL. */
|
|
|
|
|
if (TREE_CODE (decl) == VAR_DECL
|
|
|
|
|
&& (DECL_TINFO_P (decl)
|
|
|
|
|
|| (DECL_VTABLE_OR_VTT_P (decl)
|
|
|
|
|
/* Construction virtual tables are not exported because
|
|
|
|
|
they cannot be referred to from other object files;
|
|
|
|
|
their name is not standardized by the ABI. */
|
|
|
|
|
&& !DECL_CONSTRUCTION_VTABLE_P (decl)))
|
|
|
|
|
&& TREE_PUBLIC (decl)
|
|
|
|
|
&& !DECL_REALLY_EXTERN (decl)
|
|
|
|
|
&& DECL_VISIBILITY_SPECIFIED (decl)
|
|
|
|
|
&& (!class_type || !CLASSTYPE_VISIBILITY_SPECIFIED (class_type)))
|
|
|
|
|
targetm.cxx.determine_class_data_visibility (decl);
|
|
|
|
|
|
|
|
|
|
DECL_INTERFACE_KNOWN (decl) = 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return an expression that performs the destruction of DECL, which
|
|
|
|
|
must be a VAR_DECL whose type has a non-trivial destructor, or is
|
|
|
|
|
an array whose (innermost) elements have a non-trivial destructor. */
|
|
|
|
|
|
|
|
|
|
tree
|
|
|
|
|
build_cleanup (tree decl)
|
|
|
|
|
{
|
|
|
|
|
tree temp;
|
|
|
|
|
tree type = TREE_TYPE (decl);
|
|
|
|
|
|
|
|
|
|
/* This function should only be called for declarations that really
|
|
|
|
|
require cleanups. */
|
|
|
|
|
gcc_assert (!TYPE_HAS_TRIVIAL_DESTRUCTOR (type));
|
|
|
|
|
|
|
|
|
|
/* Treat all objects with destructors as used; the destructor may do
|
|
|
|
|
something substantive. */
|
|
|
|
|
mark_used (decl);
|
|
|
|
|
|
|
|
|
|
if (TREE_CODE (type) == ARRAY_TYPE)
|
|
|
|
|
temp = decl;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
cxx_mark_addressable (decl);
|
|
|
|
|
temp = build1 (ADDR_EXPR, build_pointer_type (type), decl);
|
|
|
|
|
}
|
|
|
|
|
temp = build_delete (TREE_TYPE (temp), temp,
|
|
|
|
|
sfk_complete_destructor,
|
|
|
|
|
LOOKUP_NORMAL|LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
|
|
|
|
|
return temp;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Returns the initialization guard variable for the variable DECL,
|
|
|
|
|
which has static storage duration. */
|
|
|
|
|
|
|
|
|
|
tree
|
|
|
|
|
get_guard (tree decl)
|
|
|
|
|
{
|
|
|
|
|
tree sname;
|
|
|
|
|
tree guard;
|
|
|
|
|
|
|
|
|
|
sname = mangle_guard_variable (decl);
|
|
|
|
|
guard = IDENTIFIER_GLOBAL_VALUE (sname);
|
|
|
|
|
if (! guard)
|
|
|
|
|
{
|
|
|
|
|
tree guard_type;
|
|
|
|
|
|
|
|
|
|
/* We use a type that is big enough to contain a mutex as well
|
|
|
|
|
as an integer counter. */
|
|
|
|
|
guard_type = targetm.cxx.guard_type ();
|
|
|
|
|
guard = build_decl (VAR_DECL, sname, guard_type);
|
|
|
|
|
|
|
|
|
|
/* The guard should have the same linkage as what it guards. */
|
|
|
|
|
TREE_PUBLIC (guard) = TREE_PUBLIC (decl);
|
|
|
|
|
TREE_STATIC (guard) = TREE_STATIC (decl);
|
|
|
|
|
DECL_COMMON (guard) = DECL_COMMON (decl);
|
|
|
|
|
DECL_ONE_ONLY (guard) = DECL_ONE_ONLY (decl);
|
|
|
|
|
if (TREE_PUBLIC (decl))
|
|
|
|
|
DECL_WEAK (guard) = DECL_WEAK (decl);
|
|
|
|
|
|
|
|
|
|
DECL_ARTIFICIAL (guard) = 1;
|
|
|
|
|
DECL_IGNORED_P (guard) = 1;
|
|
|
|
|
TREE_USED (guard) = 1;
|
|
|
|
|
pushdecl_top_level_and_finish (guard, NULL_TREE);
|
|
|
|
|
}
|
|
|
|
|
return guard;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return those bits of the GUARD variable that should be set when the
|
|
|
|
|
guarded entity is actually initialized. */
|
|
|
|
|
|
|
|
|
|
static tree
|
|
|
|
|
get_guard_bits (tree guard)
|
|
|
|
|
{
|
|
|
|
|
if (!targetm.cxx.guard_mask_bit ())
|
|
|
|
|
{
|
|
|
|
|
/* We only set the first byte of the guard, in order to leave room
|
|
|
|
|
for a mutex in the high-order bits. */
|
|
|
|
|
guard = build1 (ADDR_EXPR,
|
|
|
|
|
build_pointer_type (TREE_TYPE (guard)),
|
|
|
|
|
guard);
|
|
|
|
|
guard = build1 (NOP_EXPR,
|
|
|
|
|
build_pointer_type (char_type_node),
|
|
|
|
|
guard);
|
|
|
|
|
guard = build1 (INDIRECT_REF, char_type_node, guard);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return guard;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return an expression which determines whether or not the GUARD
|
|
|
|
|
variable has already been initialized. */
|
|
|
|
|
|
|
|
|
|
tree
|
|
|
|
|
get_guard_cond (tree guard)
|
|
|
|
|
{
|
|
|
|
|
tree guard_value;
|
|
|
|
|
|
|
|
|
|
/* Check to see if the GUARD is zero. */
|
|
|
|
|
guard = get_guard_bits (guard);
|
|
|
|
|
|
|
|
|
|
/* Mask off all but the low bit. */
|
|
|
|
|
if (targetm.cxx.guard_mask_bit ())
|
|
|
|
|
{
|
|
|
|
|
guard_value = integer_one_node;
|
|
|
|
|
if (!same_type_p (TREE_TYPE (guard_value), TREE_TYPE (guard)))
|
|
|
|
|
guard_value = convert (TREE_TYPE (guard), guard_value);
|
|
|
|
|
guard = cp_build_binary_op (BIT_AND_EXPR, guard, guard_value);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
guard_value = integer_zero_node;
|
|
|
|
|
if (!same_type_p (TREE_TYPE (guard_value), TREE_TYPE (guard)))
|
|
|
|
|
guard_value = convert (TREE_TYPE (guard), guard_value);
|
|
|
|
|
return cp_build_binary_op (EQ_EXPR, guard, guard_value);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return an expression which sets the GUARD variable, indicating that
|
|
|
|
|
the variable being guarded has been initialized. */
|
|
|
|
|
|
|
|
|
|
tree
|
|
|
|
|
set_guard (tree guard)
|
|
|
|
|
{
|
|
|
|
|
tree guard_init;
|
|
|
|
|
|
|
|
|
|
/* Set the GUARD to one. */
|
|
|
|
|
guard = get_guard_bits (guard);
|
|
|
|
|
guard_init = integer_one_node;
|
|
|
|
|
if (!same_type_p (TREE_TYPE (guard_init), TREE_TYPE (guard)))
|
|
|
|
|
guard_init = convert (TREE_TYPE (guard), guard_init);
|
|
|
|
|
return build_modify_expr (guard, NOP_EXPR, guard_init);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Start the process of running a particular set of global constructors
|
|
|
|
|
or destructors. Subroutine of do_[cd]tors. */
|
|
|
|
|
|
|
|
|
|
static tree
|
|
|
|
|
start_objects (int method_type, int initp)
|
|
|
|
|
{
|
|
|
|
|
tree body;
|
|
|
|
|
tree fndecl;
|
|
|
|
|
char type[10];
|
|
|
|
|
|
|
|
|
|
/* Make ctor or dtor function. METHOD_TYPE may be 'I' or 'D'. */
|
|
|
|
|
|
|
|
|
|
if (initp != DEFAULT_INIT_PRIORITY)
|
|
|
|
|
{
|
|
|
|
|
char joiner;
|
|
|
|
|
|
|
|
|
|
#ifdef JOINER
|
|
|
|
|
joiner = JOINER;
|
|
|
|
|
#else
|
|
|
|
|
joiner = '_';
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
sprintf (type, "%c%c%.5u", method_type, joiner, initp);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
sprintf (type, "%c", method_type);
|
|
|
|
|
|
|
|
|
|
fndecl = build_lang_decl (FUNCTION_DECL,
|
|
|
|
|
get_file_function_name_long (type),
|
|
|
|
|
build_function_type (void_type_node,
|
|
|
|
|
void_list_node));
|
|
|
|
|
start_preparsed_function (fndecl, /*attrs=*/NULL_TREE, SF_PRE_PARSED);
|
|
|
|
|
|
|
|
|
|
/* It can be a static function as long as collect2 does not have
|
|
|
|
|
to scan the object file to find its ctor/dtor routine. */
|
|
|
|
|
TREE_PUBLIC (current_function_decl) = ! targetm.have_ctors_dtors;
|
|
|
|
|
|
|
|
|
|
/* Mark this declaration as used to avoid spurious warnings. */
|
|
|
|
|
TREE_USED (current_function_decl) = 1;
|
|
|
|
|
|
|
|
|
|
/* Mark this function as a global constructor or destructor. */
