NetBSD/sys/dev/ic/midway.c

3130 lines
86 KiB
C
Raw Normal View History

/* $NetBSD: midway.c,v 1.26 1997/04/24 02:24:07 mycroft Exp $ */
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
/* (sync'd to midway.c 1.67) */
/*
*
* Copyright (c) 1996 Charles D. Cranor and Washington University.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Charles D. Cranor and
* Washington University.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
*
* m i d w a y . c e n i 1 5 5 d r i v e r
*
* author: Chuck Cranor <chuck@ccrc.wustl.edu>
* started: spring, 1996 (written from scratch).
*
* notes from the author:
* Extra special thanks go to Werner Almesberger, EPFL LRC. Werner's
* ENI driver was especially useful in figuring out how this card works.
* I would also like to thank Werner for promptly answering email and being
* generally helpful.
*/
#undef EN_DEBUG
#undef EN_DEBUG_RANGE /* check ranges on en_read/en_write's? */
#define EN_MBUF_OPT /* try and put more stuff in mbuf? */
#define EN_DIAG
#define EN_STAT
#ifndef EN_DMA
#define EN_DMA 1 /* use dma? */
#endif
#define EN_NOTXDMA 0 /* hook to disable tx dma only */
#define EN_NORXDMA 0 /* hook to disable rx dma only */
#define EN_NOWMAYBE 1 /* hook to disable word maybe DMA */
/* XXX: WMAYBE doesn't work, needs debugging */
#define EN_DDBHOOK 1 /* compile in ddb functions */
#if defined(DIAGNOSTIC) && !defined(EN_DIAG)
#define EN_DIAG /* link in with master DIAG option */
#endif
#ifdef EN_STAT
#define EN_COUNT(X) (X)++
#else
#define EN_COUNT(X) /* nothing */
#endif
#ifdef EN_DEBUG
#undef EN_DDBHOOK
#define EN_DDBHOOK 1
#define STATIC /* nothing */
#define INLINE /* nothing */
#else /* EN_DEBUG */
#define STATIC static
#define INLINE inline
#endif /* EN_DEBUG */
#ifdef __FreeBSD__
#include "en.h"
#endif
#if NEN > 0 || !defined(__FreeBSD__)
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/types.h>
#if defined(__NetBSD__) || defined(__OpenBSD__) || defined(__bsdi__)
#include <sys/device.h>
#endif
#include <sys/ioctl.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <net/if.h>
#include <net/if_atm.h>
#include <vm/vm.h>
#ifdef INET
#include <netinet/if_atm.h>
#endif
#ifdef NATM
#include <netinet/in.h>
#include <netnatm/natm.h>
#endif
#if !defined(sparc) && !defined(__FreeBSD__)
#include <machine/bus.h>
#endif
#if defined(__NetBSD__) || defined(__OpenBSD__)
#include <dev/ic/midwayreg.h>
#include <dev/ic/midwayvar.h>
#if defined(__alpha__)
/* XXX XXX NEED REAL DMA MAPPING SUPPORT XXX XXX */
#undef vtophys
#define vtophys(va) alpha_XXX_dmamap((vm_offset_t)(va))
#endif
#elif defined(__FreeBSD__)
#include <machine/cpufunc.h> /* for rdtsc proto for clock.h below */
#include <machine/clock.h> /* for DELAY */
#include <pci/midwayreg.h>
#include <pci/midwayvar.h>
#include <vm/pmap.h> /* for vtophys proto */
/*
* 2.1.x does not have if_softc. detect this by seeing if IFF_NOTRAILERS
* is defined, as per kjc.
*/
#ifdef IFF_NOTRAILERS
#define MISSING_IF_SOFTC
#else
#define IFF_NOTRAILERS 0
#endif
#endif /* __FreeBSD__ */
/*
* params
*/
#ifndef EN_TXHIWAT
#define EN_TXHIWAT (64*1024) /* max 64 KB waiting to be DMAd out */
#endif
#ifndef EN_MINDMA
#define EN_MINDMA 32 /* don't DMA anything less than this (bytes) */
#endif
#define RX_NONE 0xffff /* recv VC not in use */
#define EN_OBHDR ATM_PH_DRIVER7 /* TBD in first mbuf ! */
#define EN_OBTRL ATM_PH_DRIVER8 /* PDU trailier in last mbuf ! */
#define ENOTHER_FREE 0x01 /* free rxslot */
#define ENOTHER_DRAIN 0x02 /* almost free (drain DRQ dma) */
#define ENOTHER_RAW 0x04 /* 'raw' access (aka boodi mode) */
#define ENOTHER_SWSL 0x08 /* in software service list */
int en_dma = EN_DMA; /* use DMA (switch off for dbg) */
/*
* autoconfig attachments
*/
struct cfdriver en_cd = {
0, "en", DV_IFNET,
};
/*
* local structures
*/
/*
* params to en_txlaunch() function
*/
struct en_launch {
u_int32_t tbd1; /* TBD 1 */
u_int32_t tbd2; /* TBD 2 */
u_int32_t pdu1; /* PDU 1 (aal5) */
int nodma; /* don't use DMA */
int need; /* total space we need (pad out if less data) */
int mlen; /* length of mbuf (for dtq) */
struct mbuf *t; /* data */
u_int32_t aal; /* aal code */
u_int32_t atm_vci; /* vci */
u_int8_t atm_flags; /* flags */
};
/*
* dma table (index by # of words)
*
* plan A: use WMAYBE
* plan B: avoid WMAYBE
*/
struct en_dmatab {
u_int8_t bcode; /* code */
u_int8_t divshift; /* byte divisor */
};
static struct en_dmatab en_dma_planA[] = {
{ 0, 0 }, /* 0 */ { MIDDMA_WORD, 2 }, /* 1 */
{ MIDDMA_2WORD, 3}, /* 2 */ { MIDDMA_4WMAYBE, 2}, /* 3 */
{ MIDDMA_4WORD, 4}, /* 4 */ { MIDDMA_8WMAYBE, 2}, /* 5 */
{ MIDDMA_8WMAYBE, 2}, /* 6 */ { MIDDMA_8WMAYBE, 2}, /* 7 */
{ MIDDMA_8WORD, 5}, /* 8 */ { MIDDMA_16WMAYBE, 2}, /* 9 */
{ MIDDMA_16WMAYBE,2}, /* 10 */ { MIDDMA_16WMAYBE, 2}, /* 11 */
{ MIDDMA_16WMAYBE,2}, /* 12 */ { MIDDMA_16WMAYBE, 2}, /* 13 */
{ MIDDMA_16WMAYBE,2}, /* 14 */ { MIDDMA_16WMAYBE, 2}, /* 15 */
{ MIDDMA_16WORD, 6}, /* 16 */
};
static struct en_dmatab en_dma_planB[] = {
{ 0, 0 }, /* 0 */ { MIDDMA_WORD, 2}, /* 1 */
{ MIDDMA_2WORD, 3}, /* 2 */ { MIDDMA_WORD, 2}, /* 3 */
{ MIDDMA_4WORD, 4}, /* 4 */ { MIDDMA_WORD, 2}, /* 5 */
{ MIDDMA_2WORD, 3}, /* 6 */ { MIDDMA_WORD, 2}, /* 7 */
{ MIDDMA_8WORD, 5}, /* 8 */ { MIDDMA_WORD, 2}, /* 9 */
{ MIDDMA_2WORD, 3}, /* 10 */ { MIDDMA_WORD, 2}, /* 11 */
{ MIDDMA_4WORD, 4}, /* 12 */ { MIDDMA_WORD, 2}, /* 13 */
{ MIDDMA_2WORD, 3}, /* 14 */ { MIDDMA_WORD, 2}, /* 15 */
{ MIDDMA_16WORD, 6}, /* 16 */
};
static struct en_dmatab *en_dmaplan = en_dma_planA;
/*
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
* prototypes
*/
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
STATIC int en_b2sz __P((int));
#ifdef EN_DDBHOOK
int en_dump __P((int,int));
int en_dumpmem __P((int,int,int));
#endif
STATIC void en_dmaprobe __P((struct en_softc *));
STATIC int en_dmaprobe_doit __P((struct en_softc *, u_int8_t *,
u_int8_t *, int));
STATIC int en_dqneed __P((struct en_softc *, caddr_t, u_int, u_int));
STATIC void en_init __P((struct en_softc *));
STATIC int en_ioctl __P((struct ifnet *, EN_IOCTL_CMDT, caddr_t));
STATIC int en_k2sz __P((int));
STATIC void en_loadvc __P((struct en_softc *, int));
STATIC int en_mfix __P((struct en_softc *, struct mbuf **, struct mbuf *));
STATIC struct mbuf *en_mget __P((struct en_softc *, u_int, u_int *));
STATIC u_int32_t en_read __P((struct en_softc *, u_int32_t));
STATIC int en_rxctl __P((struct en_softc *, struct atm_pseudoioctl *, int));
STATIC void en_txdma __P((struct en_softc *, int));
STATIC void en_txlaunch __P((struct en_softc *, int, struct en_launch *));
STATIC void en_service __P((struct en_softc *));
STATIC void en_start __P((struct ifnet *));
STATIC int en_sz2b __P((int));
STATIC void en_write __P((struct en_softc *, u_int32_t, u_int32_t));
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
/*
* macros/inline
*/
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
/*
* raw read/write macros
*/
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
#define EN_READDAT(SC,R) en_read(SC,R)
#define EN_WRITEDAT(SC,R,V) en_write(SC,R,V)
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
/*
* cooked read/write macros
*/
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
#define EN_READ(SC,R) ntohl(en_read(SC,R))
#define EN_WRITE(SC,R,V) en_write(SC,R, htonl(V))
#define EN_WRAPADD(START,STOP,CUR,VAL) { \
(CUR) = (CUR) + (VAL); \
if ((CUR) >= (STOP)) \
(CUR) = (START) + ((CUR) - (STOP)); \
}
#define WORD_IDX(START, X) (((X) - (START)) / sizeof(u_int32_t))
/* we store sc->dtq and sc->drq data in the following format... */
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
#define EN_DQ_MK(SLOT,LEN) (((SLOT) << 20)|(LEN)|(0x80000))
/* the 0x80000 ensures we != 0 */
#define EN_DQ_SLOT(X) ((X) >> 20)
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
#define EN_DQ_LEN(X) ((X) & 0x3ffff)
/* format of DTQ/DRQ word 1 differs between ENI and ADP */
#if defined(MIDWAY_ENIONLY)
#define MID_MK_TXQ(SC,CNT,CHAN,END,BCODE) \
EN_WRITE((SC), (SC)->dtq_us, \
MID_MK_TXQ_ENI((CNT), (CHAN), (END), (BCODE)));
#define MID_MK_RXQ(SC,CNT,VCI,END,BCODE) \
EN_WRITE((SC), (SC)->drq_us, \
MID_MK_RXQ_ENI((CNT), (VCI), (END), (BCODE)));
#elif defined(MIDWAY_ADPONLY)
#define MID_MK_TXQ(SC,CNT,CHAN,END,JK) \
EN_WRITE((SC), (SC)->dtq_us, \
MID_MK_TXQ_ADP((CNT), (CHAN), (END), (JK)));
#define MID_MK_RXQ(SC,CNT,VCI,END,JK) \
EN_WRITE((SC), (SC)->drq_us, \
MID_MK_RXQ_ADP((CNT), (VCI), (END), (JK)));
#else
#define MID_MK_TXQ(SC,CNT,CHAN,END,JK_OR_BCODE) { \
if ((SC)->is_adaptec) \
EN_WRITE((SC), (SC)->dtq_us, \
MID_MK_TXQ_ADP((CNT), (CHAN), (END), (JK_OR_BCODE))); \
else \
EN_WRITE((SC), (SC)->dtq_us, \
MID_MK_TXQ_ENI((CNT), (CHAN), (END), (JK_OR_BCODE))); \
}
#define MID_MK_RXQ(SC,CNT,VCI,END,JK_OR_BCODE) { \
if ((SC)->is_adaptec) \
EN_WRITE((SC), (SC)->drq_us, \
MID_MK_RXQ_ADP((CNT), (VCI), (END), (JK_OR_BCODE))); \
else \
EN_WRITE((SC), (SC)->drq_us, \
MID_MK_RXQ_ENI((CNT), (VCI), (END), (JK_OR_BCODE))); \
}
#endif
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
/* add an item to the DTQ */
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
#define EN_DTQADD(SC,CNT,CHAN,JK_OR_BCODE,ADDR,LEN,END) { \
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
if (END) \
(SC)->dtq[MID_DTQ_A2REG((SC)->dtq_us)] = EN_DQ_MK(CHAN,LEN); \
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
MID_MK_TXQ(SC,CNT,CHAN,END,JK_OR_BCODE); \
(SC)->dtq_us += 4; \
EN_WRITE((SC), (SC)->dtq_us, (ADDR)); \
EN_WRAPADD(MID_DTQOFF, MID_DTQEND, (SC)->dtq_us, 4); \
(SC)->dtq_free--; \
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
if (END) \
EN_WRITE((SC), MID_DMA_WRTX, MID_DTQ_A2REG((SC)->dtq_us)); \
}
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
/* DRQ add macro */
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
#define EN_DRQADD(SC,CNT,VCI,JK_OR_BCODE,ADDR,LEN,SLOT,END) { \
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
if (END) \
(SC)->drq[MID_DRQ_A2REG((SC)->drq_us)] = EN_DQ_MK(SLOT,LEN); \
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
MID_MK_RXQ(SC,CNT,VCI,END,JK_OR_BCODE); \
(SC)->drq_us += 4; \
EN_WRITE((SC), (SC)->drq_us, (ADDR)); \
EN_WRAPADD(MID_DRQOFF, MID_DRQEND, (SC)->drq_us, 4); \
(SC)->drq_free--; \
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
if (END) \
EN_WRITE((SC), MID_DMA_WRRX, MID_DRQ_A2REG((SC)->drq_us)); \
}
/*
* the driver code
*
* the code is arranged in a specific way:
* [1] short/inline functions
* [2] autoconfig stuff
* [3] ioctl stuff
* [4] reset -> init -> trasmit -> intr -> receive functions
*
*/
/***********************************************************************/
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
/*
* en_read: read a word from the card. this is the only function
* that reads from the card.
