439 lines
15 KiB
C
439 lines
15 KiB
C
|
/* Front-end tree definitions for GNU compiler.
|
|||
|
Copyright (C) 1989, 1991, 1994 Free Software Foundation, Inc.
|
|||
|
|
|||
|
This file is part of GNU CC.
|
|||
|
|
|||
|
GNU CC is free software; you can redistribute it and/or modify
|
|||
|
it under the terms of the GNU General Public License as published by
|
|||
|
the Free Software Foundation; either version 2, or (at your option)
|
|||
|
any later version.
|
|||
|
|
|||
|
GNU CC is distributed in the hope that it will be useful,
|
|||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|||
|
GNU General Public License for more details.
|
|||
|
|
|||
|
You should have received a copy of the GNU General Public License
|
|||
|
along with GNU CC; see the file COPYING. If not, write to
|
|||
|
the Free Software Foundation, 59 Temple Place - Suite 330,
|
|||
|
Boston, MA 02111-1307, USA. */
|
|||
|
|
|||
|
#ifndef REAL_H_INCLUDED
|
|||
|
#define REAL_H_INCLUDED
|
|||
|
|
|||
|
/* Define codes for all the float formats that we know of. */
|
|||
|
#define UNKNOWN_FLOAT_FORMAT 0
|
|||
|
#define IEEE_FLOAT_FORMAT 1
|
|||
|
#define VAX_FLOAT_FORMAT 2
|
|||
|
#define IBM_FLOAT_FORMAT 3
|
|||
|
|
|||
|
/* Default to IEEE float if not specified. Nearly all machines use it. */
|
|||
|
|
|||
|
#ifndef TARGET_FLOAT_FORMAT
|
|||
|
#define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
|
|||
|
#endif
|
|||
|
|
|||
|
#ifndef HOST_FLOAT_FORMAT
|
|||
|
#define HOST_FLOAT_FORMAT IEEE_FLOAT_FORMAT
|
|||
|
#endif
|
|||
|
|
|||
|
#if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
|
|||
|
#define REAL_INFINITY
|
|||
|
#endif
|
|||
|
|
|||
|
/* If FLOAT_WORDS_BIG_ENDIAN and HOST_FLOAT_WORDS_BIG_ENDIAN are not defined
|
|||
|
in the header files, then this implies the word-endianness is the same as
|
|||
|
for integers. */
|
|||
|
|
|||
|
/* This is defined 0 or 1, like WORDS_BIG_ENDIAN. */
|
|||
|
#ifndef FLOAT_WORDS_BIG_ENDIAN
|
|||
|
#define FLOAT_WORDS_BIG_ENDIAN WORDS_BIG_ENDIAN
|
|||
|
#endif
|
|||
|
|
|||
|
/* This is defined 0 or 1, unlike HOST_WORDS_BIG_ENDIAN. */
|
|||
|
#ifndef HOST_FLOAT_WORDS_BIG_ENDIAN
|
|||
|
#ifdef HOST_WORDS_BIG_ENDIAN
|
|||
|
#define HOST_FLOAT_WORDS_BIG_ENDIAN 1
|
|||
|
#else
|
|||
|
#define HOST_FLOAT_WORDS_BIG_ENDIAN 0
|
|||
|
#endif
|
|||
|
#endif
|
|||
|
|
|||
|
/* Defining REAL_ARITHMETIC invokes a floating point emulator
|
|||
|
that can produce a target machine format differing by more
|
|||
|