|
|
|
|
|
if (method_type == 'I')
|
|
|
|
|
DECL_GLOBAL_CTOR_P (current_function_decl) = 1;
|
|
|
|
|
else
|
|
|
|
|
DECL_GLOBAL_DTOR_P (current_function_decl) = 1;
|
|
|
|
|
DECL_LANG_SPECIFIC (current_function_decl)->decl_flags.u2sel = 1;
|
|
|
|
|
|
|
|
|
|
body = begin_compound_stmt (BCS_FN_BODY);
|
|
|
|
|
|
|
|
|
|
/* We cannot allow these functions to be elided, even if they do not
|
|
|
|
|
have external linkage. And, there's no point in deferring
|
|
|
|
|
compilation of thes functions; they're all going to have to be
|
|
|
|
|
out anyhow. */
|
|
|
|
|
DECL_INLINE (current_function_decl) = 0;
|
|
|
|
|
DECL_UNINLINABLE (current_function_decl) = 1;
|
|
|
|
|
|
|
|
|
|
return body;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Finish the process of running a particular set of global constructors
|
|
|
|
|
or destructors. Subroutine of do_[cd]tors. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
finish_objects (int method_type, int initp, tree body)
|
|
|
|
|
{
|
|
|
|
|
tree fn;
|
|
|
|
|
|
|
|
|
|
/* Finish up. */
|
|
|
|
|
finish_compound_stmt (body);
|
|
|
|
|
fn = finish_function (0);
|
|
|
|
|
expand_or_defer_fn (fn);
|
|
|
|
|
|
|
|
|
|
/* When only doing semantic analysis, and no RTL generation, we
|
|
|
|
|
can't call functions that directly emit assembly code; there is
|
|
|
|
|
no assembly file in which to put the code. */
|
|
|
|
|
if (flag_syntax_only)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
if (targetm.have_ctors_dtors)
|
|
|
|
|
{
|
|
|
|
|
rtx fnsym = XEXP (DECL_RTL (fn), 0);
|
|
|
|
|
cgraph_mark_needed_node (cgraph_node (fn));
|
|
|
|
|
if (method_type == 'I')
|
|
|
|
|
(* targetm.asm_out.constructor) (fnsym, initp);
|
|
|
|
|
else
|
|
|
|
|
(* targetm.asm_out.destructor) (fnsym, initp);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* The names of the parameters to the function created to handle
|
|
|
|
|
initializations and destructions for objects with static storage
|
|
|
|
|
duration. */
|
|
|
|
|
#define INITIALIZE_P_IDENTIFIER "__initialize_p"
|
|
|
|
|
#define PRIORITY_IDENTIFIER "__priority"
|
|
|
|
|
|
|
|
|
|
/* The name of the function we create to handle initializations and
|
|
|
|
|
destructions for objects with static storage duration. */
|
|
|
|
|
#define SSDF_IDENTIFIER "__static_initialization_and_destruction"
|
|
|
|
|
|
|
|
|
|
/* The declaration for the __INITIALIZE_P argument. */
|
|
|
|
|
static GTY(()) tree initialize_p_decl;
|
|
|
|
|
|
|
|
|
|
/* The declaration for the __PRIORITY argument. */
|
|
|
|
|
static GTY(()) tree priority_decl;
|
|
|
|
|
|
|
|
|
|
/* The declaration for the static storage duration function. */
|
|
|
|
|
static GTY(()) tree ssdf_decl;
|
|
|
|
|
|
|
|
|
|
/* All the static storage duration functions created in this
|
|
|
|
|
translation unit. */
|
|
|
|
|
static GTY(()) VEC(tree,gc) *ssdf_decls;
|
|
|
|
|
|
|
|
|
|
/* A map from priority levels to information about that priority
|
|
|
|
|
level. There may be many such levels, so efficient lookup is
|
|
|
|
|
important. */
|
|
|
|
|
static splay_tree priority_info_map;
|
|
|
|
|
|
|
|
|
|
/* Begins the generation of the function that will handle all
|
|
|
|
|
initialization and destruction of objects with static storage
|
|
|
|
|
duration. The function generated takes two parameters of type
|
|
|
|
|
`int': __INITIALIZE_P and __PRIORITY. If __INITIALIZE_P is
|
|
|
|
|
nonzero, it performs initializations. Otherwise, it performs
|
|
|
|
|
destructions. It only performs those initializations or
|
|
|
|
|
destructions with the indicated __PRIORITY. The generated function
|
|
|
|
|
returns no value.
|
|
|
|
|
|
|
|
|
|
It is assumed that this function will only be called once per
|
|
|
|
|
translation unit. */
|
|
|
|
|
|
|
|
|
|
static tree
|
|
|
|
|
start_static_storage_duration_function (unsigned count)
|
|
|
|
|
{
|
|
|
|
|
tree parm_types;
|
|
|
|
|
tree type;
|
|
|
|
|
tree body;
|
|
|
|
|
char id[sizeof (SSDF_IDENTIFIER) + 1 /* '\0' */ + 32];
|
|
|
|
|
|
|
|
|
|
/* Create the identifier for this function. It will be of the form
|
|
|
|
|
SSDF_IDENTIFIER_<number>. */
|
|
|
|
|
sprintf (id, "%s_%u", SSDF_IDENTIFIER, count);
|
|
|
|
|
|
|
|
|
|
/* Create the parameters. */
|
|
|
|
|
parm_types = void_list_node;
|
|
|
|
|
parm_types = tree_cons (NULL_TREE, integer_type_node, parm_types);
|
|
|
|
|
parm_types = tree_cons (NULL_TREE, integer_type_node, parm_types);
|
|
|
|
|
type = build_function_type (void_type_node, parm_types);
|
|
|
|
|
|
|
|
|
|
/* Create the FUNCTION_DECL itself. */
|
|
|
|
|
ssdf_decl = build_lang_decl (FUNCTION_DECL,
|
|
|
|
|
get_identifier (id),
|
|
|
|
|
type);
|
|
|
|
|
TREE_PUBLIC (ssdf_decl) = 0;
|
|
|
|
|
DECL_ARTIFICIAL (ssdf_decl) = 1;
|
|
|
|
|
|
|
|
|
|
/* Put this function in the list of functions to be called from the
|
|
|
|
|
static constructors and destructors. */
|
|
|
|
|
if (!ssdf_decls)
|
|
|
|
|
{
|
|
|
|
|
ssdf_decls = VEC_alloc (tree, gc, 32);
|
|
|
|
|
|
|
|
|
|
/* Take this opportunity to initialize the map from priority
|
|
|
|
|
numbers to information about that priority level. */
|
|
|
|
|
priority_info_map = splay_tree_new (splay_tree_compare_ints,
|
|
|
|
|
/*delete_key_fn=*/0,
|
|
|
|
|
/*delete_value_fn=*/
|
|
|
|
|
(splay_tree_delete_value_fn) &free);
|
|
|
|
|
|
|
|
|
|
/* We always need to generate functions for the
|
|
|
|
|
DEFAULT_INIT_PRIORITY so enter it now. That way when we walk
|
|
|
|
|
priorities later, we'll be sure to find the
|
|
|
|
|
DEFAULT_INIT_PRIORITY. */
|
|
|
|
|
get_priority_info (DEFAULT_INIT_PRIORITY);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
VEC_safe_push (tree, gc, ssdf_decls, ssdf_decl);
|
|
|
|
|
|
|
|
|
|
/* Create the argument list. */
|
|
|
|
|
initialize_p_decl = cp_build_parm_decl
|
|
|
|
|
(get_identifier (INITIALIZE_P_IDENTIFIER), integer_type_node);
|
|
|
|
|
DECL_CONTEXT (initialize_p_decl) = ssdf_decl;
|
|
|
|
|
TREE_USED (initialize_p_decl) = 1;
|
|
|
|
|
priority_decl = cp_build_parm_decl
|
|
|
|
|
(get_identifier (PRIORITY_IDENTIFIER), integer_type_node);
|
|
|
|
|
DECL_CONTEXT (priority_decl) = ssdf_decl;
|
|
|
|
|
TREE_USED (priority_decl) = 1;
|
|
|
|
|
|
|
|
|
|
TREE_CHAIN (initialize_p_decl) = priority_decl;
|
|
|
|
|
DECL_ARGUMENTS (ssdf_decl) = initialize_p_decl;
|
|
|
|
|
|
|
|
|
|
/* Put the function in the global scope. */
|
|
|
|
|
pushdecl (ssdf_decl);
|
|
|
|
|
|
|
|
|
|
/* Start the function itself. This is equivalent to declaring the
|
|
|
|
|
function as:
|
|
|
|
|
|
|
|
|
|
static void __ssdf (int __initialize_p, init __priority_p);
|
|
|
|
|
|
|
|
|
|
It is static because we only need to call this function from the
|
|
|
|
|
various constructor and destructor functions for this module. */
|
|
|
|
|
start_preparsed_function (ssdf_decl,
|
|
|
|
|
/*attrs=*/NULL_TREE,
|
|
|
|
|
SF_PRE_PARSED);
|
|
|
|
|
|
|
|
|
|
/* Set up the scope of the outermost block in the function. */
|
|
|
|
|
body = begin_compound_stmt (BCS_FN_BODY);
|
|
|
|
|
|
|
|
|
|
/* This function must not be deferred because we are depending on
|
|
|
|
|