*/
STATIC INLINE u_int32_t en_read(sc, r)
struct en_softc *sc;
u_int32_t r;
{
#ifdef EN_DEBUG_RANGE
if (r > MID_MAXOFF || (r % 4)) {
printf("en_read out of range, r=0x%x\n", r);
panic("en_read");
}
#endif
return(bus_space_read_4(sc->en_memt, sc->en_base, r));
}
/*
* en_write: write a word to the card. this is the only function that
* writes to the card.
*/
STATIC INLINE void en_write(sc, r, v)
struct en_softc *sc;
u_int32_t r, v;
{
#ifdef EN_DEBUG_RANGE
if (r > MID_MAXOFF || (r % 4)) {
printf("en_write out of range, r=0x%x\n", r);
panic("en_write");
}
#endif
bus_space_write_4(sc->en_memt, sc->en_base, r, v);
}
/*
* en_k2sz: convert KBytes to a size parameter (a log2)
*/
STATIC INLINE int en_k2sz(k)
int k;
{
switch(k) {
case 1: return(0);
case 2: return(1);
case 4: return(2);
case 8: return(3);
case 16: return(4);
case 32: return(5);
case 64: return(6);
case 128: return(7);
default: panic("en_k2sz");
}
return(0);
}
#define en_log2(X) en_k2sz(X)
/*
* en_b2sz: convert a DMA burst code to its byte size
*/
STATIC INLINE int en_b2sz(b)
int b;
{
switch (b) {
case MIDDMA_WORD: return(1*4);
case MIDDMA_2WMAYBE:
case MIDDMA_2WORD: return(2*4);
case MIDDMA_4WMAYBE:
case MIDDMA_4WORD: return(4*4);
case MIDDMA_8WMAYBE:
case MIDDMA_8WORD: return(8*4);
case MIDDMA_16WMAYBE:
case MIDDMA_16WORD: return(16*4);
default: panic("en_b2sz");
}
return(0);
}
/*
* en_sz2b: convert a burst size (bytes) to DMA burst code
*/
STATIC INLINE int en_sz2b(sz)
int sz;
{
switch (sz) {
case 1*4: return(MIDDMA_WORD);
case 2*4: return(MIDDMA_2WORD);
case 4*4: return(MIDDMA_4WORD);
case 8*4: return(MIDDMA_8WORD);
case 16*4: return(MIDDMA_16WORD);
default: panic("en_sz2b");
}
return(0);
}
/*
* en_dqneed: calculate number of DTQ/DRQ's needed for a buffer
*/
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
STATIC INLINE int en_dqneed(sc, data, len, tx)
struct en_softc *sc;
caddr_t data;
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
u_int len, tx;
{
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
int result, needalign, sz;
#if !defined(MIDWAY_ENIONLY)
#if !defined(MIDWAY_ADPONLY)
if (sc->is_adaptec)
#endif /* !MIDWAY_ADPONLY */
return(1); /* adaptec can DMA anything in one go */
#endif
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
#if !defined(MIDWAY_ADPONLY)
result = 0;
if (len < EN_MINDMA) {
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
if (!tx) /* XXX: conservative */
return(1); /* will copy/DMA_JK */
}
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
if (tx) { /* byte burst? */
needalign = (((unsigned long) data) % sizeof(u_int32_t));
if (needalign) {
result++;
sz = min(len, sizeof(u_int32_t) - needalign);
len -= sz;
data += sz;
}
}
if (sc->alburst && len) {
needalign = (((unsigned long) data) & sc->bestburstmask);
if (needalign) {
result++; /* alburst */
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
sz = min(len, sc->bestburstlen - needalign);
len -= sz;
}
}
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
if (len >= sc->bestburstlen) {
sz = len / sc->bestburstlen;
sz = sz * sc->bestburstlen;
len -= sz;
result++; /* best shot */
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
}
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
if (len) {
result++; /* clean up */
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
if (tx && (len % sizeof(u_int32_t)) != 0)
result++; /* byte cleanup */
}
return(result);
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
#endif /* !MIDWAY_ADPONLY */
}
/*
* en_mget: get an mbuf chain that can hold totlen bytes and return it
* (for recv) [based on am7990_get from if_le and ieget from if_ie]
* after this call the sum of all the m_len's in the chain will be totlen.
*/
STATIC INLINE struct mbuf *en_mget(sc, totlen, drqneed)
struct en_softc *sc;
u_int totlen, *drqneed;
{
struct mbuf *m;
struct mbuf *top, **mp;
*drqneed = 0;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return(NULL);
m->m_pkthdr.rcvif = &sc->enif;
m->m_pkthdr.len = totlen;
m->m_len = MHLEN;
top = NULL;
mp = &top;
/* if (top != NULL) then we've already got 1 mbuf on the chain */
while (totlen > 0) {
if (top) {
MGET(m, M_DONTWAIT, MT_DATA);
if (!m) {
m_freem(top);
return(NULL); /* out of mbufs */
}
m->m_len = MLEN;
}
if (top && totlen >= MINCLSIZE) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(top);
return(NULL); /* out of mbuf clusters */
}
m->m_len = MCLBYTES;
}
m->m_len = min(totlen, m->m_len);
totlen -= m->m_len;
*mp = m;
mp = &m->m_next;
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
*drqneed += en_dqneed(sc, m->m_data, m->m_len, 0);
}
return(top);
}
/***********************************************************************/
/*
* autoconfig stuff
*/
void en_attach(sc)
struct en_softc *sc;
{
struct ifnet *ifp = &sc->enif;
int sz;
u_int32_t reg, lcv, check, ptr, sav, midvloc;
/*
* probe card to determine memory size. the stupid ENI card always
* reports to PCI that it needs 4MB of space (2MB regs and 2MB RAM).
* if it has less than 2MB RAM the addresses wrap in the RAM address space.
* (i.e. on a 512KB card addresses 0x3ffffc, 0x37fffc, and 0x2ffffc
* are aliases for 0x27fffc [note that RAM starts at offset 0x200000]).
*/
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
if (sc->en_busreset)
sc->en_busreset(sc);
EN_WRITE(sc, MID_RESID, 0x0); /* reset card before touching RAM */
for (lcv = MID_PROBEOFF; lcv <= MID_MAXOFF ; lcv += MID_PROBSIZE) {
EN_WRITE(sc, lcv, lcv); /* data[address] = address */
for (check = MID_PROBEOFF ; check < lcv ; check += MID_PROBSIZE) {
reg = EN_READ(sc, check);
if (reg != check) { /* found an alias! */
goto done_probe; /* and quit */
}
}
}
done_probe:
lcv -= MID_PROBSIZE; /* take one step back */
sc->en_obmemsz = (lcv + 4) - MID_RAMOFF;
/*
* determine the largest DMA burst supported
*/
en_dmaprobe(sc);
/*
* "hello world"
*/
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
if (sc->en_busreset)
sc->en_busreset(sc);
EN_WRITE(sc, MID_RESID, 0x0); /* reset */
for (lcv = MID_RAMOFF ; lcv < MID_RAMOFF + sc->en_obmemsz ; lcv += 4)
EN_WRITE(sc, lcv, 0); /* zero memory */
reg = EN_READ(sc, MID_RESID);
printf("%s: ATM midway v%d, board IDs %d.%d, %s%s%s, %ldKB on-board RAM\n",
sc->sc_dev.dv_xname, MID_VER(reg), MID_MID(reg), MID_DID(reg),
(MID_IS_SABRE(reg)) ? "sabre controller, " : "",
(MID_IS_SUNI(reg)) ? "SUNI" : "Utopia",
(!MID_IS_SUNI(reg) && MID_IS_UPIPE(reg)) ? " (pipelined)" : "",
sc->en_obmemsz / 1024);
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
if (sc->is_adaptec) {
if (sc->bestburstlen == 64 && sc->alburst == 0)
printf("%s: passed 64 byte DMA test\n", sc->sc_dev.dv_xname);
else
printf("%s: FAILED DMA TEST: burst=%d, alburst=%d\n",
sc->sc_dev.dv_xname, sc->bestburstlen, sc->alburst);
} else {
printf("%s: maximum DMA burst length = %d bytes%s\n", sc->sc_dev.dv_xname,
sc->bestburstlen, (sc->alburst) ? " (must align)" : "");
}
#if 0 /* WMAYBE doesn't work, don't complain about it */
/* check if en_dmaprobe disabled wmaybe */
if (en_dmaplan == en_dma_planB)
1996-10-13 05:37:04 +04:00
printf("%s: note: WMAYBE DMA has been disabled\n", sc->sc_dev.dv_xname);
#endif
/*
* link into network subsystem and prepare card
*/
#if defined(__NetBSD__) || defined(__OpenBSD__)
bcopy(sc->sc_dev.dv_xname, sc->enif.if_xname, IFNAMSIZ);
#endif
#if !defined(MISSING_IF_SOFTC)
sc->enif.if_softc = sc;
#endif
ifp->if_flags = IFF_SIMPLEX|IFF_NOTRAILERS;
ifp->if_ioctl = en_ioctl;
ifp->if_output = atm_output;
ifp->if_start = en_start;
/*
* init softc
*/
for (lcv = 0 ; lcv < MID_N_VC ; lcv++) {
sc->rxvc2slot[lcv] = RX_NONE;
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
sc->txspeed[lcv] = 0; /* full */
sc->txvc2slot[lcv] = 0; /* full speed == slot 0 */
}
sz = sc->en_obmemsz - (MID_BUFOFF - MID_RAMOFF);
ptr = sav = MID_BUFOFF;
ptr = roundup(ptr, EN_TXSZ * 1024); /* align */
sz = sz - (ptr - sav);
if (EN_TXSZ*1024 * EN_NTX > sz) {
1996-10-13 05:37:04 +04:00
printf("%s: EN_NTX/EN_TXSZ too big\n", sc->sc_dev.dv_xname);
return;
}
for (lcv = 0 ; lcv < EN_NTX ; lcv++) {
sc->txslot[lcv].mbsize = 0;
sc->txslot[lcv].start = ptr;
ptr += (EN_TXSZ * 1024);
sz -= (EN_TXSZ * 1024);
sc->txslot[lcv].stop = ptr;
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
sc->txslot[lcv].nref = 0;
bzero(&sc->txslot[lcv].indma, sizeof(sc->txslot[lcv].indma));
bzero(&sc->txslot[lcv].q, sizeof(sc->txslot[lcv].q));
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: tx%d: start 0x%x, stop 0x%x\n", sc->sc_dev.dv_xname, lcv,
sc->txslot[lcv].start, sc->txslot[lcv].stop);
#endif
}
sav = ptr;
ptr = roundup(ptr, EN_RXSZ * 1024); /* align */
sz = sz - (ptr - sav);
sc->en_nrx = sz / (EN_RXSZ * 1024);
if (sc->en_nrx <= 0) {
1996-10-13 05:37:04 +04:00
printf("%s: EN_NTX/EN_TXSZ/EN_RXSZ too big\n", sc->sc_dev.dv_xname);
return;
}
for (lcv = 0 ; lcv < sc->en_nrx ; lcv++) {
sc->rxslot[lcv].rxhand = NULL;
sc->rxslot[lcv].oth_flags = ENOTHER_FREE;
bzero(&sc->rxslot[lcv].indma, sizeof(sc->rxslot[lcv].indma));
bzero(&sc->rxslot[lcv].q, sizeof(sc->rxslot[lcv].q));
midvloc = sc->rxslot[lcv].start = ptr;
ptr += (EN_RXSZ * 1024);
sz -= (EN_RXSZ * 1024);
sc->rxslot[lcv].stop = ptr;
midvloc = midvloc - MID_RAMOFF;
midvloc = (midvloc & ~((EN_RXSZ*1024) - 1)) >> 2; /* mask, cvt to words */
midvloc = midvloc >> MIDV_LOCTOPSHFT; /* we only want the top 11 bits */
midvloc = (midvloc & MIDV_LOCMASK) << MIDV_LOCSHIFT;
sc->rxslot[lcv].mode = midvloc |
(en_k2sz(EN_RXSZ) << MIDV_SZSHIFT) | MIDV_TRASH;
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: rx%d: start 0x%x, stop 0x%x, mode 0x%x\n", sc->sc_dev.dv_xname,
lcv, sc->rxslot[lcv].start, sc->rxslot[lcv].stop, sc->rxslot[lcv].mode);
#endif
}
#ifdef EN_STAT
sc->vtrash = sc->otrash = sc->mfix = sc->txmbovr = sc->dmaovr = 0;
sc->txoutspace = sc->txdtqout = sc->launch = sc->lheader = sc->ltail = 0;
sc->hwpull = sc->swadd = sc->rxqnotus = sc->rxqus = sc->rxoutboth = 0;
sc->rxdrqout = sc->ttrash = sc->rxmbufout = sc->mfixfail = 0;
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
sc->headbyte = sc->tailbyte = sc->tailflush = 0;
#endif
sc->need_drqs = sc->need_dtqs = 0;
1996-10-13 05:37:04 +04:00
printf("%s: %d %dKB receive buffers, %d %dKB transmit buffers allocated\n",
sc->sc_dev.dv_xname, sc->en_nrx, EN_RXSZ, EN_NTX, EN_TXSZ);
/*
* final commit
*/
if_attach(ifp);
atm_ifattach(ifp);
}
/*
* en_dmaprobe: helper function for en_attach.
*
* see how the card handles DMA by running a few DMA tests. we need
* to figure out the largest number of bytes we can DMA in one burst
* ("bestburstlen"), and if the starting address for a burst needs to
* be aligned on any sort of boundary or not ("alburst").
*
* typical findings:
* sparc1: bestburstlen=4, alburst=0 (ick, broken DMA!)