than just endian-ness from the host's format. The emulator
|
|||
|
is also used to support extended real XFmode. */
|
|||
|
#ifndef LONG_DOUBLE_TYPE_SIZE
|
|||
|
#define LONG_DOUBLE_TYPE_SIZE 64
|
|||
|
#endif
|
|||
|
#if (LONG_DOUBLE_TYPE_SIZE == 96) || (LONG_DOUBLE_TYPE_SIZE == 128)
|
|||
|
#ifndef REAL_ARITHMETIC
|
|||
|
#define REAL_ARITHMETIC
|
|||
|
#endif
|
|||
|
#endif
|
|||
|
#ifdef REAL_ARITHMETIC
|
|||
|
/* **** Start of software floating point emulator interface macros **** */
|
|||
|
|
|||
|
/* Support 80-bit extended real XFmode if LONG_DOUBLE_TYPE_SIZE
|
|||
|
has been defined to be 96 in the tm.h machine file. */
|
|||
|
#if (LONG_DOUBLE_TYPE_SIZE == 96)
|
|||
|
#define REAL_IS_NOT_DOUBLE
|
|||
|
#define REAL_ARITHMETIC
|
|||
|
typedef struct {
|
|||
|
HOST_WIDE_INT r[(11 + sizeof (HOST_WIDE_INT))/(sizeof (HOST_WIDE_INT))];
|
|||
|
} realvaluetype;
|
|||
|
#define REAL_VALUE_TYPE realvaluetype
|
|||
|
|
|||
|
#else /* no XFmode support */
|
|||
|
|
|||
|
#if (LONG_DOUBLE_TYPE_SIZE == 128)
|
|||
|
|
|||
|
#define REAL_IS_NOT_DOUBLE
|
|||
|
#define REAL_ARITHMETIC
|
|||
|
typedef struct {
|
|||
|
HOST_WIDE_INT r[(19 + sizeof (HOST_WIDE_INT))/(sizeof (HOST_WIDE_INT))];
|
|||
|
} realvaluetype;
|
|||
|
#define REAL_VALUE_TYPE realvaluetype
|
|||
|
|
|||
|
#else /* not TFmode */
|
|||
|
|
|||
|
#if HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
|
|||
|
/* If no XFmode support, then a REAL_VALUE_TYPE is 64 bits wide
|
|||
|
but it is not necessarily a host machine double. */
|
|||
|
#define REAL_IS_NOT_DOUBLE
|
|||
|
typedef struct {
|
|||
|
HOST_WIDE_INT r[(7 + sizeof (HOST_WIDE_INT))/(sizeof (HOST_WIDE_INT))];
|
|||
|
} realvaluetype;
|
|||
|
#define REAL_VALUE_TYPE realvaluetype
|
|||
|
#else
|
|||
|
/* If host and target formats are compatible, then a REAL_VALUE_TYPE
|
|||
|
is actually a host machine double. */
|
|||
|
#define REAL_VALUE_TYPE double
|
|||
|
#endif
|
|||
|
|
|||
|
#endif /* no TFmode support */
|
|||
|
#endif /* no XFmode support */
|
|||
|
|
|||
|
extern int significand_size PROTO((enum machine_mode));
|
|||
|
|
|||
|
/* If emulation has been enabled by defining REAL_ARITHMETIC or by
|
|||
|
setting LONG_DOUBLE_TYPE_SIZE to 96 or 128, then define macros so that
|
|||
|
they invoke emulator functions. This will succeed only if the machine
|
|||
|
files have been updated to use these macros in place of any
|
|||
|
references to host machine `double' or `float' types. */
|
|||
|
#ifdef REAL_ARITHMETIC
|
|||
|