its compilation to tell us what is TREE_SYMBOL_REFERENCED. */
|
|
|
|
|
DECL_INLINE (ssdf_decl) = 0;
|
|
|
|
|
DECL_UNINLINABLE (ssdf_decl) = 1;
|
|
|
|
|
|
|
|
|
|
return body;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Finish the generation of the function which performs initialization
|
|
|
|
|
and destruction of objects with static storage duration. After
|
|
|
|
|
this point, no more such objects can be created. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
finish_static_storage_duration_function (tree body)
|
|
|
|
|
{
|
|
|
|
|
/* Close out the function. */
|
|
|
|
|
finish_compound_stmt (body);
|
|
|
|
|
expand_or_defer_fn (finish_function (0));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return the information about the indicated PRIORITY level. If no
|
|
|
|
|
code to handle this level has yet been generated, generate the
|
|
|
|
|
appropriate prologue. */
|
|
|
|
|
|
|
|
|
|
static priority_info
|
|
|
|
|
get_priority_info (int priority)
|
|
|
|
|
{
|
|
|
|
|
priority_info pi;
|
|
|
|
|
splay_tree_node n;
|
|
|
|
|
|
|
|
|
|
n = splay_tree_lookup (priority_info_map,
|
|
|
|
|
(splay_tree_key) priority);
|
|
|
|
|
if (!n)
|
|
|
|
|
{
|
|
|
|
|
/* Create a new priority information structure, and insert it
|
|
|
|
|
into the map. */
|
|
|
|
|
pi = xmalloc (sizeof (struct priority_info_s));
|
|
|
|
|
pi->initializations_p = 0;
|
|
|
|
|
pi->destructions_p = 0;
|
|
|
|
|
splay_tree_insert (priority_info_map,
|
|
|
|
|
(splay_tree_key) priority,
|
|
|
|
|
(splay_tree_value) pi);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
pi = (priority_info) n->value;
|
|
|
|
|
|
|
|
|
|
return pi;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* The effective initialization priority of a DECL. */
|
|
|
|
|
|
|
|
|
|
#define DECL_EFFECTIVE_INIT_PRIORITY(decl) \
|
|
|
|
|
((!DECL_HAS_INIT_PRIORITY_P (decl) || DECL_INIT_PRIORITY (decl) == 0) \
|
|
|
|
|
? DEFAULT_INIT_PRIORITY : DECL_INIT_PRIORITY (decl))
|
|
|
|
|
|
|
|
|
|
/* Whether a DECL needs a guard to protect it against multiple
|
|
|
|
|
initialization. */
|
|
|
|
|
|
|
|
|
|
#define NEEDS_GUARD_P(decl) (TREE_PUBLIC (decl) && (DECL_COMMON (decl) \
|
|
|
|
|
|| DECL_ONE_ONLY (decl) \
|
|
|
|
|
|| DECL_WEAK (decl)))
|
|
|
|
|
|
|
|
|
|
/* Set up to handle the initialization or destruction of DECL. If
|
|
|
|
|
INITP is nonzero, we are initializing the variable. Otherwise, we
|
|
|
|
|
are destroying it. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
one_static_initialization_or_destruction (tree decl, tree init, bool initp)
|
|
|
|
|
{
|
|
|
|
|
tree guard_if_stmt = NULL_TREE;
|
|
|
|
|
tree guard;
|
|
|
|
|
|
|
|
|
|
/* If we are supposed to destruct and there's a trivial destructor,
|
|
|
|
|
nothing has to be done. */
|
|
|
|
|
if (!initp
|
|
|
|
|
&& TYPE_HAS_TRIVIAL_DESTRUCTOR (TREE_TYPE (decl)))
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
/* Trick the compiler into thinking we are at the file and line
|
|
|
|
|
where DECL was declared so that error-messages make sense, and so
|
|
|
|
|
that the debugger will show somewhat sensible file and line
|
|
|
|
|
information. */
|
|
|
|
|
input_location = DECL_SOURCE_LOCATION (decl);
|
|
|
|
|
|
|
|
|
|
/* Because of:
|
|
|
|
|
|
|
|
|
|
[class.access.spec]
|
|
|
|
|
|
|
|
|
|
Access control for implicit calls to the constructors,
|
|
|
|
|
the conversion functions, or the destructor called to
|
|
|
|
|
create and destroy a static data member is performed as
|
|
|
|
|
if these calls appeared in the scope of the member's
|
|
|
|
|
class.
|
|
|
|
|
|
|
|
|
|
we pretend we are in a static member function of the class of
|
|
|
|
|
which the DECL is a member. */
|
|
|
|
|
if (member_p (decl))
|
|
|
|
|
{
|
|
|
|
|
DECL_CONTEXT (current_function_decl) = DECL_CONTEXT (decl);
|
|
|
|
|
DECL_STATIC_FUNCTION_P (current_function_decl) = 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Assume we don't need a guard. */
|
|
|
|
|
guard = NULL_TREE;
|
|
|
|
|
/* We need a guard if this is an object with external linkage that
|
|
|
|
|
might be initialized in more than one place. (For example, a
|
|
|
|
|
static data member of a template, when the data member requires
|
|
|
|
|
construction.) */
|
|
|
|
|
if (NEEDS_GUARD_P (decl))
|
|
|
|
|
{
|
|
|
|
|
tree guard_cond;
|
|
|
|
|
|
|
|
|
|
guard = get_guard (decl);
|
|
|
|
|
|
|
|
|
|
/* When using __cxa_atexit, we just check the GUARD as we would
|
|
|
|
|
for a local static. */
|
|
|
|
|
if (flag_use_cxa_atexit)
|
|
|
|
|
{
|
|
|
|
|
/* When using __cxa_atexit, we never try to destroy
|
|
|
|
|
anything from a static destructor. */
|
|
|
|
|
gcc_assert (initp);
|
|
|
|
|
guard_cond = get_guard_cond (guard);
|
|
|
|
|
}
|
|
|
|
|
/* If we don't have __cxa_atexit, then we will be running
|
|
|
|
|
destructors from .fini sections, or their equivalents. So,
|
|
|
|
|
we need to know how many times we've tried to initialize this
|
|
|
|
|
object. We do initializations only if the GUARD is zero,
|
|
|
|
|
i.e., if we are the first to initialize the variable. We do
|
|
|
|
|
destructions only if the GUARD is one, i.e., if we are the
|
|
|
|
|
last to destroy the variable. */
|
|
|
|
|
else if (initp)
|
|
|
|
|
guard_cond
|
|
|
|
|
= cp_build_binary_op (EQ_EXPR,
|
|
|
|
|
build_unary_op (PREINCREMENT_EXPR,
|
|
|
|
|
guard,
|
|
|
|
|
/*noconvert=*/1),
|
|
|
|
|
integer_one_node);
|
|
|
|
|
else
|
|
|
|
|
guard_cond
|
|
|
|
|
= cp_build_binary_op (EQ_EXPR,
|
|
|
|
|
build_unary_op (PREDECREMENT_EXPR,
|
|
|
|
|
guard,
|
|
|
|
|
/*noconvert=*/1),
|
|
|
|
|
integer_zero_node);
|
|
|
|
|
|
|
|
|
|
guard_if_stmt = begin_if_stmt ();
|
|
|
|
|
finish_if_stmt_cond (guard_cond, guard_if_stmt);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* If we're using __cxa_atexit, we have not already set the GUARD,
|
|
|
|
|
so we must do so now. */
|
|
|
|
|
if (guard && initp && flag_use_cxa_atexit)
|
|
|
|
|
finish_expr_stmt (set_guard (guard));
|
|
|
|
|
|
|
|
|
|
/* Perform the initialization or destruction. */
|
|
|
|
|
if (initp)
|
|
|
|
|
{
|
|
|
|
|
if (init)
|
|
|
|
|
finish_expr_stmt (init);
|
|
|
|
|
|
|
|
|
|
/* If we're using __cxa_atexit, register a function that calls the
|
|
|
|
|
destructor for the object. */
|
|
|
|
|
if (flag_use_cxa_atexit)
|
|
|
|
|
finish_expr_stmt (register_dtor_fn (decl));
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
finish_expr_stmt (build_cleanup (decl));
|
|
|
|
|
|
|
|
|
|
/* Finish the guard if-stmt, if necessary. */
|
|
|
|
|
if (guard)
|
|
|
|
|
{
|
|
|
|
|
finish_then_clause (guard_if_stmt);
|
|
|
|
|
finish_if_stmt (guard_if_stmt);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Now that we're done with DECL we don't need to pretend to be a
|
|
|
|
|
member of its class any longer. */
|
|
|
|
|
DECL_CONTEXT (current_function_decl) = NULL_TREE;
|
|
|
|
|
DECL_STATIC_FUNCTION_P (current_function_decl) = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Generate code to do the initialization or destruction of the decls in VARS,
|
|
|
|
|
a TREE_LIST of VAR_DECL with static storage duration.