* sparc2: bestburstlen=64, alburst=1
* p166: bestburstlen=64, alburst=0
*/
STATIC void en_dmaprobe(sc)
struct en_softc *sc;
{
u_int32_t srcbuf[64], dstbuf[64];
u_int8_t *sp, *dp;
int bestalgn, bestnotalgn, lcv, try, fail;
sc->alburst = 0;
sp = (u_int8_t *) srcbuf;
while ((((unsigned long) sp) % MIDDMA_MAXBURST) != 0)
sp += 4;
dp = (u_int8_t *) dstbuf;
while ((((unsigned long) dp) % MIDDMA_MAXBURST) != 0)
dp += 4;
bestalgn = bestnotalgn = en_dmaprobe_doit(sc, sp, dp, 0);
for (lcv = 4 ; lcv < MIDDMA_MAXBURST ; lcv += 4) {
try = en_dmaprobe_doit(sc, sp+lcv, dp+lcv, 0);
if (try < bestnotalgn)
bestnotalgn = try;
}
if (bestalgn != bestnotalgn) /* need bursts aligned */
sc->alburst = 1;
sc->bestburstlen = bestalgn;
sc->bestburstshift = en_log2(bestalgn);
sc->bestburstmask = sc->bestburstlen - 1; /* must be power of 2 */
sc->bestburstcode = en_sz2b(bestalgn);
if (sc->bestburstlen <= 2*sizeof(u_int32_t))
return; /* won't be using WMAYBE */
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
/*
* adaptec does not have (or need) wmaybe. do not bother testing
* for it.
*/
if (sc->is_adaptec) {
/* XXX, actually don't need a DMA plan: adaptec is smarter than that */
en_dmaplan = en_dma_planB;
return;
}
/*
* test that WMAYBE dma works like we think it should
* (i.e. no alignment restrictions on host address other than alburst)
*/
try = sc->bestburstlen - 4;
fail = 0;
fail += en_dmaprobe_doit(sc, sp, dp, try);
for (lcv = 4 ; lcv < sc->bestburstlen ; lcv += 4) {
fail += en_dmaprobe_doit(sc, sp+lcv, dp+lcv, try);
if (sc->alburst)
try -= 4;
}
if (EN_NOWMAYBE || fail) {
if (fail)
1996-10-13 05:37:04 +04:00
printf("%s: WARNING: WMAYBE DMA test failed %d time(s)\n",
sc->sc_dev.dv_xname, fail);
en_dmaplan = en_dma_planB; /* fall back to plan B */
}
}
/*
* en_dmaprobe_doit: do actual testing
*/
int
en_dmaprobe_doit(sc, sp, dp, wmtry)
struct en_softc *sc;
u_int8_t *sp, *dp;
int wmtry;
{
int lcv, retval = 4, cnt, count;
u_int32_t reg, bcode, midvloc;
/*
* set up a 1k buffer at MID_BUFOFF
*/
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
if (sc->en_busreset)
sc->en_busreset(sc);
EN_WRITE(sc, MID_RESID, 0x0); /* reset card before touching RAM */
midvloc = ((MID_BUFOFF - MID_RAMOFF) / sizeof(u_int32_t)) >> MIDV_LOCTOPSHFT;
EN_WRITE(sc, MIDX_PLACE(0), MIDX_MKPLACE(en_k2sz(1), midvloc));
EN_WRITE(sc, MID_VC(0), (midvloc << MIDV_LOCSHIFT)
| (en_k2sz(1) << MIDV_SZSHIFT) | MIDV_TRASH);
EN_WRITE(sc, MID_DST_RP(0), 0);
EN_WRITE(sc, MID_WP_ST_CNT(0), 0);
for (lcv = 0 ; lcv < 68 ; lcv++) /* set up sample data */
sp[lcv] = lcv+1;
EN_WRITE(sc, MID_MAST_CSR, MID_MCSR_ENDMA); /* enable DMA (only) */
sc->drq_chip = MID_DRQ_REG2A(EN_READ(sc, MID_DMA_RDRX));
sc->dtq_chip = MID_DTQ_REG2A(EN_READ(sc, MID_DMA_RDTX));
/*
* try it now . . . DMA it out, then DMA it back in and compare
*
* note: in order to get the dma stuff to reverse directions it wants
* the "end" flag set! since we are not dma'ing valid data we may
* get an ident mismatch interrupt (which we will ignore).
*
* note: we've got two different tests rolled up in the same loop
* if (wmtry)
* then we are doing a wmaybe test and wmtry is a byte count
* else we are doing a burst test
*/
for (lcv = 8 ; lcv <= MIDDMA_MAXBURST ; lcv = lcv * 2) {
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
/* zero SRAM and dest buffer */
for (cnt = 0 ; cnt < 1024; cnt += 4)
EN_WRITE(sc, MID_BUFOFF+cnt, 0); /* zero memory */
for (cnt = 0 ; cnt < 68 ; cnt++)
dp[cnt] = 0;
if (wmtry) {
count = (sc->bestburstlen - sizeof(u_int32_t)) / sizeof(u_int32_t);
bcode = en_dmaplan[count].bcode;
count = wmtry >> en_dmaplan[count].divshift;
} else {
bcode = en_sz2b(lcv);
count = 1;
}
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
if (sc->is_adaptec)
EN_WRITE(sc, sc->dtq_chip, MID_MK_TXQ_ADP(lcv, 0, MID_DMA_END, 0));
else
EN_WRITE(sc, sc->dtq_chip, MID_MK_TXQ_ENI(count, 0, MID_DMA_END, bcode));
EN_WRITE(sc, sc->dtq_chip+4, vtophys(sp));
EN_WRITE(sc, MID_DMA_WRTX, MID_DTQ_A2REG(sc->dtq_chip+8));
cnt = 1000;
while (EN_READ(sc, MID_DMA_RDTX) == MID_DTQ_A2REG(sc->dtq_chip)) {
DELAY(1);
cnt--;
if (cnt == 0) {
1996-10-13 05:37:04 +04:00
printf("%s: unexpected timeout in tx DMA test\n", sc->sc_dev.dv_xname);
return(retval); /* timeout, give up */
}
}
EN_WRAPADD(MID_DTQOFF, MID_DTQEND, sc->dtq_chip, 8);
reg = EN_READ(sc, MID_INTACK);
if ((reg & MID_INT_DMA_TX) != MID_INT_DMA_TX) {
1996-10-13 05:37:04 +04:00
printf("%s: unexpected status in tx DMA test: 0x%x\n",
sc->sc_dev.dv_xname, reg);
return(retval);
}
EN_WRITE(sc, MID_MAST_CSR, MID_MCSR_ENDMA); /* re-enable DMA (only) */
/* "return to sender..." address is known ... */
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
if (sc->is_adaptec)
EN_WRITE(sc, sc->drq_chip, MID_MK_RXQ_ADP(lcv, 0, MID_DMA_END, 0));
else
EN_WRITE(sc, sc->drq_chip, MID_MK_RXQ_ENI(count, 0, MID_DMA_END, bcode));
EN_WRITE(sc, sc->drq_chip+4, vtophys(dp));
EN_WRITE(sc, MID_DMA_WRRX, MID_DRQ_A2REG(sc->drq_chip+8));
cnt = 1000;
while (EN_READ(sc, MID_DMA_RDRX) == MID_DRQ_A2REG(sc->drq_chip)) {
DELAY(1);
cnt--;
if (cnt == 0) {
1996-10-13 05:37:04 +04:00
printf("%s: unexpected timeout in rx DMA test\n", sc->sc_dev.dv_xname);
return(retval); /* timeout, give up */
}
}
EN_WRAPADD(MID_DRQOFF, MID_DRQEND, sc->drq_chip, 8);
reg = EN_READ(sc, MID_INTACK);
if ((reg & MID_INT_DMA_RX) != MID_INT_DMA_RX) {
1996-10-13 05:37:04 +04:00
printf("%s: unexpected status in rx DMA test: 0x%x\n",
sc->sc_dev.dv_xname, reg);
return(retval);
}
EN_WRITE(sc, MID_MAST_CSR, MID_MCSR_ENDMA); /* re-enable DMA (only) */
if (wmtry) {
return(bcmp(sp, dp, wmtry)); /* wmtry always exits here, no looping */
}
if (bcmp(sp, dp, lcv))
return(retval); /* failed, use last value */
retval = lcv;
}
return(retval); /* studly 64 byte DMA present! oh baby!! */
}
/***********************************************************************/
/*
* en_ioctl: handle ioctl requests
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
*
* NOTE: if you add an ioctl to set txspeed, you should choose a new
* TX channel/slot. Choose the one with the lowest sc->txslot[slot].nref
* value, subtract one from sc->txslot[0].nref, add one to the
* sc->txslot[slot].nref, set sc->txvc2slot[vci] = slot, and then set
* txspeed[vci].
*/
STATIC int en_ioctl(ifp, cmd, data)
struct ifnet *ifp;
EN_IOCTL_CMDT cmd;
caddr_t data;
{
#ifdef MISSING_IF_SOFTC
struct en_softc *sc = (struct en_softc *) en_cd.cd_devs[ifp->if_unit];
#else
struct en_softc *sc = (struct en_softc *) ifp->if_softc;
#endif
struct ifaddr *ifa = (struct ifaddr *) data;
struct ifreq *ifr = (struct ifreq *) data;
struct atm_pseudoioctl *api = (struct atm_pseudoioctl *)data;
#ifdef NATM
struct atm_rawioctl *ario = (struct atm_rawioctl *)data;
int slot;
#endif
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCATMENA: /* enable circuit for recv */
error = en_rxctl(sc, api, 1);
break;
case SIOCATMDIS: /* disable circuit for recv */
error = en_rxctl(sc, api, 0);
break;
#ifdef NATM
case SIOCXRAWATM:
if ((slot = sc->rxvc2slot[ario->npcb->npcb_vci]) == RX_NONE) {
error = EINVAL;
break;
}
if (ario->rawvalue > EN_RXSZ*1024)
ario->rawvalue = EN_RXSZ*1024;
if (ario->rawvalue) {
sc->rxslot[slot].oth_flags |= ENOTHER_RAW;
sc->rxslot[slot].raw_threshold = ario->rawvalue;
} else {
sc->rxslot[slot].oth_flags &= (~ENOTHER_RAW);
sc->rxslot[slot].raw_threshold = 0;
}
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: rxvci%d: turn %s raw (boodi) mode\n",
sc->sc_dev.dv_xname, ario->npcb->npcb_vci,
(ario->rawvalue) ? "on" : "off");
#endif
break;
#endif
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
#ifdef INET
if (ifa->ifa_addr->sa_family == AF_INET) {
en_reset(sc);
en_init(sc);
ifa->ifa_rtrequest = atm_rtrequest; /* ??? */
break;
}
#endif /* INET */
/* what to do if not INET? */
en_reset(sc);
en_init(sc);
break;
case SIOCGIFADDR:
error = EINVAL;
break;
case SIOCSIFFLAGS:
error = EINVAL;
break;
#if defined(SIOCSIFMTU) /* ??? copied from if_de */
#if !defined(ifr_mtu)
#define ifr_mtu ifr_metric
#endif
case SIOCSIFMTU:
/*
* Set the interface MTU.
*/
#ifdef notsure
if (ifr->ifr_mtu > ATMMTU) {
error = EINVAL;
break;
}
#endif
ifp->if_mtu = ifr->ifr_mtu;
/* XXXCDC: do we really need to reset on MTU size change? */
en_reset(sc);
en_init(sc);
break;
#endif /* SIOCSIFMTU */
default:
error = EINVAL;
break;
}
splx(s);
return error;
}
/*
* en_rxctl: turn on and off VCs for recv.
*/
STATIC int en_rxctl(sc, pi, on)
struct en_softc *sc;
struct atm_pseudoioctl *pi;
int on;
{
u_int s, vci, flags, slot;
u_int32_t oldmode, newmode;
vci = ATM_PH_VCI(&pi->aph);
flags = ATM_PH_FLAGS(&pi->aph);
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: %s vpi=%d, vci=%d, flags=%d\n", sc->sc_dev.dv_xname,
(on) ? "enable" : "disable", ATM_PH_VPI(&pi->aph), vci, flags);
#endif
if (ATM_PH_VPI(&pi->aph) || vci >= MID_N_VC)
return(EINVAL);
/*
* turn on VCI!
*/
if (on) {
if (sc->rxvc2slot[vci] != RX_NONE)
return(EINVAL);
for (slot = 0 ; slot < sc->en_nrx ; slot++)
if (sc->rxslot[slot].oth_flags & ENOTHER_FREE)
break;
if (slot == sc->en_nrx)
return(ENOSPC);
sc->rxvc2slot[vci] = slot;
sc->rxslot[slot].rxhand = NULL;
oldmode = sc->rxslot[slot].mode;
newmode = (flags & ATM_PH_AAL5) ? MIDV_AAL5 : MIDV_NOAAL;
sc->rxslot[slot].mode = MIDV_SETMODE(oldmode, newmode);
sc->rxslot[slot].atm_vci = vci;
sc->rxslot[slot].atm_flags = flags;
sc->rxslot[slot].oth_flags = 0;
sc->rxslot[slot].rxhand = pi->rxhand;
if (sc->rxslot[slot].indma.ifq_head || sc->rxslot[slot].q.ifq_head)
panic("en_rxctl: left over mbufs on enable");
sc->txspeed[vci] = 0; /* full speed to start */
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
sc->txvc2slot[vci] = 0; /* init value */
sc->txslot[0].nref++; /* bump reference count */
1996-10-13 05:37:04 +04:00
en_loadvc(sc, vci); /* does debug printf for us */
return(0);
}
/*
* turn off VCI
*/
if (sc->rxvc2slot[vci] == RX_NONE)
return(EINVAL);
slot = sc->rxvc2slot[vci];
if ((sc->rxslot[slot].oth_flags & (ENOTHER_FREE|ENOTHER_DRAIN)) != 0)
return(EINVAL);
s = splimp(); /* block out enintr() */
oldmode = EN_READ(sc, MID_VC(vci));
newmode = MIDV_SETMODE(oldmode, MIDV_TRASH) & ~MIDV_INSERVICE;
EN_WRITE(sc, MID_VC(vci), (newmode | (oldmode & MIDV_INSERVICE)));
/* halt in tracks, be careful to preserve inserivce bit */
DELAY(27);
sc->rxslot[slot].rxhand = NULL;
sc->rxslot[slot].mode = newmode;
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
sc->txslot[sc->txvc2slot[vci]].nref--;
sc->txspeed[vci] = 0;
sc->txvc2slot[vci] = 0;
/* if stuff is still going on we are going to have to drain it out */
if (sc->rxslot[slot].indma.ifq_head ||
sc->rxslot[slot].q.ifq_head ||
(sc->rxslot[slot].oth_flags & ENOTHER_SWSL) != 0) {
sc->rxslot[slot].oth_flags |= ENOTHER_DRAIN;
} else {
sc->rxslot[slot].oth_flags = ENOTHER_FREE;
sc->rxslot[slot].atm_vci = RX_NONE;
sc->rxvc2slot[vci] = RX_NONE;
}
splx(s); /* enable enintr() */
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: rx%d: VCI %d is now %s\n", sc->sc_dev.dv_xname, slot, vci,
(sc->rxslot[slot].oth_flags & ENOTHER_DRAIN) ? "draining" : "free");
#endif
return(0);
}
/***********************************************************************/
/*
* en_reset: reset the board, throw away work in progress.