#undef REAL_ARITHMETIC
|
|||
|
#define REAL_ARITHMETIC(value, code, d1, d2) \
|
|||
|
earith (&(value), (code), &(d1), &(d2))
|
|||
|
|
|||
|
/* Declare functions in real.c. */
|
|||
|
extern void earith PROTO((REAL_VALUE_TYPE *, int,
|
|||
|
REAL_VALUE_TYPE *, REAL_VALUE_TYPE *));
|
|||
|
extern REAL_VALUE_TYPE etrunci PROTO((REAL_VALUE_TYPE));
|
|||
|
extern REAL_VALUE_TYPE etruncui PROTO((REAL_VALUE_TYPE));
|
|||
|
extern REAL_VALUE_TYPE ereal_atof PROTO((char *, enum machine_mode));
|
|||
|
extern REAL_VALUE_TYPE ereal_negate PROTO((REAL_VALUE_TYPE));
|
|||
|
extern HOST_WIDE_INT efixi PROTO((REAL_VALUE_TYPE));
|
|||
|
extern unsigned HOST_WIDE_INT efixui PROTO((REAL_VALUE_TYPE));
|
|||
|
extern void ereal_from_int PROTO((REAL_VALUE_TYPE *,
|
|||
|
HOST_WIDE_INT, HOST_WIDE_INT));
|
|||
|
extern void ereal_from_uint PROTO((REAL_VALUE_TYPE *,
|
|||
|
unsigned HOST_WIDE_INT,
|
|||
|
unsigned HOST_WIDE_INT));
|
|||
|
extern void ereal_to_int PROTO((HOST_WIDE_INT *, HOST_WIDE_INT *,
|
|||
|
REAL_VALUE_TYPE));
|
|||
|
extern REAL_VALUE_TYPE ereal_ldexp PROTO((REAL_VALUE_TYPE, int));
|
|||
|
|
|||
|
extern void etartdouble PROTO((REAL_VALUE_TYPE, long *));
|
|||
|
extern void etarldouble PROTO((REAL_VALUE_TYPE, long *));
|
|||
|
extern void etardouble PROTO((REAL_VALUE_TYPE, long *));
|
|||
|
extern long etarsingle PROTO((REAL_VALUE_TYPE));
|
|||
|
extern void ereal_to_decimal PROTO((REAL_VALUE_TYPE, char *));
|
|||
|
extern int ereal_cmp PROTO((REAL_VALUE_TYPE, REAL_VALUE_TYPE));
|
|||
|
extern int ereal_isneg PROTO((REAL_VALUE_TYPE));
|
|||
|
extern REAL_VALUE_TYPE ereal_from_float PROTO((HOST_WIDE_INT));
|
|||
|
extern REAL_VALUE_TYPE ereal_from_double PROTO((HOST_WIDE_INT *));
|
|||
|
|
|||
|
#define REAL_VALUES_EQUAL(x, y) (ereal_cmp ((x), (y)) == 0)
|
|||
|
/* true if x < y : */
|
|||
|
#define REAL_VALUES_LESS(x, y) (ereal_cmp ((x), (y)) == -1)
|
|||
|
#define REAL_VALUE_LDEXP(x, n) ereal_ldexp (x, n)
|
|||
|
|
|||
|
/* These return REAL_VALUE_TYPE: */
|
|||
|
#define REAL_VALUE_RNDZINT(x) (etrunci (x))
|
|||
|
#define REAL_VALUE_UNSIGNED_RNDZINT(x) (etruncui (x))
|
|||
|
extern REAL_VALUE_TYPE real_value_truncate ();
|
|||
|
#define REAL_VALUE_TRUNCATE(mode, x) real_value_truncate (mode, x)
|
|||
|
|
|||
|
/* These return HOST_WIDE_INT: */
|
|||
|
/* Convert a floating-point value to integer, rounding toward zero. */
|
|||
|
#define REAL_VALUE_FIX(x) (efixi (x))
|
|||
|
/* Convert a floating-point value to unsigned integer, rounding
|
|||
|