|
|
|
|
|
Whether initialization or destruction is performed is specified by INITP. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
do_static_initialization_or_destruction (tree vars, bool initp)
|
|
|
|
|
{
|
|
|
|
|
tree node, init_if_stmt, cond;
|
|
|
|
|
|
|
|
|
|
/* Build the outer if-stmt to check for initialization or destruction. */
|
|
|
|
|
init_if_stmt = begin_if_stmt ();
|
|
|
|
|
cond = initp ? integer_one_node : integer_zero_node;
|
|
|
|
|
cond = cp_build_binary_op (EQ_EXPR,
|
|
|
|
|
initialize_p_decl,
|
|
|
|
|
cond);
|
|
|
|
|
finish_if_stmt_cond (cond, init_if_stmt);
|
|
|
|
|
|
|
|
|
|
node = vars;
|
|
|
|
|
do {
|
|
|
|
|
tree decl = TREE_VALUE (node);
|
|
|
|
|
tree priority_if_stmt;
|
|
|
|
|
int priority;
|
|
|
|
|
priority_info pi;
|
|
|
|
|
|
|
|
|
|
/* If we don't need a destructor, there's nothing to do. Avoid
|
|
|
|
|
creating a possibly empty if-stmt. */
|
|
|
|
|
if (!initp && TYPE_HAS_TRIVIAL_DESTRUCTOR (TREE_TYPE (decl)))
|
|
|
|
|
{
|
|
|
|
|
node = TREE_CHAIN (node);
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Remember that we had an initialization or finalization at this
|
|
|
|
|
priority. */
|
|
|
|
|
priority = DECL_EFFECTIVE_INIT_PRIORITY (decl);
|
|
|
|
|
pi = get_priority_info (priority);
|
|
|
|
|
if (initp)
|
|
|
|
|
pi->initializations_p = 1;
|
|
|
|
|
else
|
|
|
|
|
pi->destructions_p = 1;
|
|
|
|
|
|
|
|
|
|
/* Conditionalize this initialization on being in the right priority
|
|
|
|
|
and being initializing/finalizing appropriately. */
|
|
|
|
|
priority_if_stmt = begin_if_stmt ();
|
|
|
|
|
cond = cp_build_binary_op (EQ_EXPR,
|
|
|
|
|
priority_decl,
|
|
|
|
|
build_int_cst (NULL_TREE, priority));
|
|
|
|
|
finish_if_stmt_cond (cond, priority_if_stmt);
|
|
|
|
|
|
|
|
|
|
/* Process initializers with same priority. */
|
|
|
|
|
for (; node
|
|
|
|
|
&& DECL_EFFECTIVE_INIT_PRIORITY (TREE_VALUE (node)) == priority;
|
|
|
|
|
node = TREE_CHAIN (node))
|
|
|
|
|
/* Do one initialization or destruction. */
|
|
|
|
|
one_static_initialization_or_destruction (TREE_VALUE (node),
|
|
|
|
|
TREE_PURPOSE (node), initp);
|
|
|
|
|
|
|
|
|
|
/* Finish up the priority if-stmt body. */
|
|
|
|
|
finish_then_clause (priority_if_stmt);
|
|
|
|
|
finish_if_stmt (priority_if_stmt);
|
|
|
|
|
|
|
|
|
|
} while (node);
|
|
|
|
|
|
|
|
|
|
/* Finish up the init/destruct if-stmt body. */
|
|
|
|
|
finish_then_clause (init_if_stmt);
|
|
|
|
|
finish_if_stmt (init_if_stmt);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* VARS is a list of variables with static storage duration which may
|
|
|
|
|
need initialization and/or finalization. Remove those variables
|
|
|
|
|
that don't really need to be initialized or finalized, and return
|
|
|
|
|
the resulting list. The order in which the variables appear in
|
|
|
|
|
VARS is in reverse order of the order in which they should actually
|
|
|
|
|
be initialized. The list we return is in the unreversed order;
|
|
|
|
|
i.e., the first variable should be initialized first. */
|
|
|
|
|
|
|
|
|
|
static tree
|
|
|
|
|
prune_vars_needing_no_initialization (tree *vars)
|
|
|
|
|
{
|
|
|
|
|
tree *var = vars;
|
|
|
|
|
tree result = NULL_TREE;
|
|
|
|
|
|
|
|
|
|
while (*var)
|
|
|
|
|
{
|
|
|
|
|
tree t = *var;
|
|
|
|
|
tree decl = TREE_VALUE (t);
|
|
|
|
|
tree init = TREE_PURPOSE (t);
|
|
|
|
|
|
|
|
|
|
/* Deal gracefully with error. */
|
|
|
|
|
if (decl == error_mark_node)
|
|
|
|
|
{
|
|
|
|
|
var = &TREE_CHAIN (t);
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* The only things that can be initialized are variables. */
|
|
|
|
|
gcc_assert (TREE_CODE (decl) == VAR_DECL);
|
|
|
|
|
|
|
|
|
|
/* If this object is not defined, we don't need to do anything
|
|
|
|
|
here. */
|
|
|
|
|
if (DECL_EXTERNAL (decl))
|
|
|
|
|
{
|
|
|
|
|
var = &TREE_CHAIN (t);
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Also, if the initializer already contains errors, we can bail
|
|
|
|
|
out now. */
|
|
|
|
|
if (init && TREE_CODE (init) == TREE_LIST
|
|
|
|
|
&& value_member (error_mark_node, init))
|
|
|
|
|
{
|
|
|
|
|
var = &TREE_CHAIN (t);
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* This variable is going to need initialization and/or
|
|
|
|
|
finalization, so we add it to the list. */
|
|
|
|
|
*var = TREE_CHAIN (t);
|
|
|
|
|
TREE_CHAIN (t) = result;
|
|
|
|
|
result = t;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Make sure we have told the back end about all the variables in
|
|
|
|
|
VARS. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
write_out_vars (tree vars)
|
|
|
|
|
{
|
|
|
|
|
tree v;
|
|
|
|
|
|
|
|
|
|
for (v = vars; v; v = TREE_CHAIN (v))
|
|
|
|
|
{
|
|
|
|
|
tree var = TREE_VALUE (v);
|
|
|
|
|
if (!var_finalized_p (var))
|
|
|
|
|
{
|
|
|
|
|
import_export_decl (var);
|
|
|
|
|
rest_of_decl_compilation (var, 1, 1);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Generate a static constructor (if CONSTRUCTOR_P) or destructor
|
|
|
|
|
(otherwise) that will initialize all gobal objects with static
|
|
|
|
|
storage duration having the indicated PRIORITY. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
generate_ctor_or_dtor_function (bool constructor_p, int priority,
|
|
|
|
|
location_t *locus)
|
|
|
|
|
{
|
|
|
|
|
char function_key;
|
|
|
|
|
tree arguments;
|
|
|
|
|
tree fndecl;
|
|
|
|
|
tree body;
|
|
|
|
|
size_t i;
|
|
|
|
|
|
|
|
|
|
input_location = *locus;
|
|
|
|
|
#ifdef USE_MAPPED_LOCATION
|
|
|
|
|
/* ??? */
|
|
|
|
|
#else
|
|
|
|
|
locus->line++;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* We use `I' to indicate initialization and `D' to indicate
|
|
|
|
|
destruction. */
|
|
|
|
|
function_key = constructor_p ? 'I' : 'D';
|
|
|
|
|
|
|
|
|
|
/* We emit the function lazily, to avoid generating empty
|
|
|
|
|
global constructors and destructors. */
|
|
|
|
|
body = NULL_TREE;
|
|
|
|
|
|
|
|
|
|
/* For Objective-C++, we may need to initialize metadata found in this module.