* must en_init to recover.
*/
void en_reset(sc)
struct en_softc *sc;
{
struct mbuf *m;
int lcv, slot;
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: reset\n", sc->sc_dev.dv_xname);
#endif
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
if (sc->en_busreset)
sc->en_busreset(sc);
EN_WRITE(sc, MID_RESID, 0x0); /* reset hardware */
/*
* recv: dump any mbufs we are dma'ing into, if DRAINing, then a reset
* will free us!
*/
for (lcv = 0 ; lcv < MID_N_VC ; lcv++) {
if (sc->rxvc2slot[lcv] == RX_NONE)
continue;
slot = sc->rxvc2slot[lcv];
while (1) {
IF_DEQUEUE(&sc->rxslot[slot].indma, m);
if (m == NULL)
break; /* >>> exit 'while(1)' here <<< */
m_freem(m);
}
while (1) {
IF_DEQUEUE(&sc->rxslot[slot].q, m);
if (m == NULL)
break; /* >>> exit 'while(1)' here <<< */
m_freem(m);
}
sc->rxslot[slot].oth_flags &= ~ENOTHER_SWSL;
if (sc->rxslot[slot].oth_flags & ENOTHER_DRAIN) {
sc->rxslot[slot].oth_flags = ENOTHER_FREE;
sc->rxvc2slot[lcv] = RX_NONE;
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: rx%d: VCI %d is now free\n", sc->sc_dev.dv_xname, slot, lcv);
#endif
}
}
/*
* xmit: dump everything
*/
for (lcv = 0 ; lcv < EN_NTX ; lcv++) {
while (1) {
IF_DEQUEUE(&sc->txslot[lcv].indma, m);
if (m == NULL)
break; /* >>> exit 'while(1)' here <<< */
m_freem(m);
}
while (1) {
IF_DEQUEUE(&sc->txslot[lcv].q, m);
if (m == NULL)
break; /* >>> exit 'while(1)' here <<< */
m_freem(m);
}
sc->txslot[lcv].mbsize = 0;
}
return;
}
/*
* en_init: init board and sync the card with the data in the softc.
*/
STATIC void en_init(sc)
struct en_softc *sc;
{
int vc, slot;
u_int32_t loc;
if ((sc->enif.if_flags & IFF_UP) == 0) {
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: going down\n", sc->sc_dev.dv_xname);
#endif
en_reset(sc); /* to be safe */
sc->enif.if_flags &= ~IFF_RUNNING; /* disable */
return;
}
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: going up\n", sc->sc_dev.dv_xname);
#endif
sc->enif.if_flags |= IFF_RUNNING; /* enable */
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
if (sc->en_busreset)
sc->en_busreset(sc);
EN_WRITE(sc, MID_RESID, 0x0); /* reset */
/*
* init obmem data structures: vc tab, dma q's, slist.
*/
for (vc = 0 ; vc < MID_N_VC ; vc++)
en_loadvc(sc, vc);
bzero(&sc->drq, sizeof(sc->drq));
sc->drq_free = MID_DRQ_N;
sc->drq_chip = MID_DRQ_REG2A(EN_READ(sc, MID_DMA_RDRX));
EN_WRITE(sc, MID_DMA_WRRX, MID_DRQ_A2REG(sc->drq_chip));
/* ensure zero queue */
sc->drq_us = sc->drq_chip;
bzero(&sc->dtq, sizeof(sc->dtq));
sc->dtq_free = MID_DTQ_N;
sc->dtq_chip = MID_DTQ_REG2A(EN_READ(sc, MID_DMA_RDTX));
EN_WRITE(sc, MID_DMA_WRTX, MID_DRQ_A2REG(sc->dtq_chip));
/* ensure zero queue */
sc->dtq_us = sc->dtq_chip;
sc->hwslistp = MID_SL_REG2A(EN_READ(sc, MID_SERV_WRITE));
sc->swsl_size = sc->swsl_head = sc->swsl_tail = 0;
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: drq free/chip: %d/0x%x, dtq free/chip: %d/0x%x, hwslist: 0x%x\n",
sc->sc_dev.dv_xname, sc->drq_free, sc->drq_chip,
sc->dtq_free, sc->dtq_chip, sc->hwslistp);
#endif
for (slot = 0 ; slot < EN_NTX ; slot++) {
sc->txslot[slot].bfree = EN_TXSZ * 1024;
EN_WRITE(sc, MIDX_READPTR(slot), 0);
EN_WRITE(sc, MIDX_DESCSTART(slot), 0);
loc = sc->txslot[slot].cur = sc->txslot[slot].start;
loc = loc - MID_RAMOFF;
loc = (loc & ~((EN_TXSZ*1024) - 1)) >> 2; /* mask, cvt to words */
loc = loc >> MIDV_LOCTOPSHFT; /* top 11 bits */
EN_WRITE(sc, MIDX_PLACE(slot), MIDX_MKPLACE(en_k2sz(EN_TXSZ), loc));
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: tx%d: place 0x%x\n", sc->sc_dev.dv_xname, slot,
EN_READ(sc, MIDX_PLACE(slot)));
#endif
}
/*
* enable!
*/
EN_WRITE(sc, MID_INTENA, MID_INT_TX|MID_INT_DMA_OVR|MID_INT_IDENT|
MID_INT_LERR|MID_INT_DMA_ERR|MID_INT_DMA_RX|MID_INT_DMA_TX|
MID_INT_SERVICE| /* >>> MID_INT_SUNI| XXXCDC<<< */ MID_INT_STATS);
EN_WRITE(sc, MID_MAST_CSR, MID_SETIPL(sc->ipl)|MID_MCSR_ENDMA|
MID_MCSR_ENTX|MID_MCSR_ENRX);
}
/*
* en_loadvc: load a vc tab entry from a slot
*/
STATIC void en_loadvc(sc, vc)
struct en_softc *sc;
int vc;
{
int slot;
u_int32_t reg = EN_READ(sc, MID_VC(vc));
reg = MIDV_SETMODE(reg, MIDV_TRASH);
EN_WRITE(sc, MID_VC(vc), reg);
DELAY(27);
if ((slot = sc->rxvc2slot[vc]) == RX_NONE)
return;
/* no need to set CRC */
EN_WRITE(sc, MID_DST_RP(vc), 0); /* read pointer = 0, desc. start = 0 */
EN_WRITE(sc, MID_WP_ST_CNT(vc), 0); /* write pointer = 0 */
EN_WRITE(sc, MID_VC(vc), sc->rxslot[slot].mode); /* set mode, size, loc */
sc->rxslot[slot].cur = sc->rxslot[slot].start;
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: rx%d: assigned to VCI %d\n", sc->sc_dev.dv_xname, slot, vc);
#endif
}
/*
* en_start: start transmitting the next packet that needs to go out
* if there is one. note that atm_output() has already splimp()'d us.
*/
STATIC void en_start(ifp)
struct ifnet *ifp;
{
#ifdef MISSING_IF_SOFTC
struct en_softc *sc = (struct en_softc *) en_cd.cd_devs[ifp->if_unit];
#else
struct en_softc *sc = (struct en_softc *) ifp->if_softc;
#endif
struct ifqueue *ifq = &ifp->if_snd; /* if INPUT QUEUE */
struct mbuf *m, *lastm, *prev;
struct atm_pseudohdr *ap, *new_ap;
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
int txchan, mlen, got, need, toadd, cellcnt, first;
u_int32_t atm_vpi, atm_vci, atm_flags, *dat, aal;
u_int8_t *cp;
if ((ifp->if_flags & IFF_RUNNING) == 0)
return;
/*
* remove everything from interface queue since we handle all queueing
* locally ...
*/
while (1) {
IF_DEQUEUE(ifq, m);
if (m == NULL)
return; /* EMPTY: >>> exit here <<< */
/*
* calculate size of packet (in bytes)
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
* also, if we are not doing transmit DMA we eliminate all stupid
* (non-word) alignments here using en_mfix(). calls to en_mfix()
* seem to be due to tcp retransmits for the most part.
*
* after this loop mlen total length of mbuf chain (including atm_ph),
* and lastm is a pointer to the last mbuf on the chain.
*/
lastm = m;
mlen = 0;
prev = NULL;
while (1) {
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
if (EN_NOTXDMA || !en_dma) { /* no DMA? */
if ( (mtod(lastm, unsigned long) % sizeof(u_int32_t)) != 0 ||
((lastm->m_len % sizeof(u_int32_t)) != 0 && lastm->m_next)) {
first = (lastm == m);
if (en_mfix(sc, &lastm, prev) == 0) { /* failed? */
m_freem(m);
m = NULL;
break;
}
if (first)
m = lastm; /* update */
}
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
prev = lastm;
}
mlen += lastm->m_len;
if (lastm->m_next == NULL)
break;
lastm = lastm->m_next;
}
if (m == NULL) /* happens only if mfix fails */
continue;
ap = mtod(m, struct atm_pseudohdr *);
atm_vpi = ATM_PH_VPI(ap);
atm_vci = ATM_PH_VCI(ap);
atm_flags = ATM_PH_FLAGS(ap) & ~(EN_OBHDR|EN_OBTRL);
aal = ((atm_flags & ATM_PH_AAL5) != 0)
? MID_TBD_AAL5 : MID_TBD_NOAAL5;
/*
* check that vpi/vci is one we can use
*/
if (atm_vpi || atm_vci > MID_N_VC) {
1996-10-13 05:37:04 +04:00
printf("%s: output vpi=%d, vci=%d out of card range, dropping...\n",
sc->sc_dev.dv_xname, atm_vpi, atm_vci);
m_freem(m);
continue;
}
/*
* computing how much padding we need on the end of the mbuf, then
* see if we can put the TBD at the front of the mbuf where the
* link header goes (well behaved protocols will reserve room for us).
* last, check if room for PDU tail.
*
* got = number of bytes of data we have
* cellcnt = number of cells in this mbuf
* need = number of bytes of data + padding we need (excludes TBD)
* toadd = number of bytes of data we need to add to end of mbuf,
* [including AAL5 PDU, if AAL5]
*/
got = mlen - sizeof(struct atm_pseudohdr *);
toadd = (aal == MID_TBD_AAL5) ? MID_PDU_SIZE : 0; /* PDU */
cellcnt = (got + toadd + (MID_ATMDATASZ - 1)) / MID_ATMDATASZ;
need = cellcnt * MID_ATMDATASZ;
toadd = need - got; /* recompute, including zero padding */
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: txvci%d: mlen=%d, got=%d, need=%d, toadd=%d, cell#=%d\n",
sc->sc_dev.dv_xname, atm_vci, mlen, got, need, toadd, cellcnt);
1996-10-13 05:37:04 +04:00
printf(" leading_space=%d, trailing_space=%d\n",
M_LEADINGSPACE(m), M_TRAILINGSPACE(lastm));
#endif
#ifdef EN_MBUF_OPT
/*
* note: external storage (M_EXT) can be shared between mbufs
* to avoid copying (see m_copym()). this means that the same
* data buffer could be shared by several mbufs, and thus it isn't
* a good idea to try and write TBDs or PDUs to M_EXT data areas.