toward zero. */
|
|||
|
#define REAL_VALUE_UNSIGNED_FIX(x) (efixui (x))
|
|||
|
|
|||
|
#define REAL_VALUE_ATOF ereal_atof
|
|||
|
#define REAL_VALUE_NEGATE ereal_negate
|
|||
|
|
|||
|
#define REAL_VALUE_MINUS_ZERO(x) \
|
|||
|
((ereal_cmp (x, dconst0) == 0) && (ereal_isneg (x) != 0 ))
|
|||
|
|
|||
|
#define REAL_VALUE_TO_INT ereal_to_int
|
|||
|
|
|||
|
/* Here the cast to HOST_WIDE_INT sign-extends arguments such as ~0. */
|
|||
|
#define REAL_VALUE_FROM_INT(d, lo, hi) \
|
|||
|
ereal_from_int (&d, (HOST_WIDE_INT) (lo), (HOST_WIDE_INT) (hi))
|
|||
|
|
|||
|
#define REAL_VALUE_FROM_UNSIGNED_INT(d, lo, hi) (ereal_from_uint (&d, lo, hi))
|
|||
|
|
|||
|
/* IN is a REAL_VALUE_TYPE. OUT is an array of longs. */
|
|||
|
#if LONG_DOUBLE_TYPE_SIZE == 96
|
|||
|
#define REAL_VALUE_TO_TARGET_LONG_DOUBLE(IN, OUT) (etarldouble ((IN), (OUT)))
|
|||
|
#else
|
|||
|
#define REAL_VALUE_TO_TARGET_LONG_DOUBLE(IN, OUT) (etartdouble ((IN), (OUT)))
|
|||
|
#endif
|
|||
|
#define REAL_VALUE_TO_TARGET_DOUBLE(IN, OUT) (etardouble ((IN), (OUT)))
|
|||
|
|
|||
|
/* IN is a REAL_VALUE_TYPE. OUT is a long. */
|
|||
|
#define REAL_VALUE_TO_TARGET_SINGLE(IN, OUT) ((OUT) = etarsingle ((IN)))
|
|||
|
|
|||
|
/* d is an array of HOST_WIDE_INT that holds a double precision
|
|||
|
value in the target computer's floating point format. */
|
|||
|
#define REAL_VALUE_FROM_TARGET_DOUBLE(d) (ereal_from_double (d))
|
|||
|
|
|||
|
/* f is a HOST_WIDE_INT containing a single precision target float value. */
|
|||
|
#define REAL_VALUE_FROM_TARGET_SINGLE(f) (ereal_from_float (f))
|
|||
|
|
|||
|
/* Conversions to decimal ASCII string. */
|
|||
|
#define REAL_VALUE_TO_DECIMAL(r, fmt, s) (ereal_to_decimal (r, s))
|
|||
|
|
|||
|
#endif /* REAL_ARITHMETIC defined */
|
|||
|
|
|||
|
/* **** End of software floating point emulator interface macros **** */
|
|||
|
#else /* No XFmode or TFmode and REAL_ARITHMETIC not defined */
|
|||
|
|
|||
|
/* old interface */
|
|||
|
#ifdef REAL_ARITHMETIC
|
|||
|
/* Defining REAL_IS_NOT_DOUBLE breaks certain initializations
|
|||
|
when REAL_ARITHMETIC etc. are not defined. */
|
|||
|
|
|||
|
/* Now see if the host and target machines use the same format.
|
|||
|
If not, define REAL_IS_NOT_DOUBLE (even if we end up representing
|
|||
|
reals as doubles because we have no better way in this cross compiler.)
|
|||
|
This turns off various optimizations that can happen when we know the
|
|||
|
compiler's float format matches the target's float format.