|
|
|
|
|
This must be done _before_ any other static initializations. */
|
|
|
|
|
if (c_dialect_objc () && (priority == DEFAULT_INIT_PRIORITY)
|
|
|
|
|
&& constructor_p && objc_static_init_needed_p ())
|
|
|
|
|
{
|
|
|
|
|
body = start_objects (function_key, priority);
|
|
|
|
|
static_ctors = objc_generate_static_init_call (static_ctors);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Call the static storage duration function with appropriate
|
|
|
|
|
arguments. */
|
|
|
|
|
for (i = 0; VEC_iterate (tree, ssdf_decls, i, fndecl); ++i)
|
|
|
|
|
{
|
|
|
|
|
/* Calls to pure or const functions will expand to nothing. */
|
|
|
|
|
if (! (flags_from_decl_or_type (fndecl) & (ECF_CONST | ECF_PURE)))
|
|
|
|
|
{
|
|
|
|
|
if (! body)
|
|
|
|
|
body = start_objects (function_key, priority);
|
|
|
|
|
|
|
|
|
|
arguments = tree_cons (NULL_TREE,
|
|
|
|
|
build_int_cst (NULL_TREE, priority),
|
|
|
|
|
NULL_TREE);
|
|
|
|
|
arguments = tree_cons (NULL_TREE,
|
|
|
|
|
build_int_cst (NULL_TREE, constructor_p),
|
|
|
|
|
arguments);
|
|
|
|
|
finish_expr_stmt (build_function_call (fndecl, arguments));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If we're generating code for the DEFAULT_INIT_PRIORITY, throw in
|
|
|
|
|
calls to any functions marked with attributes indicating that
|
|
|
|
|
they should be called at initialization- or destruction-time. */
|
|
|
|
|
if (priority == DEFAULT_INIT_PRIORITY)
|
|
|
|
|
{
|
|
|
|
|
tree fns;
|
|
|
|
|
|
|
|
|
|
for (fns = constructor_p ? static_ctors : static_dtors;
|
|
|
|
|
fns;
|
|
|
|
|
fns = TREE_CHAIN (fns))
|
|
|
|
|
{
|
|
|
|
|
fndecl = TREE_VALUE (fns);
|
|
|
|
|
|
|
|
|
|
/* Calls to pure/const functions will expand to nothing. */
|
|
|
|
|
if (! (flags_from_decl_or_type (fndecl) & (ECF_CONST | ECF_PURE)))
|
|
|
|
|
{
|
|
|
|
|
if (! body)
|
|
|
|
|
body = start_objects (function_key, priority);
|
|
|
|
|
finish_expr_stmt (build_function_call (fndecl, NULL_TREE));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Close out the function. */
|
|
|
|
|
if (body)
|
|
|
|
|
finish_objects (function_key, priority, body);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Generate constructor and destructor functions for the priority
|
|
|
|
|
indicated by N. */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
generate_ctor_and_dtor_functions_for_priority (splay_tree_node n, void * data)
|
|
|
|
|
{
|
|
|
|
|
location_t *locus = data;
|
|
|
|
|
int priority = (int) n->key;
|
|
|
|
|
priority_info pi = (priority_info) n->value;
|
|
|
|
|
|
|
|
|
|
/* Generate the functions themselves, but only if they are really
|
|
|
|
|
needed. */
|
|
|
|
|
if (pi->initializations_p
|
|
|
|
|
|| (priority == DEFAULT_INIT_PRIORITY && static_ctors))
|
|
|
|
|
generate_ctor_or_dtor_function (/*constructor_p=*/true, priority, locus);
|
|
|
|
|
if (pi->destructions_p
|
|
|
|
|
|| (priority == DEFAULT_INIT_PRIORITY && static_dtors))
|
|
|
|
|
generate_ctor_or_dtor_function (/*constructor_p=*/false, priority, locus);
|
|
|
|
|
|
|
|
|
|
/* Keep iterating. */
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Called via LANGHOOK_CALLGRAPH_ANALYZE_EXPR. It is supposed to mark
|
|
|
|
|
decls referenced from frontend specific constructs; it will be called
|
|
|
|
|
only for language-specific tree nodes.
|
|
|
|
|
|
|
|
|
|
Here we must deal with member pointers. */
|
|
|
|
|
|
|
|
|
|
tree
|
|
|
|
|
cxx_callgraph_analyze_expr (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
|
|
|
|
|
tree from ATTRIBUTE_UNUSED)
|
|
|
|
|
{
|
|
|
|
|
tree t = *tp;
|
|
|
|
|
|
|
|
|
|
switch (TREE_CODE (t))
|
|
|
|
|
{
|
|
|
|
|
case PTRMEM_CST:
|
|
|
|
|
if (TYPE_PTRMEMFUNC_P (TREE_TYPE (t)))
|
|
|
|
|
cgraph_mark_needed_node (cgraph_node (PTRMEM_CST_MEMBER (t)));
|
|
|
|
|
break;
|
|
|
|
|
case BASELINK:
|
|
|
|
|
if (TREE_CODE (BASELINK_FUNCTIONS (t)) == FUNCTION_DECL)
|
|
|
|
|
cgraph_mark_needed_node (cgraph_node (BASELINK_FUNCTIONS (t)));
|
|
|
|
|
break;
|
|
|
|
|
case VAR_DECL:
|
|
|
|
|
if (DECL_VTABLE_OR_VTT_P (t))
|
|
|
|
|
{
|
|
|
|
|
/* The ABI requires that all virtual tables be emitted
|
|
|
|
|
whenever one of them is. */
|
|
|
|
|
tree vtbl;
|
|
|
|
|
for (vtbl = CLASSTYPE_VTABLES (DECL_CONTEXT (t));
|
|
|
|
|
vtbl;
|
|
|
|
|
vtbl = TREE_CHAIN (vtbl))
|
|
|
|
|
mark_decl_referenced (vtbl);
|
|
|
|
|
}
|
|
|
|
|
else if (DECL_CONTEXT (t)
|
|
|
|
|
&& TREE_CODE (DECL_CONTEXT (t)) == FUNCTION_DECL)
|
|
|
|
|
/* If we need a static variable in a function, then we
|
|
|
|
|
need the containing function. */
|
|
|
|
|
mark_decl_referenced (DECL_CONTEXT (t));
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Java requires that we be able to reference a local address for a
|
|
|
|
|
method, and not be confused by PLT entries. If hidden aliases are
|
|
|
|
|
supported, emit one for each java function that we've emitted. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
build_java_method_aliases (void)
|
|
|
|
|
{
|
|
|
|
|
struct cgraph_node *node;
|
|
|
|
|
|
|
|
|
|
#ifndef HAVE_GAS_HIDDEN
|
|
|
|
|
return;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
for (node = cgraph_nodes; node ; node = node->next)
|
|
|
|
|
{
|
|
|
|
|
tree fndecl = node->decl;
|
|
|
|
|
|
|
|
|
|
if (TREE_ASM_WRITTEN (fndecl)
|
|
|
|
|
&& DECL_CONTEXT (fndecl)
|
|
|
|
|
&& TYPE_P (DECL_CONTEXT (fndecl))
|
|
|
|
|
&& TYPE_FOR_JAVA (DECL_CONTEXT (fndecl))
|
|
|
|
|
&& TARGET_USE_LOCAL_THUNK_ALIAS_P (fndecl))
|
|
|
|
|
{
|
|
|
|
|
/* Mangle the name in a predictable way; we need to reference
|
|
|
|
|
this from a java compiled object file. */
|
|
|
|
|
tree oid, nid, alias;
|
|
|
|
|
const char *oname;
|
|
|
|
|
char *nname;
|
|
|
|
|
|
|
|
|
|
oid = DECL_ASSEMBLER_NAME (fndecl);
|
|
|
|
|
oname = IDENTIFIER_POINTER (oid);
|
|
|
|
|
gcc_assert (oname[0] == '_' && oname[1] == 'Z');
|
|
|
|
|
nname = ACONCAT (("_ZGA", oname+2, NULL));
|
|
|
|
|
nid = get_identifier (nname);
|
|
|
|
|
|
|
|
|
|
alias = make_alias_for (fndecl, nid);
|
|
|
|
|
TREE_PUBLIC (alias) = 1;
|
|
|
|
|
DECL_VISIBILITY (alias) = VISIBILITY_HIDDEN;
|
|
|
|
|
|
|
|
|
|
assemble_alias (alias, oid);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* This routine is called from the last rule in yyparse ().
|
|
|
|
|
Its job is to create all the code needed to initialize and
|
|
|
|
|
destroy the global aggregates. We do the destruction
|
|
|
|
|
first, since that way we only need to reverse the decls once. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
cp_finish_file (void)
|
|
|
|
|
{
|
|
|
|
|
tree vars;
|
|
|
|
|
bool reconsider;
|
|
|
|
|
size_t i;
|
|
|
|
|
location_t locus;
|
|
|
|
|
unsigned ssdf_count = 0;
|
|
|
|
|
int retries = 0;
|
|
|
|
|
tree decl;
|
|
|
|
|
|
|
|
|
|
locus = input_location;
|
|
|
|
|
at_eof = 1;
|
|
|
|
|
|
|
|
|
|
/* Bad parse errors. Just forget about it. */
|
|
|
|
|
if (! global_bindings_p () || current_class_type || decl_namespace_list)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
if (pch_file)
|
|
|
|
|
c_common_write_pch ();
|
|
|
|
|
|
|
|
|
|
#ifdef USE_MAPPED_LOCATION
|
|
|
|
|
/* FIXME - huh? */
|
|
|
|
|
#else
|
|
|
|
|
/* Otherwise, GDB can get confused, because in only knows
|
|
|
|
|
about source for LINENO-1 lines. */
|
|
|
|
|
input_line -= 1;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* We now have to write out all the stuff we put off writing out.
|
|
|
|
|
These include:
|
|
|
|
|
|
|
|
|
|
o Template specializations that we have not yet instantiated,
|
|
|
|
|
but which are needed.