*/
if (M_LEADINGSPACE(m) >= MID_TBD_SIZE && (m->m_flags & M_EXT) == 0) {
m->m_data -= MID_TBD_SIZE;
m->m_len += MID_TBD_SIZE;
mlen += MID_TBD_SIZE;
new_ap = mtod(m, struct atm_pseudohdr *);
*new_ap = *ap; /* move it back */
ap = new_ap;
dat = ((u_int32_t *) ap) + 1;
/* make sure the TBD is in proper byte order */
*dat++ = htonl(MID_TBD_MK1(aal, sc->txspeed[atm_vci], cellcnt));
*dat = htonl(MID_TBD_MK2(atm_vci, 0, 0));
atm_flags |= EN_OBHDR;
}
if (toadd && (lastm->m_flags & M_EXT) == 0 &&
M_TRAILINGSPACE(lastm) >= toadd) {
cp = mtod(lastm, u_int8_t *) + lastm->m_len;
lastm->m_len += toadd;
mlen += toadd;
if (aal == MID_TBD_AAL5) {
bzero(cp, toadd - MID_PDU_SIZE);
dat = (u_int32_t *)(cp + toadd - MID_PDU_SIZE);
/* make sure the PDU is in proper byte order */
*dat = htonl(MID_PDU_MK1(0, 0, got));
} else {
bzero(cp, toadd);
}
atm_flags |= EN_OBTRL;
}
ATM_PH_FLAGS(ap) = atm_flags; /* update EN_OBHDR/EN_OBTRL bits */
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
#endif /* EN_MBUF_OPT */
/*
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
* get assigned channel (will be zero unless txspeed[atm_vci] is set)
*/
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
txchan = sc->txvc2slot[atm_vci];
if (sc->txslot[txchan].mbsize > EN_TXHIWAT) {
EN_COUNT(sc->txmbovr);
m_freem(m);
#ifdef EN_DEBUG
printf("%s: tx%d: buffer space shortage\n", sc->sc_dev.dv_xname,
txchan);
#endif
continue;
}
sc->txslot[txchan].mbsize += mlen;
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: tx%d: VPI=%d, VCI=%d, FLAGS=0x%x, speed=0x%x\n",
sc->sc_dev.dv_xname, txchan, atm_vpi, atm_vci, atm_flags,
sc->txspeed[atm_vci]);
1996-10-13 05:37:04 +04:00
printf(" adjusted mlen=%d, mbsize=%d\n", mlen,
sc->txslot[txchan].mbsize);
#endif
IF_ENQUEUE(&sc->txslot[txchan].q, m);
en_txdma(sc, txchan);
}
/*NOTREACHED*/
}
/*
* en_mfix: fix a stupid mbuf
*/
STATIC int en_mfix(sc, mm, prev)
struct en_softc *sc;
struct mbuf **mm, *prev;
{
struct mbuf *m, *new;
u_char *d, *cp;
int off;
struct mbuf *nxt;
m = *mm;
EN_COUNT(sc->mfix); /* count # of calls */
#ifdef EN_DEBUG
printf("%s: mfix mbuf m_data=%p, m_len=%d\n", sc->sc_dev.dv_xname,
m->m_data, m->m_len);
#endif
d = mtod(m, u_char *);
off = ((unsigned long) d) % sizeof(u_int32_t);
if (off) {
if ((m->m_flags & M_EXT) == 0) {
bcopy(d, d - off, m->m_len); /* ALIGN! (with costly data copy...) */
d -= off;
m->m_data = (caddr_t)d;
} else {
/* can't write to an M_EXT mbuf since it may be shared */
MGET(new, M_DONTWAIT, MT_DATA);
if (!new) {
EN_COUNT(sc->mfixfail);
return(0);
}
MCLGET(new, M_DONTWAIT);
if ((new->m_flags & M_EXT) == 0) {
m_free(new);
EN_COUNT(sc->mfixfail);
return(0);
}
bcopy(d, new->m_data, m->m_len); /* ALIGN! (with costly data copy...) */
new->m_len = m->m_len;
new->m_next = m->m_next;
if (prev)
prev->m_next = new;
m_free(m);
*mm = m = new; /* note: 'd' now invalid */
}
}
off = m->m_len % sizeof(u_int32_t);
if (off == 0)
return(1);
d = mtod(m, u_char *) + m->m_len;
off = sizeof(u_int32_t) - off;
nxt = m->m_next;
while (off--) {
for ( ; nxt != NULL && nxt->m_len == 0 ; nxt = nxt->m_next)
/*null*/;
if (nxt == NULL) { /* out of data, zero fill */
*d++ = 0;
continue; /* next "off" */
}
cp = mtod(nxt, u_char *);
*d++ = *cp++;
m->m_len++;
nxt->m_len--;
nxt->m_data = (caddr_t)cp;
}
return(1);
}
/*
* en_txdma: start trasmit DMA, if possible
*/
STATIC void en_txdma(sc, chan)
struct en_softc *sc;
int chan;
{
struct mbuf *tmp;
struct atm_pseudohdr *ap;
struct en_launch launch;
int datalen = 0, dtqneed, len, ncells;
u_int8_t *cp;
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: tx%d: starting...\n", sc->sc_dev.dv_xname, chan);
#endif
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
/*
* note: now that txlaunch handles non-word aligned/sized requests
* the only time you can safely set launch.nodma is if you've en_mfix()'d
* the mbuf chain. this happens only if EN_NOTXDMA || !en_dma.
*/
launch.nodma = (EN_NOTXDMA || !en_dma);
again:
/*
* get an mbuf waiting for DMA
*/
launch.t = sc->txslot[chan].q.ifq_head; /* peek at head of queue */
if (launch.t == NULL) {
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: tx%d: ...done!\n", sc->sc_dev.dv_xname, chan);
#endif
return; /* >>> exit here if no data waiting for DMA <<< */
}
/*
* get flags, vci
*
* note: launch.need = # bytes we need to get on the card
* dtqneed = # of DTQs we need for this packet
* launch.mlen = # of bytes in in mbuf chain (<= launch.need)
*/
ap = mtod(launch.t, struct atm_pseudohdr *);
launch.atm_vci = ATM_PH_VCI(ap);
launch.atm_flags = ATM_PH_FLAGS(ap);
launch.aal = ((launch.atm_flags & ATM_PH_AAL5) != 0) ?
MID_TBD_AAL5 : MID_TBD_NOAAL5;
/*
* XXX: have to recompute the length again, even though we already did
* it in en_start(). might as well compute dtqneed here as well, so
* this isn't that bad.
*/
if ((launch.atm_flags & EN_OBHDR) == 0) {
dtqneed = 1; /* header still needs to be added */
launch.need = MID_TBD_SIZE; /* not includeded with mbuf */
} else {
dtqneed = 0; /* header on-board, dma with mbuf */
launch.need = 0;
}
launch.mlen = 0;
for (tmp = launch.t ; tmp != NULL ; tmp = tmp->m_next) {
len = tmp->m_len;
launch.mlen += len;
cp = mtod(tmp, u_int8_t *);
if (tmp == launch.t) {
len -= sizeof(struct atm_pseudohdr); /* don't count this! */
cp += sizeof(struct atm_pseudohdr);
}
launch.need += len;
if (len == 0)
continue; /* atm_pseudohdr alone in first mbuf */
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
dtqneed += en_dqneed(sc, (caddr_t) cp, len, 1);
}
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
if ((launch.need % sizeof(u_int32_t)) != 0)
dtqneed++; /* need DTQ to FLUSH internal buffer */
if ((launch.atm_flags & EN_OBTRL) == 0) {
if (launch.aal == MID_TBD_AAL5) {
datalen = launch.need - MID_TBD_SIZE;
launch.need += MID_PDU_SIZE; /* AAL5: need PDU tail */
}
dtqneed++; /* need to work on the end a bit */
}
/*
* finish calculation of launch.need (need to figure out how much padding
* we will need). launch.need includes MID_TBD_SIZE, but we need to
* remove that to so we can round off properly. we have to add
* MID_TBD_SIZE back in after calculating ncells.
*/
launch.need = roundup(launch.need - MID_TBD_SIZE, MID_ATMDATASZ);
ncells = launch.need / MID_ATMDATASZ;
launch.need += MID_TBD_SIZE;
if (launch.need > EN_TXSZ * 1024) {
1996-10-13 05:37:04 +04:00
printf("%s: tx%d: packet larger than xmit buffer (%d > %d)\n",
sc->sc_dev.dv_xname, chan, launch.need, EN_TXSZ * 1024);
goto dequeue_drop;
}
if (launch.need > sc->txslot[chan].bfree) {
EN_COUNT(sc->txoutspace);
#ifdef EN_DEBUG
printf("%s: tx%d: out of transmit space\n", sc->sc_dev.dv_xname, chan);
#endif
return; /* >>> exit here if out of obmem buffer space <<< */
}
/*
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
* ensure we have enough dtqs to go, if not, wait for more.
*/
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
if (launch.nodma) {
dtqneed = 1;
}
if (dtqneed > sc->dtq_free) {
sc->need_dtqs = 1;
EN_COUNT(sc->txdtqout);
#ifdef EN_DEBUG
printf("%s: tx%d: out of transmit DTQs\n", sc->sc_dev.dv_xname, chan);
#endif
return; /* >>> exit here if out of dtqs <<< */
}
/*
* it is a go, commit! dequeue mbuf start working on the xfer.
*/
IF_DEQUEUE(&sc->txslot[chan].q, tmp);
#ifdef EN_DIAG
if (launch.t != tmp)
panic("en dequeue");
#endif /* EN_DIAG */
/*
* launch!
*/
EN_COUNT(sc->launch);
sc->enif.if_opackets++;
if ((launch.atm_flags & EN_OBHDR) == 0) {
EN_COUNT(sc->lheader);
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
/* store tbd1/tbd2 in host byte order */
launch.tbd1 = MID_TBD_MK1(launch.aal, sc->txspeed[launch.atm_vci], ncells);
launch.tbd2 = MID_TBD_MK2(launch.atm_vci, 0, 0);
}
if ((launch.atm_flags & EN_OBTRL) == 0 && launch.aal == MID_TBD_AAL5) {
EN_COUNT(sc->ltail);
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
launch.pdu1 = MID_PDU_MK1(0, 0, datalen); /* host byte order */
}
en_txlaunch(sc, chan, &launch);
/*
* do some housekeeping and get the next packet
*/
sc->txslot[chan].bfree -= launch.need;
IF_ENQUEUE(&sc->txslot[chan].indma, launch.t);
goto again;
/*
* END of txdma loop!
*/
/*
* error handles
*/
dequeue_drop:
IF_DEQUEUE(&sc->txslot[chan].q, tmp);
if (launch.t != tmp)
panic("en dequeue drop");
m_freem(launch.t);
sc->txslot[chan].mbsize -= launch.mlen;
goto again;
}
/*
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
* en_txlaunch: launch an mbuf into the dma pool!
*/
STATIC void en_txlaunch(sc, chan, l)
struct en_softc *sc;
int chan;
struct en_launch *l;
{
struct mbuf *tmp;
u_int32_t cur = sc->txslot[chan].cur,
start = sc->txslot[chan].start,
stop = sc->txslot[chan].stop,
dma, *data, *datastop, count, bcode;
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
int pad, addtail, need, len, needalign, cnt, end, mx;
/*
* vars:
* need = # bytes card still needs (decr. to zero)
* len = # of bytes left in current mbuf
* cur = our current pointer
* dma = last place we programmed into the DMA
* data = pointer into data area of mbuf that needs to go next
* cnt = # of bytes to transfer in this DTQ
* bcode/count = DMA burst code, and chip's version of cnt
*
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
* a single buffer can require up to 5 DTQs depending on its size
* and alignment requirements. the 5 possible requests are:
* [1] 1, 2, or 3 byte DMA to align src data pointer to word boundary
* [2] alburst DMA to align src data pointer to bestburstlen
* [3] 1 or more bestburstlen DMAs
* [4] clean up burst (to last word boundary)
* [5] 1, 2, or 3 byte final clean up DMA
*/
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
need = l->need;
dma = cur;
addtail = (l->atm_flags & EN_OBTRL) == 0; /* add a tail? */
#ifdef EN_DIAG
if ((need - MID_TBD_SIZE) % MID_ATMDATASZ)
1996-10-13 05:37:04 +04:00
printf("%s: tx%d: bogus trasmit needs (%d)\n", sc->sc_dev.dv_xname, chan,
need);
#endif
#ifdef EN_DEBUG
printf("%s: tx%d: launch mbuf %p! cur=0x%x[%d], need=%d, addtail=%d\n",
sc->sc_dev.dv_xname, chan, l->t, cur, (cur-start)/4, need, addtail);
count = EN_READ(sc, MIDX_PLACE(chan));
1996-10-13 05:37:04 +04:00
printf(" HW: base_address=0x%x, size=%d, read=%d, descstart=%d\n",
MIDX_BASE(count), MIDX_SZ(count), EN_READ(sc, MIDX_READPTR(chan)),
EN_READ(sc, MIDX_DESCSTART(chan)));
#endif
/*
* do we need to insert the TBD by hand?
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
* note that tbd1/tbd2/pdu1 are in host byte order.
*/
if ((l->atm_flags & EN_OBHDR) == 0) {
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: tx%d: insert header 0x%x 0x%x\n", sc->sc_dev.dv_xname,
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
chan, l->tbd1, l->tbd2);
#endif
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
EN_WRITE(sc, cur, l->tbd1);
EN_WRAPADD(start, stop, cur, 4);
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
EN_WRITE(sc, cur, l->tbd2);
EN_WRAPADD(start, stop, cur, 4);
need -= 8;
}
/*
* now do the mbufs...
*/
for (tmp = l->t ; tmp != NULL ; tmp = tmp->m_next) {
/* get pointer to data and length */
data = mtod(tmp, u_int32_t *);
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
len = tmp->m_len;
if (tmp == l->t) {
data += sizeof(struct atm_pseudohdr)/sizeof(u_int32_t);
len -= sizeof(struct atm_pseudohdr);
}
/* now, determine if we should copy it */
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
if (l->nodma || (len < EN_MINDMA &&
(len % 4) == 0 && ((unsigned long) data % 4) == 0 && (cur % 4) == 0)) {
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
/*
* roundup len: the only time this will change the value of len
* is when l->nodma is true, tmp is the last mbuf, and there is
* a non-word number of bytes to transmit. in this case it is
* safe to round up because we've en_mfix'd the mbuf (so the first
* byte is word aligned there must be enough free bytes at the end
* to round off to the next word boundary)...
*/
len = roundup(len, sizeof(u_int32_t));
datastop = data + (len / sizeof(u_int32_t));
/* copy loop: preserve byte order!!! use WRITEDAT */
while (data != datastop) {
EN_WRITEDAT(sc, cur, *data);
data++;
EN_WRAPADD(start, stop, cur, 4);
}
need -= len;
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: tx%d: copied %d bytes (%d left, cur now 0x%x)\n",
sc->sc_dev.dv_xname, chan, len, need, cur);
#endif
continue; /* continue on to next mbuf */
}
/* going to do DMA, first make sure the dtq is in sync. */
if (dma != cur) {
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
EN_DTQADD(sc, WORD_IDX(start,cur), chan, MIDDMA_JK, 0, 0, 0);
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: tx%d: dtq_sync: advance pointer to %d\n",
sc->sc_dev.dv_xname, chan, cur);
#endif
}
/*
* if this is the last buffer, and it looks like we are going to need to
* flush the internal buffer, can we extend the length of this mbuf to
* avoid the FLUSH?
*/
if (tmp->m_next == NULL) {
cnt = (need - len) % sizeof(u_int32_t);
if (cnt && M_TRAILINGSPACE(tmp) >= cnt)
len += cnt; /* pad for FLUSH */
}
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
#if !defined(MIDWAY_ENIONLY)
/*
* the adaptec DMA engine is smart and handles everything for us.