|
|||
|
*/
|
|||
|
#if HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
|
|||
|
#define REAL_IS_NOT_DOUBLE
|
|||
|
#ifndef REAL_VALUE_TYPE
|
|||
|
typedef struct {
|
|||
|
HOST_WIDE_INT r[sizeof (double)/sizeof (HOST_WIDE_INT)];
|
|||
|
} realvaluetype;
|
|||
|
#define REAL_VALUE_TYPE realvaluetype
|
|||
|
#endif /* no REAL_VALUE_TYPE */
|
|||
|
#endif /* formats differ */
|
|||
|
#endif /* 0 */
|
|||
|
|
|||
|
#endif /* emulator not used */
|
|||
|
|
|||
|
/* If we are not cross-compiling, use a `double' to represent the
|
|||
|
floating-point value. Otherwise, use some other type
|
|||
|
(probably a struct containing an array of longs). */
|
|||
|
#ifndef REAL_VALUE_TYPE
|
|||
|
#define REAL_VALUE_TYPE double
|
|||
|
#else
|
|||
|
#define REAL_IS_NOT_DOUBLE
|
|||
|
#endif
|
|||
|
|
|||
|
#if HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
|
|||
|
|
|||
|
/* Convert a type `double' value in host format first to a type `float'
|
|||
|
value in host format and then to a single type `long' value which
|
|||
|
is the bitwise equivalent of the `float' value. */
|
|||
|
#ifndef REAL_VALUE_TO_TARGET_SINGLE
|
|||
|
#define REAL_VALUE_TO_TARGET_SINGLE(IN, OUT) \
|
|||
|
do { float f = (float) (IN); \
|
|||
|
(OUT) = *(long *) &f; \
|
|||
|
} while (0)
|
|||
|
#endif
|
|||
|
|
|||
|
/* Convert a type `double' value in host format to a pair of type `long'
|
|||
|
values which is its bitwise equivalent, but put the two words into
|
|||
|
proper word order for the target. */
|
|||
|
#ifndef REAL_VALUE_TO_TARGET_DOUBLE
|
|||
|
#define REAL_VALUE_TO_TARGET_DOUBLE(IN, OUT) \
|
|||
|
do { REAL_VALUE_TYPE in = (IN); /* Make sure it's not in a register. */\
|
|||
|
if (HOST_FLOAT_WORDS_BIG_ENDIAN == FLOAT_WORDS_BIG_ENDIAN) \
|
|||
|
{ \
|
|||
|
(OUT)[0] = ((long *) &in)[0]; \
|
|||
|
(OUT)[1] = ((long *) &in)[1]; \
|
|||
|
} \
|
|||
|
else \
|
|||
|
{ \
|
|||
|
(OUT)[1] = ((long *) &in)[0]; \
|
|||
|
(OUT)[0] = ((long *) &in)[1]; \
|
|||
|
} \
|
|||
|
} while (0)
|
|||
|
#endif
|
|||
|
#endif /* HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT */
|
|||
|
|
|||
|
/* In this configuration, double and long double are the same. */
|
|||
|
#ifndef REAL_VALUE_TO_TARGET_LONG_DOUBLE
|
|||
|
#define REAL_VALUE_TO_TARGET_LONG_DOUBLE(a, b) REAL_VALUE_TO_TARGET_DOUBLE (a, b)
|
|||
|
#endif
|
|||
|
|
|||
|
/* Compare two floating-point values for equality. */
|
|||
|
#ifndef REAL_VALUES_EQUAL
|
|||
|
#define REAL_VALUES_EQUAL(x, y) ((x) == (y))
|
|||
|
#endif
|
|||
|
|
|||
|
/* Compare two floating-point values for less than. */
|
|||
|
#ifndef REAL_VALUES_LESS
|
|||
|
#define REAL_VALUES_LESS(x, y) ((x) < (y))
|
|||
|
#endif
|
|||
|
|
|||
|
/* Truncate toward zero to an integer floating-point value. */
|
|||
|
#ifndef REAL_VALUE_RNDZINT
|
|||
|