|
|
|
|
|
o Initialization and destruction for non-local objects with
|
|
|
|
|
static storage duration. (Local objects with static storage
|
|
|
|
|
duration are initialized when their scope is first entered,
|
|
|
|
|
and are cleaned up via atexit.)
|
|
|
|
|
o Virtual function tables.
|
|
|
|
|
|
|
|
|
|
All of these may cause others to be needed. For example,
|
|
|
|
|
instantiating one function may cause another to be needed, and
|
|
|
|
|
generating the initializer for an object may cause templates to be
|
|
|
|
|
instantiated, etc., etc. */
|
|
|
|
|
|
|
|
|
|
timevar_push (TV_VARCONST);
|
|
|
|
|
|
|
|
|
|
emit_support_tinfos ();
|
|
|
|
|
|
|
|
|
|
do
|
|
|
|
|
{
|
|
|
|
|
tree t;
|
|
|
|
|
tree decl;
|
|
|
|
|
|
|
|
|
|
reconsider = false;
|
|
|
|
|
|
|
|
|
|
/* If there are templates that we've put off instantiating, do
|
|
|
|
|
them now. */
|
|
|
|
|
instantiate_pending_templates (retries);
|
|
|
|
|
ggc_collect ();
|
|
|
|
|
|
|
|
|
|
/* Write out virtual tables as required. Note that writing out
|
|
|
|
|
the virtual table for a template class may cause the
|
|
|
|
|
instantiation of members of that class. If we write out
|
|
|
|
|
vtables then we remove the class from our list so we don't
|
|
|
|
|
have to look at it again. */
|
|
|
|
|
|
|
|
|
|
while (keyed_classes != NULL_TREE
|
|
|
|
|
&& maybe_emit_vtables (TREE_VALUE (keyed_classes)))
|
|
|
|
|
{
|
|
|
|
|
reconsider = true;
|
|
|
|
|
keyed_classes = TREE_CHAIN (keyed_classes);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
t = keyed_classes;
|
|
|
|
|
if (t != NULL_TREE)
|
|
|
|
|
{
|
|
|
|
|
tree next = TREE_CHAIN (t);
|
|
|
|
|
|
|
|
|
|
while (next)
|
|
|
|
|
{
|
|
|
|
|
if (maybe_emit_vtables (TREE_VALUE (next)))
|
|
|
|
|
{
|
|
|
|
|
reconsider = true;
|
|
|
|
|
TREE_CHAIN (t) = TREE_CHAIN (next);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
t = next;
|
|
|
|
|
|
|
|
|
|
next = TREE_CHAIN (t);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Write out needed type info variables. We have to be careful
|
|
|
|
|
looping through unemitted decls, because emit_tinfo_decl may
|
|
|
|
|
cause other variables to be needed. New elements will be
|
|
|
|
|
appended, and we remove from the vector those that actually
|
|
|
|
|
get emitted. */
|
|
|
|
|
for (i = VEC_length (tree, unemitted_tinfo_decls);
|
|
|
|
|
VEC_iterate (tree, unemitted_tinfo_decls, --i, t);)
|
|
|
|
|
if (emit_tinfo_decl (t))
|
|
|
|
|
{
|
|
|
|
|
reconsider = true;
|
|
|
|
|
VEC_unordered_remove (tree, unemitted_tinfo_decls, i);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* The list of objects with static storage duration is built up
|
|
|
|
|
in reverse order. We clear STATIC_AGGREGATES so that any new
|
|
|
|
|
aggregates added during the initialization of these will be
|
|
|
|
|
initialized in the correct order when we next come around the
|
|
|
|
|
loop. */
|
|
|
|
|
vars = prune_vars_needing_no_initialization (&static_aggregates);
|
|
|
|
|
|
|
|
|
|
if (vars)
|
|
|
|
|
{
|
|
|
|
|
/* We need to start a new initialization function each time
|
|
|
|
|
through the loop. That's because we need to know which
|
|
|
|
|
vtables have been referenced, and TREE_SYMBOL_REFERENCED
|
|
|
|
|
isn't computed until a function is finished, and written
|
|
|
|
|
out. That's a deficiency in the back-end. When this is
|
|
|
|
|
fixed, these initialization functions could all become
|
|
|
|
|
inline, with resulting performance improvements. */
|
|
|
|
|
tree ssdf_body;
|
|
|
|
|
|
|
|
|
|
/* Set the line and file, so that it is obviously not from
|
|
|
|
|
the source file. */
|
|
|
|
|
input_location = locus;
|
|
|
|
|
ssdf_body = start_static_storage_duration_function (ssdf_count);
|
|
|
|
|
|
|
|
|
|
/* Make sure the back end knows about all the variables. */
|
|
|
|
|
write_out_vars (vars);
|
|
|
|
|
|
|
|
|
|
/* First generate code to do all the initializations. */
|
|
|
|
|
if (vars)
|
|
|
|
|
do_static_initialization_or_destruction (vars, /*initp=*/true);
|
|
|
|
|
|
|
|
|
|
/* Then, generate code to do all the destructions. Do these
|
|
|
|
|
in reverse order so that the most recently constructed
|
|
|
|
|
variable is the first destroyed. If we're using
|
|
|
|
|
__cxa_atexit, then we don't need to do this; functions
|
|
|
|
|
were registered at initialization time to destroy the
|
|
|
|
|
local statics. */
|
|
|
|
|
if (!flag_use_cxa_atexit && vars)
|
|
|
|
|
{
|
|
|
|
|
vars = nreverse (vars);
|
|
|
|
|
do_static_initialization_or_destruction (vars, /*initp=*/false);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
vars = NULL_TREE;
|
|
|
|
|
|
|
|
|
|
/* Finish up the static storage duration function for this
|
|
|
|
|
round. */
|
|
|
|
|
input_location = locus;
|
|
|
|
|
finish_static_storage_duration_function (ssdf_body);
|
|
|
|
|
|
|
|
|
|
/* All those initializations and finalizations might cause
|
|
|
|
|
us to need more inline functions, more template
|
|
|
|
|
instantiations, etc. */
|
|
|
|
|
reconsider = true;
|
|
|
|
|
ssdf_count++;
|
|
|
|
|
#ifdef USE_MAPPED_LOCATION
|
|
|
|
|
/* ??? */
|
|
|
|
|
#else
|
|
|
|
|
locus.line++;
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Go through the set of inline functions whose bodies have not
|
|
|
|
|
been emitted yet. If out-of-line copies of these functions
|
|
|
|
|
are required, emit them. */
|
|
|
|
|
for (i = 0; VEC_iterate (tree, deferred_fns, i, decl); ++i)
|
|
|
|
|
{
|
|
|
|
|
/* Does it need synthesizing? */
|
|
|
|
|
if (DECL_ARTIFICIAL (decl) && ! DECL_INITIAL (decl)
|
|
|
|
|
&& (! DECL_REALLY_EXTERN (decl) || DECL_INLINE (decl)))
|
|
|
|
|
{
|
|
|
|
|
/* Even though we're already at the top-level, we push
|
|
|
|
|
there again. That way, when we pop back a few lines
|
|
|
|
|
hence, all of our state is restored. Otherwise,
|
|
|
|
|
finish_function doesn't clean things up, and we end
|
|
|
|
|
up with CURRENT_FUNCTION_DECL set. */
|
|
|
|
|
push_to_top_level ();
|
|
|
|
|
/* The decl's location will mark where it was first
|
|
|
|
|
needed. Save that so synthesize method can indicate
|
|
|
|
|
where it was needed from, in case of error */
|
|
|
|
|
input_location = DECL_SOURCE_LOCATION (decl);
|
|
|
|
|
synthesize_method (decl);
|
|
|
|
|
pop_from_top_level ();
|
|
|
|
|
reconsider = true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!DECL_SAVED_TREE (decl))
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
/* We lie to the back-end, pretending that some functions
|
|
|
|
|
are not defined when they really are. This keeps these
|
|
|
|
|
functions from being put out unnecessarily. But, we must
|
|
|
|
|
stop lying when the functions are referenced, or if they
|
|
|
|
|
are not comdat since they need to be put out now. If
|
|
|
|
|
DECL_INTERFACE_KNOWN, then we have already set
|
|
|
|
|
DECL_EXTERNAL appropriately, so there's no need to check
|
|
|
|
|
again, and we do not want to clear DECL_EXTERNAL if a
|
|
|
|
|
previous call to import_export_decl set it.
|
|
|
|
|
|
|
|
|
|
This is done in a separate for cycle, because if some
|
|
|
|
|
deferred function is contained in another deferred
|
|
|
|
|
function later in deferred_fns varray,
|
|
|
|
|
rest_of_compilation would skip this function and we
|
|
|
|
|
really cannot expand the same function twice. */
|
|
|
|
|
import_export_decl (decl);
|
|
|
|
|
if (DECL_NOT_REALLY_EXTERN (decl)
|
|
|
|
|
&& DECL_INITIAL (decl)
|
|
|
|
|
&& decl_needed_p (decl))
|
|
|
|
|
DECL_EXTERNAL (decl) = 0;
|
|
|
|
|
|
|
|
|
|
/* If we're going to need to write this function out, and
|
|
|
|
|
there's already a body for it, create RTL for it now.