*/
if (sc->is_adaptec) {
/* need to DMA "len" bytes out to card */
need -= len;
EN_WRAPADD(start, stop, cur, len);
#ifdef EN_DEBUG
printf("%s: tx%d: adp_dma %d bytes (%d left, cur now 0x%x)\n",
sc->sc_dev.dv_xname, chan, len, need, cur);
#endif
end = (need == 0) ? MID_DMA_END : 0;
EN_DTQADD(sc, len, chan, 0, vtophys(data), l->mlen, end);
if (end)
goto done;
dma = cur; /* update dma pointer */
continue;
}
#endif /* !MIDWAY_ENIONLY */
#if !defined(MIDWAY_ADPONLY)
/*
* the ENI DMA engine is not so smart and need more help from us
*/
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
/* do we need to do a DMA op to align to word boundary? */
needalign = (unsigned long) data % sizeof(u_int32_t);
if (needalign) {
EN_COUNT(sc->headbyte);
cnt = sizeof(u_int32_t) - needalign;
if (cnt == 2 && len >= cnt) {
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
count = 1;
bcode = MIDDMA_2BYTE;
} else {
cnt = min(cnt, len); /* prevent overflow */
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
count = cnt;
bcode = MIDDMA_BYTE;
}
need -= cnt;
EN_WRAPADD(start, stop, cur, cnt);
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: tx%d: small al_dma %d bytes (%d left, cur now 0x%x)\n",
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
sc->sc_dev.dv_xname, chan, cnt, need, cur);
#endif
len -= cnt;
end = (need == 0) ? MID_DMA_END : 0;
EN_DTQADD(sc, count, chan, bcode, vtophys(data), l->mlen, end);
if (end)
goto done;
data = (u_int32_t *) ((u_char *)data + cnt);
}
/* do we need to do a DMA op to align? */
if (sc->alburst &&
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
(needalign = (((unsigned long) data) & sc->bestburstmask)) != 0
&& len >= sizeof(u_int32_t)) {
cnt = sc->bestburstlen - needalign;
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
mx = len & ~(sizeof(u_int32_t)-1); /* don't go past end */
if (cnt > mx) {
cnt = mx;
count = cnt / sizeof(u_int32_t);
bcode = MIDDMA_WORD;
} else {
count = cnt / sizeof(u_int32_t);
bcode = en_dmaplan[count].bcode;
count = cnt >> en_dmaplan[count].divshift;
}
need -= cnt;
EN_WRAPADD(start, stop, cur, cnt);
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: tx%d: al_dma %d bytes (%d left, cur now 0x%x)\n",
sc->sc_dev.dv_xname, chan, cnt, need, cur);
#endif
len -= cnt;
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
end = (need == 0) ? MID_DMA_END : 0;
EN_DTQADD(sc, count, chan, bcode, vtophys(data), l->mlen, end);
if (end)
goto done;
data = (u_int32_t *) ((u_char *)data + cnt);
}
/* do we need to do a max-sized burst? */
if (len >= sc->bestburstlen) {
count = len >> sc->bestburstshift;
cnt = count << sc->bestburstshift;
bcode = sc->bestburstcode;
need -= cnt;
EN_WRAPADD(start, stop, cur, cnt);
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: tx%d: best_dma %d bytes (%d left, cur now 0x%x)\n",
sc->sc_dev.dv_xname, chan, cnt, need, cur);
#endif
len -= cnt;
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
end = (need == 0) ? MID_DMA_END : 0;
EN_DTQADD(sc, count, chan, bcode, vtophys(data), l->mlen, end);
if (end)
goto done;
data = (u_int32_t *) ((u_char *)data + cnt);
}
/* do we need to do a cleanup burst? */
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
cnt = len & ~(sizeof(u_int32_t)-1);
if (cnt) {
count = cnt / sizeof(u_int32_t);
bcode = en_dmaplan[count].bcode;
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
count = cnt >> en_dmaplan[count].divshift;
need -= cnt;
EN_WRAPADD(start, stop, cur, cnt);
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: tx%d: cleanup_dma %d bytes (%d left, cur now 0x%x)\n",
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
sc->sc_dev.dv_xname, chan, cnt, need, cur);
#endif
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
len -= cnt;
end = (need == 0) ? MID_DMA_END : 0;
EN_DTQADD(sc, count, chan, bcode, vtophys(data), l->mlen, end);
if (end)
goto done;
data = (u_int32_t *) ((u_char *)data + cnt);
}
/* any word fragments left? */
if (len) {
EN_COUNT(sc->tailbyte);
if (len == 2) {
count = 1;
bcode = MIDDMA_2BYTE; /* use 2byte mode */
} else {
count = len;
bcode = MIDDMA_BYTE; /* use 1 byte mode */
}
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
need -= len;
EN_WRAPADD(start, stop, cur, len);
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: tx%d: byte cleanup_dma %d bytes (%d left, cur now 0x%x)\n",
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
sc->sc_dev.dv_xname, chan, len, need, cur);
#endif
end = (need == 0) ? MID_DMA_END : 0;
EN_DTQADD(sc, count, chan, bcode, vtophys(data), l->mlen, end);
if (end)
goto done;
}
dma = cur; /* update dma pointer */
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
#endif /* !MIDWAY_ADPONLY */
} /* next mbuf, please */
/*
* all mbuf data has been copied out to the obmem (or set up to be DMAd).
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
* if the trailer or padding needs to be put in, do it now.
*
* NOTE: experimental results reveal the following fact:
* if you DMA "X" bytes to the card, where X is not a multiple of 4,
* then the card will internally buffer the last (X % 4) bytes (in
* hopes of getting (4 - (X % 4)) more bytes to make a complete word).
* it is imporant to make sure we don't leave any important data in
* this internal buffer because it is discarded on the last (end) DTQ.
* one way to do this is to DMA in (4 - (X % 4)) more bytes to flush
* the darn thing out.
*/
if (addtail) {
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
pad = need % sizeof(u_int32_t);
if (pad) {
/*
* FLUSH internal data buffer. pad out with random data from the front
* of the mbuf chain...
*/
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
bcode = (sc->is_adaptec) ? 0 : MIDDMA_BYTE;
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
EN_COUNT(sc->tailflush);
EN_WRAPADD(start, stop, cur, pad);
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
EN_DTQADD(sc, pad, chan, bcode, vtophys(l->t->m_data), 0, 0);
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
need -= pad;
#ifdef EN_DEBUG
printf("%s: tx%d: pad/FLUSH dma %d bytes (%d left, cur now 0x%x)\n",
sc->sc_dev.dv_xname, chan, pad, need, cur);
#endif
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
}
/* copy data */
pad = need / sizeof(u_int32_t); /* round *down* */
if (l->aal == MID_TBD_AAL5)
pad -= 2;
#ifdef EN_DEBUG
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
printf("%s: tx%d: padding %d bytes (cur now 0x%x)\n",
sc->sc_dev.dv_xname, chan, pad * sizeof(u_int32_t), cur);
#endif
while (pad--) {
EN_WRITEDAT(sc, cur, 0); /* no byte order issues with zero */
EN_WRAPADD(start, stop, cur, 4);
}
if (l->aal == MID_TBD_AAL5) {
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
EN_WRITE(sc, cur, l->pdu1); /* in host byte order */
EN_WRAPADD(start, stop, cur, 8);
}
}
if (addtail || dma != cur) {
/* write final descritor */
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
EN_DTQADD(sc, WORD_IDX(start,cur), chan, MIDDMA_JK, 0,
l->mlen, MID_DMA_END);
/* dma = cur; */ /* not necessary since we are done */
}
done:
/* update current pointer */
sc->txslot[chan].cur = cur;
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: tx%d: DONE! cur now = 0x%x\n",
sc->sc_dev.dv_xname, chan, cur);
#endif
return;
}
/*
* interrupt handler
*/
EN_INTR_TYPE en_intr(arg)
void *arg;
{
struct en_softc *sc = (struct en_softc *) arg;
struct mbuf *m;
struct atm_pseudohdr ah;
u_int32_t reg, kick, val, mask, chip, vci, slot, dtq, drq;
int lcv, idx, need_softserv = 0;
reg = EN_READ(sc, MID_INTACK);
if ((reg & MID_INT_ANY) == 0)
EN_INTR_RET(0); /* not us */
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: interrupt=0x%b\n", sc->sc_dev.dv_xname, reg, MID_INTBITS);
#endif
/*
* unexpected errors that need a reset
*/
if ((reg & (MID_INT_IDENT|MID_INT_LERR|MID_INT_DMA_ERR|MID_INT_SUNI)) != 0) {
1996-10-13 05:37:04 +04:00
printf("%s: unexpected interrupt=0x%b, resetting card\n",
sc->sc_dev.dv_xname, reg, MID_INTBITS);
#ifdef EN_DEBUG
#ifdef DDB
Debugger();
#endif /* DDB */
sc->enif.if_flags &= ~IFF_RUNNING; /* FREEZE! */
#else
en_reset(sc);
en_init(sc);
#endif
EN_INTR_RET(1); /* for us */
}
/*******************
* xmit interrupts *
******************/
kick = 0; /* bitmask of channels to kick */
if (reg & MID_INT_TX) { /* TX done! */
/*
* check for tx complete, if detected then this means that some space
* has come free on the card. we must account for it and arrange to
* kick the channel to life (in case it is stalled waiting on the card).
*/
for (mask = 1, lcv = 0 ; lcv < EN_NTX ; lcv++, mask = mask * 2) {
if (reg & MID_TXCHAN(lcv)) {
kick = kick | mask; /* want to kick later */
val = EN_READ(sc, MIDX_READPTR(lcv)); /* current read pointer */
val = (val * sizeof(u_int32_t)) + sc->txslot[lcv].start;
/* convert to offset */
if (val > sc->txslot[lcv].cur)
sc->txslot[lcv].bfree = val - sc->txslot[lcv].cur;
else
sc->txslot[lcv].bfree = (val + (EN_TXSZ*1024)) - sc->txslot[lcv].cur;
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: tx%d: trasmit done. %d bytes now free in buffer\n",
sc->sc_dev.dv_xname, lcv, sc->txslot[lcv].bfree);
#endif
}
}
}
if (reg & MID_INT_DMA_TX) { /* TX DMA done! */
/*
* check for TX DMA complete, if detected then this means that some DTQs
* are now free. it also means some indma mbufs can be freed.
* if we needed DTQs, kick all channels.
*/
val = EN_READ(sc, MID_DMA_RDTX); /* chip's current location */
idx = MID_DTQ_A2REG(sc->dtq_chip);/* where we last saw chip */
if (sc->need_dtqs) {
kick = MID_NTX_CH - 1; /* assume power of 2, kick all! */
sc->need_dtqs = 0; /* recalculated in "kick" loop below */
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: cleared need DTQ condition\n", sc->sc_dev.dv_xname);
#endif
}
do { /* while idx != val */
sc->dtq_free++;
if ((dtq = sc->dtq[idx]) != 0) {
sc->dtq[idx] = 0; /* don't forget to zero it out when done */
slot = EN_DQ_SLOT(dtq);
IF_DEQUEUE(&sc->txslot[slot].indma, m);
if (!m) panic("enintr: dtqsync");
sc->txslot[slot].mbsize -= EN_DQ_LEN(dtq);
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: tx%d: free %d dma bytes, mbsize now %d\n",
sc->sc_dev.dv_xname, slot, EN_DQ_LEN(dtq),
sc->txslot[slot].mbsize);
#endif
m_freem(m);
}
EN_WRAPADD(0, MID_DTQ_N, idx, 1);
} while (idx != val);
sc->dtq_chip = MID_DTQ_REG2A(val); /* sync softc */
}
/*
* kick xmit channels as needed
*/
if (kick) {
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: tx kick mask = 0x%x\n", sc->sc_dev.dv_xname, kick);
#endif
for (mask = 1, lcv = 0 ; lcv < EN_NTX ; lcv++, mask = mask * 2) {
if ((kick & mask) && sc->txslot[lcv].q.ifq_head) {
en_txdma(sc, lcv); /* kick it! */
}
} /* for each slot */
} /* if kick */
/*******************
* recv interrupts *
******************/
/*
* check for RX DMA complete, and pass the data "upstairs"
*/
if (reg & MID_INT_DMA_RX) {
val = EN_READ(sc, MID_DMA_RDRX); /* chip's current location */
idx = MID_DRQ_A2REG(sc->drq_chip);/* where we last saw chip */
do { /* while (idx != val) */
sc->drq_free++;
if ((drq = sc->drq[idx]) != 0) {
sc->drq[idx] = 0; /* don't forget to zero it out when done */
slot = EN_DQ_SLOT(drq);
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
if (EN_DQ_LEN(drq) == 0) { /* "JK" trash DMA? */
m = NULL;
} else {
IF_DEQUEUE(&sc->rxslot[slot].indma, m);
if (!m) {
printf("%s: lost mbuf in slot %d!\n", sc->sc_dev.dv_xname, slot);
panic("enintr: drqsync");
}
}
/* do something with this mbuf */
if (sc->rxslot[slot].oth_flags & ENOTHER_DRAIN) { /* drain? */
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
if (m)
m_freem(m);
vci = sc->rxslot[slot].atm_vci;
if (sc->rxslot[slot].indma.ifq_head == NULL &&
sc->rxslot[slot].q.ifq_head == NULL &&
(EN_READ(sc, MID_VC(vci)) & MIDV_INSERVICE) == 0 &&
(sc->rxslot[slot].oth_flags & ENOTHER_SWSL) == 0) {
sc->rxslot[slot].oth_flags = ENOTHER_FREE; /* done drain */
sc->rxslot[slot].atm_vci = RX_NONE;
sc->rxvc2slot[vci] = RX_NONE;
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: rx%d: VCI %d now free\n", sc->sc_dev.dv_xname,
slot, vci);
#endif
}
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
} else if (m != NULL) {
ATM_PH_FLAGS(&ah) = sc->rxslot[slot].atm_flags;
ATM_PH_VPI(&ah) = 0;
ATM_PH_SETVCI(&ah, sc->rxslot[slot].atm_vci);
#ifdef EN_DEBUG
printf("%s: rx%d: rxvci%d: atm_input, mbuf %p, len %d, hand %p\n",
sc->sc_dev.dv_xname, slot, sc->rxslot[slot].atm_vci, m,
EN_DQ_LEN(drq), sc->rxslot[slot].rxhand);
#endif
sc->enif.if_ipackets++;
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
atm_input(&sc->enif, &ah, m, sc->rxslot[slot].rxhand);
}
}
EN_WRAPADD(0, MID_DRQ_N, idx, 1);
} while (idx != val);
sc->drq_chip = MID_DRQ_REG2A(val); /* sync softc */
if (sc->need_drqs) { /* true if we had a DRQ shortage */
need_softserv = 1;
sc->need_drqs = 0;
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: cleared need DRQ condition\n", sc->sc_dev.dv_xname);
#endif
}
}
/*
* handle service interrupts
*/
if (reg & MID_INT_SERVICE) {
chip = MID_SL_REG2A(EN_READ(sc, MID_SERV_WRITE));
do { /* while sc->hwslistp != chip */
/* fetch and remove it from hardware service list */
vci = EN_READ(sc, sc->hwslistp);
EN_WRAPADD(MID_SLOFF, MID_SLEND, sc->hwslistp, 4);/* advance hw ptr */
slot = sc->rxvc2slot[vci];
if (slot == RX_NONE) {
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: unexpected rx interrupt on VCI %d\n",
sc->sc_dev.dv_xname, vci);
#endif
EN_WRITE(sc, MID_VC(vci), MIDV_TRASH); /* rx off, damn it! */
continue; /* next */
}
EN_WRITE(sc, MID_VC(vci), sc->rxslot[slot].mode); /* remove from hwsl */
EN_COUNT(sc->hwpull);
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: pulled VCI %d off hwslist\n", sc->sc_dev.dv_xname, vci);
#endif
/* add it to the software service list (if needed) */
if ((sc->rxslot[slot].oth_flags & ENOTHER_SWSL) == 0) {
EN_COUNT(sc->swadd);
need_softserv = 1;
sc->rxslot[slot].oth_flags |= ENOTHER_SWSL;
sc->swslist[sc->swsl_tail] = slot;
EN_WRAPADD(0, MID_SL_N, sc->swsl_tail, 1);
sc->swsl_size++;
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: added VCI %d to swslist\n", sc->sc_dev.dv_xname, vci);
#endif
}
} while (sc->hwslistp != chip);
}
/*
* now service (function too big to include here)
*/
if (need_softserv)
en_service(sc);
/*
* keep our stats
*/
if (reg & MID_INT_DMA_OVR) {
EN_COUNT(sc->dmaovr);
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: MID_INT_DMA_OVR\n", sc->sc_dev.dv_xname);
#endif
}
reg = EN_READ(sc, MID_STAT);
#ifdef EN_STAT
sc->otrash += MID_OTRASH(reg);
sc->vtrash += MID_VTRASH(reg);
#endif
EN_INTR_RET(1); /* for us */
}
/*
* en_service: handle a service interrupt
*
* Q: why do we need a software service list?