#define REAL_VALUE_RNDZINT(x) ((double) ((int) (x)))
|
|||
|
#endif
|
|||
|
|
|||
|
/* Truncate toward zero to an unsigned integer floating-point value. */
|
|||
|
#ifndef REAL_VALUE_UNSIGNED_RNDZINT
|
|||
|
#define REAL_VALUE_UNSIGNED_RNDZINT(x) ((double) ((unsigned int) (x)))
|
|||
|
#endif
|
|||
|
|
|||
|
/* Convert a floating-point value to integer, rounding toward zero. */
|
|||
|
#ifndef REAL_VALUE_FIX
|
|||
|
#define REAL_VALUE_FIX(x) ((int) (x))
|
|||
|
#endif
|
|||
|
|
|||
|
/* Convert a floating-point value to unsigned integer, rounding
|
|||
|
toward zero. */
|
|||
|
#ifndef REAL_VALUE_UNSIGNED_FIX
|
|||
|
#define REAL_VALUE_UNSIGNED_FIX(x) ((unsigned int) (x))
|
|||
|
#endif
|
|||
|
|
|||
|
/* Scale X by Y powers of 2. */
|
|||
|
#ifndef REAL_VALUE_LDEXP
|
|||
|
#define REAL_VALUE_LDEXP(x, y) ldexp (x, y)
|
|||
|
extern double ldexp ();
|
|||
|
#endif
|
|||
|
|
|||
|
/* Convert the string X to a floating-point value. */
|
|||
|
#ifndef REAL_VALUE_ATOF
|
|||
|
#if 1
|
|||
|
/* Use real.c to convert decimal numbers to binary, ... */
|
|||
|
REAL_VALUE_TYPE ereal_atof ();
|
|||
|
#define REAL_VALUE_ATOF(x, s) ereal_atof (x, s)
|
|||
|
#else
|
|||
|
/* ... or, if you like the host computer's atof, go ahead and use it: */
|
|||
|
#define REAL_VALUE_ATOF(x, s) atof (x)
|
|||
|
#if defined (MIPSEL) || defined (MIPSEB)
|
|||
|
/* MIPS compiler can't handle parens around the function name.
|
|||
|
This problem *does not* appear to be connected with any
|
|||
|
macro definition for atof. It does not seem there is one. */
|
|||
|
extern double atof ();
|
|||
|
#else
|
|||
|
extern double (atof) ();
|
|||
|
#endif
|
|||
|
#endif
|
|||
|
#endif
|
|||
|
|
|||
|
/* Negate the floating-point value X. */
|
|||
|
#ifndef REAL_VALUE_NEGATE
|
|||
|
#define REAL_VALUE_NEGATE(x) (- (x))
|
|||
|
#endif
|
|||
|
|
|||
|
/* Truncate the floating-point value X to mode MODE. This is correct only
|
|||
|
for the most common case where the host and target have objects of the same
|
|||
|
size and where `float' is SFmode. */
|
|||
|
|
|||
|
/* Don't use REAL_VALUE_TRUNCATE directly--always call real_value_truncate. */
|
|||
|
extern REAL_VALUE_TYPE real_value_truncate ();
|
|||
|
|
|||
|
#ifndef REAL_VALUE_TRUNCATE
|
|||
|
#define REAL_VALUE_TRUNCATE(mode, x) \
|
|||
|
(GET_MODE_BITSIZE (mode) == sizeof (float) * HOST_BITS_PER_CHAR \
|
|||
|
? (float) (x) : (x))
|
|||
|
#endif
|
|||
|
|
|||
|
/* Determine whether a floating-point value X is infinite. */
|
|||
|
#ifndef REAL_VALUE_ISINF
|
|||
|
#define REAL_VALUE_ISINF(x) (target_isinf (x))
|
|||
|
#endif
|
|||
|
|
|||
|
/* Determine whether a floating-point value X is a NaN. */
|
|||
|
#ifndef REAL_VALUE_ISNAN
|
|||
|
#define REAL_VALUE_ISNAN(x) (target_isnan (x))
|
|||
|
#endif
|
|||
|
|
|||
|
/* Determine whether a floating-point value X is negative. */