|
|
|
|
|
(There might be no body if this is a method we haven't
|
|
|
|
|
gotten around to synthesizing yet.) */
|
|
|
|
|
if (!DECL_EXTERNAL (decl)
|
|
|
|
|
&& decl_needed_p (decl)
|
|
|
|
|
&& !TREE_ASM_WRITTEN (decl)
|
|
|
|
|
&& !cgraph_node (decl)->local.finalized)
|
|
|
|
|
{
|
|
|
|
|
/* We will output the function; no longer consider it in this
|
|
|
|
|
loop. */
|
|
|
|
|
DECL_DEFER_OUTPUT (decl) = 0;
|
|
|
|
|
/* Generate RTL for this function now that we know we
|
|
|
|
|
need it. */
|
|
|
|
|
expand_or_defer_fn (decl);
|
|
|
|
|
/* If we're compiling -fsyntax-only pretend that this
|
|
|
|
|
function has been written out so that we don't try to
|
|
|
|
|
expand it again. */
|
|
|
|
|
if (flag_syntax_only)
|
|
|
|
|
TREE_ASM_WRITTEN (decl) = 1;
|
|
|
|
|
reconsider = true;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (walk_namespaces (wrapup_globals_for_namespace, /*data=*/0))
|
|
|
|
|
reconsider = true;
|
|
|
|
|
|
|
|
|
|
/* Static data members are just like namespace-scope globals. */
|
|
|
|
|
for (i = 0; VEC_iterate (tree, pending_statics, i, decl); ++i)
|
|
|
|
|
{
|
|
|
|
|
if (var_finalized_p (decl) || DECL_REALLY_EXTERN (decl))
|
|
|
|
|
continue;
|
|
|
|
|
import_export_decl (decl);
|
|
|
|
|
/* If this static data member is needed, provide it to the
|
|
|
|
|
back end. */
|
|
|
|
|
if (DECL_NOT_REALLY_EXTERN (decl) && decl_needed_p (decl))
|
|
|
|
|
DECL_EXTERNAL (decl) = 0;
|
|
|
|
|
}
|
|
|
|
|
if (VEC_length (tree, pending_statics) != 0
|
|
|
|
|
&& wrapup_global_declarations (VEC_address (tree, pending_statics),
|
|
|
|
|
VEC_length (tree, pending_statics)))
|
|
|
|
|
reconsider = true;
|
|
|
|
|
|
|
|
|
|
retries++;
|
|
|
|
|
}
|
|
|
|
|
while (reconsider);
|
|
|
|
|
|
|
|
|
|
/* All used inline functions must have a definition at this point. */
|
|
|
|
|
for (i = 0; VEC_iterate (tree, deferred_fns, i, decl); ++i)
|
|
|
|
|
{
|
|
|
|
|
if (/* Check online inline functions that were actually used. */
|
|
|
|
|
TREE_USED (decl) && DECL_DECLARED_INLINE_P (decl)
|
|
|
|
|
/* If the definition actually was available here, then the
|
|
|
|
|
fact that the function was not defined merely represents
|
|
|
|
|
that for some reason (use of a template repository,
|
|
|
|
|
#pragma interface, etc.) we decided not to emit the
|
|
|
|
|
definition here. */
|
|
|
|
|
&& !DECL_INITIAL (decl)
|
|
|
|
|
/* An explicit instantiation can be used to specify
|
|
|
|
|
that the body is in another unit. It will have
|
|
|
|
|
already verified there was a definition. */
|
|
|
|
|
&& !DECL_EXPLICIT_INSTANTIATION (decl))
|
|
|
|
|
{
|
|
|
|
|
warning (0, "inline function %q+D used but never defined", decl);
|
|
|
|
|
/* Avoid a duplicate warning from check_global_declaration_1. */
|
|
|
|
|
TREE_NO_WARNING (decl) = 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* We give C linkage to static constructors and destructors. */
|
|
|
|
|
push_lang_context (lang_name_c);
|
|
|
|
|
|
|
|
|
|
/* Generate initialization and destruction functions for all
|
|
|
|
|
priorities for which they are required. */
|
|
|
|
|
if (priority_info_map)
|
|
|
|
|
splay_tree_foreach (priority_info_map,
|
|
|
|
|
generate_ctor_and_dtor_functions_for_priority,
|
|
|
|
|
/*data=*/&locus);
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* If we have a ctor or this is obj-c++ and we need a static init,
|
|
|
|
|
call generate_ctor_or_dtor_function. */
|
|
|
|
|
if (static_ctors || (c_dialect_objc () && objc_static_init_needed_p ()))
|
|
|
|
|
generate_ctor_or_dtor_function (/*constructor_p=*/true,
|
|
|
|
|
DEFAULT_INIT_PRIORITY, &locus);
|
|
|
|
|
if (static_dtors)
|
|
|
|
|
generate_ctor_or_dtor_function (/*constructor_p=*/false,
|
|
|
|
|
DEFAULT_INIT_PRIORITY, &locus);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* We're done with the splay-tree now. */
|
|
|
|
|
if (priority_info_map)
|
|
|
|
|
splay_tree_delete (priority_info_map);
|
|
|
|
|
|
|
|
|
|
/* Generate any missing aliases. */
|
|
|
|
|
maybe_apply_pending_pragma_weaks ();
|
|
|
|
|
|
|
|
|
|
/* We're done with static constructors, so we can go back to "C++"
|
|
|
|
|
linkage now. */
|
|
|
|
|
pop_lang_context ();
|
|
|
|
|
|
|
|
|
|
cgraph_finalize_compilation_unit ();
|
|
|
|
|
cgraph_optimize ();
|
|
|
|
|
|
|
|
|
|
/* Now, issue warnings about static, but not defined, functions,
|
|
|
|
|
etc., and emit debugging information. */
|
|
|
|
|
walk_namespaces (wrapup_globals_for_namespace, /*data=*/&reconsider);
|
|
|
|
|
if (VEC_length (tree, pending_statics) != 0)
|
|
|
|
|
{
|
|
|
|
|
check_global_declarations (VEC_address (tree, pending_statics),
|
|
|
|
|
VEC_length (tree, pending_statics));
|
|
|
|
|
emit_debug_global_declarations (VEC_address (tree, pending_statics),
|
|
|
|
|
VEC_length (tree, pending_statics));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Generate hidden aliases for Java. */
|
|
|
|
|
build_java_method_aliases ();
|
|
|
|
|
|
|
|
|
|
finish_repo ();
|
|
|
|
|
|
|
|
|
|
/* The entire file is now complete. If requested, dump everything
|
|
|
|
|
to a file. */
|
|
|
|
|
{
|
|
|
|
|
int flags;
|
|
|
|
|
FILE *stream = dump_begin (TDI_tu, &flags);
|
|
|
|
|
|
|
|
|
|
if (stream)
|
|
|
|
|
{
|
|
|
|
|
dump_node (global_namespace, flags & ~TDF_SLIM, stream);
|
|
|
|
|
dump_end (TDI_tu, stream);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
timevar_pop (TV_VARCONST);
|
|
|
|
|
|
|
|
|
|
if (flag_detailed_statistics)
|
|
|
|
|
{
|
|
|
|
|
dump_tree_statistics ();
|
|
|
|
|
dump_time_statistics ();
|
|
|
|
|
}
|
|
|
|
|
input_location = locus;
|
|
|
|
|
|
|
|
|
|
#ifdef ENABLE_CHECKING
|
|
|
|
|
validate_conversion_obstack ();
|
|
|
|
|
#endif /* ENABLE_CHECKING */
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* FN is an OFFSET_REF, DOTSTAR_EXPR or MEMBER_REF indicating the
|
|
|
|
|
function to call in parse-tree form; it has not yet been
|
|
|
|
|
semantically analyzed. ARGS are the arguments to the function.