*
* A: if we remove a VCI from the hardware list and we find that we are
* out of DRQs we must defer processing until some DRQs become free.
* so we must remember to look at this RX VCI/slot later, but we can't
* put it back on the hardware service list (since that isn't allowed).
* so we instead save it on the software service list. it would be nice
* if we could peek at the VCI on top of the hwservice list without removing
* it, however this leads to a race condition: if we peek at it and
* decide we are done with it new data could come in before we have a
* chance to remove it from the hwslist. by the time we get it out of
* the list the interrupt for the new data will be lost. oops!
*
*/
STATIC void en_service(sc)
struct en_softc *sc;
{
struct mbuf *m, *tmp;
u_int32_t cur, dstart, rbd, pdu, *sav, dma, bcode, count, *data, *datastop;
u_int32_t start, stop, cnt, needalign;
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
int slot, raw, aal5, llc, vci, fill, mlen, tlen, drqneed, need, needfill, end;
aal5 = 0; /* Silence gcc */
next_vci:
if (sc->swsl_size == 0) {
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: en_service done\n", sc->sc_dev.dv_xname);
#endif
return; /* >>> exit here if swsl now empty <<< */
}
/*
* get slot/vci to service
*/
slot = sc->swslist[sc->swsl_head];
vci = sc->rxslot[slot].atm_vci;
#ifdef EN_DIAG
if (sc->rxvc2slot[vci] != slot) panic("en_service rx slot/vci sync");
#endif
/*
* determine our mode and if we've got any work to do
*/
raw = sc->rxslot[slot].oth_flags & ENOTHER_RAW;
start= sc->rxslot[slot].start;
stop= sc->rxslot[slot].stop;
cur = sc->rxslot[slot].cur;
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: rx%d: service vci=%d raw=%d start/stop/cur=0x%x 0x%x 0x%x\n",
sc->sc_dev.dv_xname, slot, vci, raw, start, stop, cur);
#endif
same_vci:
dstart = MIDV_DSTART(EN_READ(sc, MID_DST_RP(vci)));
dstart = (dstart * sizeof(u_int32_t)) + start;
/* check to see if there is any data at all */
if (dstart == cur) {
defer: /* defer processing */
EN_WRAPADD(0, MID_SL_N, sc->swsl_head, 1);
sc->rxslot[slot].oth_flags &= ~ENOTHER_SWSL;
sc->swsl_size--;
/* >>> remove from swslist <<< */
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: rx%d: remove vci %d from swslist\n",
sc->sc_dev.dv_xname, slot, vci);
#endif
goto next_vci;
}
/*
* figure out how many bytes we need
* [mlen = # bytes to go in mbufs, fill = # bytes to dump (MIDDMA_JK)]
*/
if (raw) {
/* raw mode (aka boodi mode) */
fill = 0;
if (dstart > cur)
mlen = dstart - cur;
else
mlen = (dstart + (EN_RXSZ*1024)) - cur;
if (mlen < sc->rxslot[slot].raw_threshold)
goto defer; /* too little data to deal with */
} else {
/* normal mode */
aal5 = (sc->rxslot[slot].atm_flags & ATM_PH_AAL5);
llc = (aal5 && (sc->rxslot[slot].atm_flags & ATM_PH_LLCSNAP)) ? 1 : 0;
rbd = EN_READ(sc, cur);
if (MID_RBD_ID(rbd) != MID_RBD_STDID)
panic("en_service: id mismatch\n");
if (rbd & MID_RBD_T) {
mlen = 0; /* we've got trash */
fill = MID_RBD_SIZE;
EN_COUNT(sc->ttrash);
} else if (!aal5) {
mlen = MID_RBD_SIZE + MID_CHDR_SIZE + MID_ATMDATASZ; /* 1 cell (ick!) */
fill = 0;
} else {
tlen = (MID_RBD_CNT(rbd) * MID_ATMDATASZ) + MID_RBD_SIZE;
pdu = cur + tlen - MID_PDU_SIZE;
if (pdu >= stop)
pdu -= (EN_RXSZ*1024);
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
pdu = EN_READ(sc, pdu); /* get PDU in correct byte order */
fill = tlen - MID_RBD_SIZE - MID_PDU_LEN(pdu);
if (fill < 0 || (rbd & MID_RBD_CRCERR) != 0) {
printf("%s: invalid AAL5 PDU length or CRC detected, dropping frame\n",
sc->sc_dev.dv_xname);
1996-10-13 05:37:04 +04:00
printf("%s: got %d cells (%d bytes), AAL5 len is %d bytes (pdu=0x%x)\n",
sc->sc_dev.dv_xname, MID_RBD_CNT(rbd), tlen - MID_RBD_SIZE,
MID_PDU_LEN(pdu), pdu);
fill = tlen;
}
mlen = tlen - fill;
}
}
/*
* now allocate mbufs for mlen bytes of data, if out of mbufs, trash all
*
* notes:
* 1. it is possible that we've already allocated an mbuf for this pkt
* but ran out of DRQs, in which case we saved the allocated mbuf on
* "q".
* 2. if we save an mbuf in "q" we store the "cur" (pointer) in the front
* of the mbuf as an identity (that we can check later), and we also
* store drqneed (so we don't have to recompute it).
* 3. after this block of code, if m is still NULL then we ran out of mbufs
*/
m = sc->rxslot[slot].q.ifq_head;
drqneed = 1;
if (m) {
sav = mtod(m, u_int32_t *);
if (sav[0] != cur) {
#ifdef EN_DEBUG
printf("%s: rx%d: q'ed mbuf %p not ours\n",
sc->sc_dev.dv_xname, slot, m);
#endif
m = NULL; /* wasn't ours */
EN_COUNT(sc->rxqnotus);
} else {
EN_COUNT(sc->rxqus);
IF_DEQUEUE(&sc->rxslot[slot].q, m);
drqneed = sav[1];
#ifdef EN_DEBUG
printf("%s: rx%d: recovered q'ed mbuf %p (drqneed=%d)\n",
sc->sc_dev.dv_xname, slot, m, drqneed);
#endif
}
}
if (mlen != 0 && m == NULL) {
m = en_mget(sc, mlen, &drqneed); /* allocate! */
if (m == NULL) {
fill += mlen;
mlen = 0;
EN_COUNT(sc->rxmbufout);
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: rx%d: out of mbufs\n", sc->sc_dev.dv_xname, slot);
#endif
}
#ifdef EN_DEBUG
printf("%s: rx%d: allocate mbuf %p, mlen=%d, drqneed=%d\n",
sc->sc_dev.dv_xname, slot, m, mlen, drqneed);
#endif
}
#ifdef EN_DEBUG
printf("%s: rx%d: VCI %d, mbuf_chain %p, mlen %d, fill %d\n",
sc->sc_dev.dv_xname, slot, vci, m, mlen, fill);
#endif
/*
* now check to see if we've got the DRQs needed. if we are out of
* DRQs we must quit (saving our mbuf, if we've got one).
*/
needfill = (fill) ? 1 : 0;
if (drqneed + needfill > sc->drq_free) {
sc->need_drqs = 1; /* flag condition */
if (m == NULL) {
EN_COUNT(sc->rxoutboth);
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: rx%d: out of DRQs *and* mbufs!\n", sc->sc_dev.dv_xname, slot);
#endif
return; /* >>> exit here if out of both mbufs and DRQs <<< */
}
sav = mtod(m, u_int32_t *);
sav[0] = cur;
sav[1] = drqneed;
IF_ENQUEUE(&sc->rxslot[slot].q, m);
EN_COUNT(sc->rxdrqout);
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: rx%d: out of DRQs\n", sc->sc_dev.dv_xname, slot);
#endif
return; /* >>> exit here if out of DRQs <<< */
}
/*
* at this point all resources have been allocated and we are commited
* to servicing this slot.
*
* dma = last location we told chip about
* cur = current location
* mlen = space in the mbuf we want
* need = bytes to xfer in (decrs to zero)
* fill = how much fill we need
* tlen = how much data to transfer to this mbuf
* cnt/bcode/count = <same as xmit>
*
* 'needfill' not used after this point
*/
dma = cur; /* dma = last location we told chip about */
need = roundup(mlen, sizeof(u_int32_t));
fill = fill - (need - mlen); /* note: may invalidate 'needfill' */
for (tmp = m ; tmp != NULL && need > 0 ; tmp = tmp->m_next) {
tlen = roundup(tmp->m_len, sizeof(u_int32_t)); /* m_len set by en_mget */
data = mtod(tmp, u_int32_t *);
#ifdef EN_DEBUG
printf("%s: rx%d: load mbuf %p, m_len=%d, m_data=%p, tlen=%d\n",
sc->sc_dev.dv_xname, slot, tmp, tmp->m_len, tmp->m_data, tlen);
#endif
/* copy data */
if (EN_NORXDMA || !en_dma || tlen < EN_MINDMA) {
datastop = (u_int32_t *)((u_char *) data + tlen);
/* copy loop: preserve byte order!!! use READDAT */
while (data != datastop) {
*data = EN_READDAT(sc, cur);
data++;
EN_WRAPADD(start, stop, cur, 4);
}
need -= tlen;
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: rx%d: vci%d: copied %d bytes (%d left)\n",
sc->sc_dev.dv_xname, slot, vci, tlen, need);
#endif
continue;
}
/* DMA data (check to see if we need to sync DRQ first) */
if (dma != cur) {
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
EN_DRQADD(sc, WORD_IDX(start,cur), vci, MIDDMA_JK, 0, 0, 0, 0);
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: rx%d: vci%d: drq_sync: advance pointer to %d\n",
sc->sc_dev.dv_xname, slot, vci, cur);
#endif
}
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
#if !defined(MIDWAY_ENIONLY)
/*
* the adaptec DMA engine is smart and handles everything for us.