|
|||
|
#ifndef REAL_VALUE_NEGATIVE
|
|||
|
#define REAL_VALUE_NEGATIVE(x) (target_negative (x))
|
|||
|
#endif
|
|||
|
|
|||
|
/* Determine whether a floating-point value X is minus 0. */
|
|||
|
#ifndef REAL_VALUE_MINUS_ZERO
|
|||
|
#define REAL_VALUE_MINUS_ZERO(x) ((x) == 0 && REAL_VALUE_NEGATIVE (x))
|
|||
|
#endif
|
|||
|
|
|||
|
/* Constant real values 0, 1, 2, and -1. */
|
|||
|
|
|||
|
extern REAL_VALUE_TYPE dconst0;
|
|||
|
extern REAL_VALUE_TYPE dconst1;
|
|||
|
extern REAL_VALUE_TYPE dconst2;
|
|||
|
extern REAL_VALUE_TYPE dconstm1;
|
|||
|
|
|||
|
/* Union type used for extracting real values from CONST_DOUBLEs
|
|||
|
or putting them in. */
|
|||
|
|
|||
|
union real_extract
|
|||
|
{
|
|||
|
REAL_VALUE_TYPE d;
|
|||
|
HOST_WIDE_INT i[sizeof (REAL_VALUE_TYPE) / sizeof (HOST_WIDE_INT)];
|
|||
|
};
|
|||
|
|
|||
|
/* For a CONST_DOUBLE:
|
|||
|
The usual two ints that hold the value.
|
|||
|
For a DImode, that is all there are;
|
|||
|
and CONST_DOUBLE_LOW is the low-order word and ..._HIGH the high-order.
|
|||
|
For a float, the number of ints varies,
|
|||
|
and CONST_DOUBLE_LOW is the one that should come first *in memory*.
|
|||
|
So use &CONST_DOUBLE_LOW(r) as the address of an array of ints. */
|
|||
|
#define CONST_DOUBLE_LOW(r) XWINT (r, 2)
|
|||
|
#define CONST_DOUBLE_HIGH(r) XWINT (r, 3)
|
|||
|
|
|||
|
/* Link for chain of all CONST_DOUBLEs in use in current function. */
|
|||
|
#define CONST_DOUBLE_CHAIN(r) XEXP (r, 1)
|
|||
|
/* The MEM which represents this CONST_DOUBLE's value in memory,
|
|||
|
or const0_rtx if no MEM has been made for it yet,
|
|||
|
or cc0_rtx if it is not on the chain. */
|
|||
|
#define CONST_DOUBLE_MEM(r) XEXP (r, 0)
|
|||
|
|
|||
|
/* Function to return a real value (not a tree node)
|
|||
|
from a given integer constant. */
|
|||
|
REAL_VALUE_TYPE real_value_from_int_cst ();
|
|||
|
|
|||
|
/* Given a CONST_DOUBLE in FROM, store into TO the value it represents. */
|
|||
|
|
|||
|
#define REAL_VALUE_FROM_CONST_DOUBLE(to, from) \
|
|||
|
do { union real_extract u; \
|
|||
|
bcopy ((char *) &CONST_DOUBLE_LOW ((from)), (char *) &u, sizeof u); \
|
|||
|
to = u.d; } while (0)
|
|||
|
|
|||
|
/* Return a CONST_DOUBLE with value R and mode M. */
|
|||
|
|
|||
|
#define CONST_DOUBLE_FROM_REAL_VALUE(r, m) immed_real_const_1 (r, m)
|
|||
|
extern struct rtx_def *immed_real_const_1 PROTO((REAL_VALUE_TYPE,
|
|||
|
enum machine_mode));
|
|||
|
|
|||
|
|
|||
|
/* Convert a floating point value `r', that can be interpreted
|
|||
|
as a host machine float or double, to a decimal ASCII string `s'
|
|||
|
using printf format string `fmt'. */
|
|||
|
#ifndef REAL_VALUE_TO_DECIMAL
|
|||
|
#define REAL_VALUE_TO_DECIMAL(r, fmt, s) (sprintf (s, fmt, r))
|
|||
|
#endif
|
|||
|
|
|||
|
#endif /* Not REAL_H_INCLUDED */
|