|
|
|
|
|
They have already been semantically analyzed. */
|
|
|
|
|
|
|
|
|
|
tree
|
|
|
|
|
build_offset_ref_call_from_tree (tree fn, tree args)
|
|
|
|
|
{
|
|
|
|
|
tree orig_fn;
|
|
|
|
|
tree orig_args;
|
|
|
|
|
tree expr;
|
|
|
|
|
tree object;
|
|
|
|
|
|
|
|
|
|
orig_fn = fn;
|
|
|
|
|
orig_args = args;
|
|
|
|
|
object = TREE_OPERAND (fn, 0);
|
|
|
|
|
|
|
|
|
|
if (processing_template_decl)
|
|
|
|
|
{
|
|
|
|
|
gcc_assert (TREE_CODE (fn) == DOTSTAR_EXPR
|
|
|
|
|
|| TREE_CODE (fn) == MEMBER_REF);
|
|
|
|
|
if (type_dependent_expression_p (fn)
|
|
|
|
|
|| any_type_dependent_arguments_p (args))
|
|
|
|
|
return build_min_nt (CALL_EXPR, fn, args, NULL_TREE);
|
|
|
|
|
|
|
|
|
|
/* Transform the arguments and add the implicit "this"
|
|
|
|
|
parameter. That must be done before the FN is transformed
|
|
|
|
|
because we depend on the form of FN. */
|
|
|
|
|
args = build_non_dependent_args (args);
|
|
|
|
|
if (TREE_CODE (fn) == DOTSTAR_EXPR)
|
|
|
|
|
object = build_unary_op (ADDR_EXPR, object, 0);
|
|
|
|
|
object = build_non_dependent_expr (object);
|
|
|
|
|
args = tree_cons (NULL_TREE, object, args);
|
|
|
|
|
/* Now that the arguments are done, transform FN. */
|
|
|
|
|
fn = build_non_dependent_expr (fn);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* A qualified name corresponding to a bound pointer-to-member is
|
|
|
|
|
represented as an OFFSET_REF:
|
|
|
|
|
|
|
|
|
|
struct B { void g(); };
|
|
|
|
|
void (B::*p)();
|
|
|
|
|
void B::g() { (this->*p)(); } */
|
|
|
|
|
if (TREE_CODE (fn) == OFFSET_REF)
|
|
|
|
|
{
|
|
|
|
|
tree object_addr = build_unary_op (ADDR_EXPR, object, 0);
|
|
|
|
|
fn = TREE_OPERAND (fn, 1);
|
|
|
|
|
fn = get_member_function_from_ptrfunc (&object_addr, fn);
|
|
|
|
|
args = tree_cons (NULL_TREE, object_addr, args);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
expr = build_function_call (fn, args);
|
|
|
|
|
if (processing_template_decl && expr != error_mark_node)
|
|
|
|
|
return build_min_non_dep (CALL_EXPR, expr, orig_fn, orig_args, NULL_TREE);
|
|
|
|
|
return expr;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
check_default_args (tree x)
|
|
|
|
|
{
|
|
|
|
|
tree arg = TYPE_ARG_TYPES (TREE_TYPE (x));
|
|
|
|
|
bool saw_def = false;
|
|
|
|
|
int i = 0 - (TREE_CODE (TREE_TYPE (x)) == METHOD_TYPE);
|
|
|
|
|
for (; arg && arg != void_list_node; arg = TREE_CHAIN (arg), ++i)
|
|
|
|
|
{
|
|
|
|
|
if (TREE_PURPOSE (arg))
|
|
|
|
|
saw_def = true;
|
|
|
|
|
else if (saw_def)
|
|
|
|
|
{
|
|
|
|
|
error ("default argument missing for parameter %P of %q+#D", i, x);
|
|
|
|
|
TREE_PURPOSE (arg) = error_mark_node;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Mark DECL (eithet a _DECL or a BASELINK) as "used" in the program.
|
|
|
|
|
If DECL is a specialization or implicitly declared class member,
|
|
|
|
|
generate the actual definition. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
mark_used (tree decl)
|
|
|
|
|
{
|
|
|
|
|
HOST_WIDE_INT saved_processing_template_decl = 0;
|
|
|
|
|
|
|
|
|
|
/* If DECL is a BASELINK for a single function, then treat it just
|
|
|
|
|
like the DECL for the function. Otherwise, if the BASELINK is
|
|
|
|
|
for an overloaded function, we don't know which function was
|
|
|
|
|
actually used until after overload resolution. */
|
|
|
|
|
if (TREE_CODE (decl) == BASELINK)
|
|
|
|
|
{
|
|
|
|
|
decl = BASELINK_FUNCTIONS (decl);
|
|
|
|
|
if (really_overloaded_fn (decl))
|
|
|
|
|
return;
|
|
|
|
|
decl = OVL_CURRENT (decl);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TREE_USED (decl) = 1;
|
2006-10-22 02:45:05 +04:00
|
|
|
|
if (DECL_CLONED_FUNCTION_P (decl))
|
|
|
|
|
TREE_USED (DECL_CLONED_FUNCTION (decl)) = 1;
|
2006-04-20 14:19:17 +04:00
|
|
|
|
/* If we don't need a value, then we don't need to synthesize DECL. */
|
|
|
|
|
if (skip_evaluation)
|
|
|
|
|
return;
|
|
|
|
|
/* Normally, we can wait until instantiation-time to synthesize
|
|
|
|
|
DECL. However, if DECL is a static data member initialized with
|
|
|
|
|
a constant, we need the value right now because a reference to
|
|
|
|
|
such a data member is not value-dependent. */
|
|
|
|
|
if (TREE_CODE (decl) == VAR_DECL
|
|
|
|
|
&& DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl)
|
|
|
|
|
&& DECL_CLASS_SCOPE_P (decl))
|
|
|
|
|
{
|
|
|
|
|
/* Don't try to instantiate members of dependent types. We
|
|
|
|
|
cannot just use dependent_type_p here because this function
|
|
|
|
|
may be called from fold_non_dependent_expr, and then we may
|
|
|
|
|
see dependent types, even though processing_template_decl
|
|
|
|
|
will not be set. */
|
|
|
|
|
if (CLASSTYPE_TEMPLATE_INFO ((DECL_CONTEXT (decl)))
|
|
|
|
|
&& uses_template_parms (CLASSTYPE_TI_ARGS (DECL_CONTEXT (decl))))
|
|
|
|
|
return;
|
|
|
|
|
/* Pretend that we are not in a template, even if we are, so
|
|
|
|
|
that the static data member initializer will be processed. */
|
|
|
|
|
saved_processing_template_decl = processing_template_decl;
|
|
|
|
|
processing_template_decl = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (processing_template_decl)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
if (TREE_CODE (decl) == FUNCTION_DECL && DECL_DECLARED_INLINE_P (decl)
|
|
|
|
|
&& !TREE_ASM_WRITTEN (decl))
|
|
|
|
|
/* Remember it, so we can check it was defined. */
|
|
|
|
|
{
|
|
|
|
|
if (DECL_DEFERRED_FN (decl))
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
/* Remember the current location for a function we will end up
|
|
|
|
|
synthesizing. Then we can inform the user where it was
|
|
|
|
|
required in the case of error. */
|
|
|
|
|
if (DECL_ARTIFICIAL (decl) && DECL_NONSTATIC_MEMBER_FUNCTION_P (decl)
|
|
|
|
|
&& !DECL_THUNK_P (decl))
|
|
|
|
|
DECL_SOURCE_LOCATION (decl) = input_location;
|
|
|
|
|
|
|
|
|
|
note_vague_linkage_fn (decl);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
assemble_external (decl);
|
|
|
|
|
|
|
|
|
|
/* Is it a synthesized method that needs to be synthesized? */
|
|
|
|
|
if (TREE_CODE (decl) == FUNCTION_DECL
|
|
|
|
|
&& DECL_NONSTATIC_MEMBER_FUNCTION_P (decl)
|
|
|
|
|
&& DECL_ARTIFICIAL (decl)
|
|
|
|
|
&& !DECL_THUNK_P (decl)
|
|
|
|
|
&& ! DECL_INITIAL (decl)
|
|
|
|
|
/* Kludge: don't synthesize for default args. Unfortunately this
|
|
|
|
|
rules out initializers of namespace-scoped objects too, but
|
|
|
|
|
it's sort-of ok if the implicit ctor or dtor decl keeps
|
|
|
|
|
pointing to the class location. */
|
|
|
|
|
&& current_function_decl)
|
|
|
|
|
{
|
|
|
|
|
synthesize_method (decl);
|
|
|
|
|
/* If we've already synthesized the method we don't need to
|
|
|
|
|
instantiate it, so we can return right away. */
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If this is a function or variable that is an instance of some
|
|
|
|
|
template, we now know that we will need to actually do the
|
|
|
|
|
instantiation. We check that DECL is not an explicit
|
|
|
|
|
instantiation because that is not checked in instantiate_decl. */
|
|
|
|
|
if ((DECL_NON_THUNK_FUNCTION_P (decl) || TREE_CODE (decl) == VAR_DECL)
|
|
|
|
|
&& DECL_LANG_SPECIFIC (decl) && DECL_TEMPLATE_INFO (decl)
|
|
|
|
|
&& (!DECL_EXPLICIT_INSTANTIATION (decl)
|
|
|
|
|
|| (TREE_CODE (decl) == FUNCTION_DECL
|
|
|
|
|
&& DECL_INLINE (DECL_TEMPLATE_RESULT
|
|
|
|
|
(template_for_substitution (decl))))
|
|
|
|
|
/* We need to instantiate static data members so that there
|
|
|
|
|
initializers are available in integral constant
|
|
|
|
|
expressions. */
|
|
|
|
|
|| (TREE_CODE (decl) == VAR_DECL
|
|
|
|
|
&& DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))))
|
|
|
|
|
/* We put off instantiating functions in order to improve compile
|
|
|
|
|
times. Maintaining a stack of active functions is expensive,
|
|
|
|
|
and the inliner knows to instantiate any functions it might
|
|
|
|
|
need. */
|
|
|
|
|
instantiate_decl (decl, /*defer_ok=*/true,
|
|
|
|
|
/*expl_inst_class_mem_p=*/false);
|
|
|
|
|
|
|
|
|
|
processing_template_decl = saved_processing_template_decl;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#include "gt-cp-decl2.h"
|