*/
if (sc->is_adaptec) {
need -= tlen;
EN_WRAPADD(start, stop, cur, tlen);
#ifdef EN_DEBUG
printf("%s: rx%d: vci%d: adp_dma %d bytes (%d left)\n",
sc->sc_dev.dv_xname, slot, vci, tlen, need);
#endif
end = (need == 0 && !fill) ? MID_DMA_END : 0;
EN_DRQADD(sc, tlen, vci, 0, vtophys(data), mlen, slot, end);
if (end)
goto done;
dma = cur; /* update dma pointer */
continue;
}
#endif /* !MIDWAY_ENIONLY */
#if !defined(MIDWAY_ADPONLY)
/*
* the ENI DMA engine is not so smart and need more help from us
*/
/* do we need to do a DMA op to align? */
if (sc->alburst &&
(needalign = (((unsigned long) data) & sc->bestburstmask)) != 0) {
cnt = sc->bestburstlen - needalign;
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
if (cnt > tlen) {
cnt = tlen;
count = cnt / sizeof(u_int32_t);
bcode = MIDDMA_WORD;
} else {
count = cnt / sizeof(u_int32_t);
bcode = en_dmaplan[count].bcode;
count = cnt >> en_dmaplan[count].divshift;
}
need -= cnt;
EN_WRAPADD(start, stop, cur, cnt);
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: rx%d: vci%d: al_dma %d bytes (%d left)\n",
sc->sc_dev.dv_xname, slot, vci, cnt, need);
#endif
tlen -= cnt;
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
end = (need == 0 && !fill) ? MID_DMA_END : 0;
EN_DRQADD(sc, count, vci, bcode, vtophys(data), mlen, slot, end);
if (end)
goto done;
data = (u_int32_t *)((u_char *) data + cnt);
}
/* do we need a max-sized burst? */
if (tlen >= sc->bestburstlen) {
count = tlen >> sc->bestburstshift;
cnt = count << sc->bestburstshift;
bcode = sc->bestburstcode;
need -= cnt;
EN_WRAPADD(start, stop, cur, cnt);
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: rx%d: vci%d: best_dma %d bytes (%d left)\n",
sc->sc_dev.dv_xname, slot, vci, cnt, need);
#endif
tlen -= cnt;
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
end = (need == 0 && !fill) ? MID_DMA_END : 0;
EN_DRQADD(sc, count, vci, bcode, vtophys(data), mlen, slot, end);
if (end)
goto done;
data = (u_int32_t *)((u_char *) data + cnt);
}
/* do we need to do a cleanup burst? */
if (tlen) {
count = tlen / sizeof(u_int32_t);
bcode = en_dmaplan[count].bcode;
count = tlen >> en_dmaplan[count].divshift;
need -= tlen;
EN_WRAPADD(start, stop, cur, tlen);
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: rx%d: vci%d: cleanup_dma %d bytes (%d left)\n",
sc->sc_dev.dv_xname, slot, vci, tlen, need);
#endif
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
end = (need == 0 && !fill) ? MID_DMA_END : 0;
EN_DRQADD(sc, count, vci, bcode, vtophys(data), mlen, slot, end);
if (end)
goto done;
}
dma = cur; /* update dma pointer */
MAJOR CHANGES: [contributed by Chuck Cranor <chuck@ccrc.wustl.edu> and Anne Hutton <hutton@isi.edu>]: - add support for Adaptec 155 PCI ATM cards (e.g. ANA-5940) - add sc->is_adaptec to handle differences between cards. - break out MID_MK_TXQ/MID_MK_RXQ seperate macros to handle the new Adaptec format TXQ/RXQ. - adjust en_dqneed to return 1 on ADP (since the Adaptec can DMA anything in one DRQ/DTQ!) - add hook for a bus specific reset function (adaptec has a seperate reset register that needs to be hit when resettting the midway). - adjust DMA test to not worry about burst sizes on the adaptec (since it handles it all for us!) and to handle the new DTQ/DRQ format. - add Adaptec DMA support to en_txlaunch() and en_service() BUG FIXES: - fixed receiver panic under heavy load ("lost mbuf in slot 0!"). when the reassembly buffer overflows, the T-bit is set in the RDB and the data field is empty. en_service() sets up a 4-byte (RDB size) dummy DMA without IF_ENQUEUE. but the recv intr handling in en_intr() always does IF_DEQUEUE. as a result, a successive recv intr loses its mbuf and leads to a panic. the solution is to only IF_DEQUEUE if the interrupt has non-zero length (indicating that there is an mbuf to get). in order for this to work, EN_DQ_MK must always be non-zero. we do this by or'ing in an unused bit (0x80000). reported by: Kenjiro Cho <kjc@csl.sony.co.jp> - fix setting of transmit channel when txspeed[] is non-zero (e.g. traffic shaping). the old scheme didn't work properly (it allowed the same VCI to use multiple tx channels thus defeating the txspeed[] parameter). the new scheme statically assigns a VC to a channel when txspeed[] is set. [note that the code to set txspeed[] isn't in the driver right now since a MI interface to do this hasn't been made yet] we add sc->txvc2slot[] and sc->txslot[n].nref for this. reported by: Kenjiro Cho <kjc@csl.sony.co.jp>, Milind M Buddihikot <milind@ccrc.wustl.edu>, Dong Lin <dong@eecs.harvard.edu> - when doing SRAM copies, be sure to round up the length to the next largest word (otherwise the driver will try to do a byte clean up DMA and then get an ID error interrupt). MINOR CLEANUPS: - clean up loops in DMA test contributed by: Kenjiro Cho <kjc@csl.sony.co.jp> - restructure and cleanup of en_read/en_write macros/inlines - clean up some byte ordering stuff so that we are consistant throughout the driver
1997-03-21 00:34:42 +03:00
#endif /* !MIDWAY_ADPONLY */
}
/* skip the end */
if (fill || dma != cur) {
#ifdef EN_DEBUG
if (fill)
1996-10-13 05:37:04 +04:00
printf("%s: rx%d: vci%d: skipping %d bytes of fill\n",
sc->sc_dev.dv_xname, slot, vci, fill);
else
1996-10-13 05:37:04 +04:00
printf("%s: rx%d: vci%d: syncing chip from 0x%x to 0x%x [cur]\n",
sc->sc_dev.dv_xname, slot, vci, dma, cur);
#endif
EN_WRAPADD(start, stop, cur, fill);
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
EN_DRQADD(sc, WORD_IDX(start,cur), vci, MIDDMA_JK, 0, mlen,
slot, MID_DMA_END);
/* dma = cur; */ /* not necessary since we are done */
}
/*
* done, remove stuff we don't want to pass up:
* raw mode (boodi mode): pass everything up for later processing
* aal5: remove RBD
* aal0: remove RBD + cell header
*/
done:
if (m) {
if (!raw) {
cnt = MID_RBD_SIZE;
if (!aal5) cnt += MID_CHDR_SIZE;
m->m_len -= cnt; /* chop! */
m->m_pkthdr.len -= cnt;
m->m_data += cnt;
}
IF_ENQUEUE(&sc->rxslot[slot].indma, m);
}
sc->rxslot[slot].cur = cur; /* update master copy of 'cur' */
#ifdef EN_DEBUG
1996-10-13 05:37:04 +04:00
printf("%s: rx%d: vci%d: DONE! cur now =0x%x\n",
sc->sc_dev.dv_xname, slot, vci, cur);
#endif
goto same_vci; /* get next packet in this slot */
}
#ifdef EN_DDBHOOK
/*
* functions we can call from ddb
*/
/*
* en_dump: dump the state
*/
#define END_SWSL 0x00000040 /* swsl state */
#define END_DRQ 0x00000020 /* drq state */
#define END_DTQ 0x00000010 /* dtq state */
#define END_RX 0x00000008 /* rx state */
#define END_TX 0x00000004 /* tx state */
#define END_MREGS 0x00000002 /* registers */
#define END_STATS 0x00000001 /* dump stats */
#define END_BITS "\20\7SWSL\6DRQ\5DTQ\4RX\3TX\2MREGS\1STATS"
int en_dump(unit, level)
int unit, level;
{
struct en_softc *sc;
int lcv, cnt, slot;
u_int32_t ptr, reg;
for (lcv = 0 ; lcv < en_cd.cd_ndevs ; lcv++) {
sc = (struct en_softc *) en_cd.cd_devs[lcv];
if (sc == NULL) continue;
if (unit != -1 && unit != lcv)
continue;
1996-10-13 05:37:04 +04:00
printf("dumping device %s at level 0x%b\n", sc->sc_dev.dv_xname, level,
END_BITS);
if (sc->dtq_us == 0) {
1996-10-13 05:37:04 +04:00
printf("<hasn't been en_init'd yet>\n");
continue;
}
if (level & END_STATS) {
1996-10-13 05:37:04 +04:00
printf(" en_stats:\n");
printf(" %d mfix (%d failed); %d/%d head/tail byte DMAs, %d flushes\n",
midway fixes + new stuff: - merged multiple DRQ/DTQ ADD macros into a single DRQ and a single DTQ macro with a uniform interface to make the code simpler and easier to read. - en_start: only update atm_flags if EN_MBUF_OPT is enabled (which it should be) - for alburst: make sure we don't DMA more bytes than we need (on both tx and rx). if the alburst is larger than we need, drop to MIDDMA_WORD mode. - major change: enable the use of byte and 2 byte DMA on the trasmit side. this allows us to DMA from non-word sized/aligned mbufs directly. [the old code would always call en_mfix which would copy (or move) the data in order to ensure proper alignment... it turns out TCP gives us non-word sized/aligned mbufs when it is retransmitting, so we needed to handle this case more efficiently.] the following functions were changed to make this work: - en_dqneed: add an arg to let us know if we are transmitting or not. if we are TX, then we must take into account byte DMAs when estimating the number of DTQs we will need for a buffer - en_start: only mfix mbufs if DMA is disabled - en_txdma: only set launch.nodma if we have en_mfix'd the mbuf chain also, we may need a DTQ to flush the chip's internal byte buffer - en_txlaunch: only attempt a copy if we have the proper alignment. add byte dma code for the front and end of the buffer. make sure the internal dma buffer is flushed out. - stats: keep track of how many times we have to use byte sized DMA midwayreg: - add byte/2byte DMA defines midwayvar: - add new stat counter to monitor less-than-word lengthed DMA
1996-07-17 02:11:05 +04:00
sc->mfix, sc->mfixfail, sc->headbyte, sc->tailbyte, sc->tailflush);
1996-10-13 05:37:04 +04:00
printf(" %d rx dma overflow interrupts\n", sc->dmaovr);
printf(" %d times we ran out of TX space and stalled\n",
sc->txoutspace);
1996-10-13 05:37:04 +04:00
printf(" %d times we ran out of DTQs\n", sc->txdtqout);
printf(" %d times we launched a packet\n", sc->launch);
printf(" %d times we launched without on-board header\n", sc->lheader);
printf(" %d times we launched without on-board tail\n", sc->ltail);
printf(" %d times we pulled the hw service list\n", sc->hwpull);
printf(" %d times we pushed a vci on the sw service list\n",
sc->swadd);
1996-10-13 05:37:04 +04:00
printf(" %d times RX pulled an mbuf from Q that wasn't ours\n",
sc->rxqnotus);
1996-10-13 05:37:04 +04:00
printf(" %d times RX pulled a good mbuf from Q\n", sc->rxqus);
printf(" %d times we ran out of mbufs *and* DRQs\n", sc->rxoutboth);
printf(" %d times we ran out of DRQs\n", sc->rxdrqout);
printf(" %d trasmit packets dropped due to mbsize\n", sc->txmbovr);
printf(" %d cells trashed due to turned off rxvc\n", sc->vtrash);
printf(" %d cells trashed due to totally full buffer\n", sc->otrash);
printf(" %d cells trashed due almost full buffer\n", sc->ttrash);
printf(" %d rx mbuf allocation failures\n", sc->rxmbufout);
#ifdef NATM
1996-10-13 05:37:04 +04:00
printf(" %d drops at natmintrq\n", natmintrq.ifq_drops);
#ifdef NATM_STAT
1996-10-13 05:37:04 +04:00
printf(" natmintr so_rcv: ok/drop cnt: %d/%d, ok/drop bytes: %d/%d\n",
natm_sookcnt, natm_sodropcnt, natm_sookbytes, natm_sodropbytes);
#endif
#endif
}
if (level & END_MREGS) {
1996-10-13 05:37:04 +04:00
printf("mregs:\n");
printf("resid = 0x%x\n", EN_READ(sc, MID_RESID));
printf("interrupt status = 0x%b\n",
EN_READ(sc, MID_INTSTAT), MID_INTBITS);
1996-10-13 05:37:04 +04:00
printf("interrupt enable = 0x%b\n",
EN_READ(sc, MID_INTENA), MID_INTBITS);
1996-10-13 05:37:04 +04:00
printf("mcsr = 0x%b\n", EN_READ(sc, MID_MAST_CSR), MID_MCSRBITS);
printf("serv_write = [chip=%d] [us=%d]\n", EN_READ(sc, MID_SERV_WRITE),
MID_SL_A2REG(sc->hwslistp));
1996-10-13 05:37:04 +04:00
printf("dma addr = 0x%x\n", EN_READ(sc, MID_DMA_ADDR));
printf("DRQ: chip[rd=0x%x,wr=0x%x], sc[chip=0x%x,us=0x%x]\n",
MID_DRQ_REG2A(EN_READ(sc, MID_DMA_RDRX)),
MID_DRQ_REG2A(EN_READ(sc, MID_DMA_WRRX)), sc->drq_chip, sc->drq_us);
1996-10-13 05:37:04 +04:00
printf("DTQ: chip[rd=0x%x,wr=0x%x], sc[chip=0x%x,us=0x%x]\n",
MID_DTQ_REG2A(EN_READ(sc, MID_DMA_RDTX)),
MID_DTQ_REG2A(EN_READ(sc, MID_DMA_WRTX)), sc->dtq_chip, sc->dtq_us);
1996-10-13 05:37:04 +04:00
printf(" unusal txspeeds: ");
for (cnt = 0 ; cnt < MID_N_VC ; cnt++)
if (sc->txspeed[cnt])
1996-10-13 05:37:04 +04:00
printf(" vci%d=0x%x", cnt, sc->txspeed[cnt]);
printf("\n");
1996-10-13 05:37:04 +04:00
printf(" rxvc slot mappings: ");
for (cnt = 0 ; cnt < MID_N_VC ; cnt++)
if (sc->rxvc2slot[cnt] != RX_NONE)
1996-10-13 05:37:04 +04:00
printf(" %d->%d", cnt, sc->rxvc2slot[cnt]);
printf("\n");
}
if (level & END_TX) {
1996-10-13 05:37:04 +04:00
printf("tx:\n");
for (slot = 0 ; slot < EN_NTX; slot++) {
1996-10-13 05:37:04 +04:00
printf("tx%d: start/stop/cur=0x%x/0x%x/0x%x [%d] ", slot,
sc->txslot[slot].start, sc->txslot[slot].stop, sc->txslot[slot].cur,
(sc->txslot[slot].cur - sc->txslot[slot].start)/4);
1996-10-13 05:37:04 +04:00
printf("mbsize=%d, bfree=%d\n", sc->txslot[slot].mbsize,
sc->txslot[slot].bfree);
1996-10-13 05:37:04 +04:00
printf("txhw: base_address=0x%x, size=%d, read=%d, descstart=%d\n",
MIDX_BASE(EN_READ(sc, MIDX_PLACE(slot))),
MIDX_SZ(EN_READ(sc, MIDX_PLACE(slot))),
EN_READ(sc, MIDX_READPTR(slot)), EN_READ(sc, MIDX_DESCSTART(slot)));
}
}
if (level & END_RX) {
1996-10-13 05:37:04 +04:00
printf(" recv slots:\n");
for (slot = 0 ; slot < sc->en_nrx; slot++) {
1996-10-13 05:37:04 +04:00
printf("rx%d: vci=%d: start/stop/cur=0x%x/0x%x/0x%x ", slot,
sc->rxslot[slot].atm_vci, sc->rxslot[slot].start,
sc->rxslot[slot].stop, sc->rxslot[slot].cur);
1996-10-13 05:37:04 +04:00
printf("mode=0x%x, atm_flags=0x%x, oth_flags=0x%x\n",
sc->rxslot[slot].mode, sc->rxslot[slot].atm_flags,
sc->rxslot[slot].oth_flags);
1996-10-13 05:37:04 +04:00
printf("RXHW: mode=0x%x, DST_RP=0x%x, WP_ST_CNT=0x%x\n",
EN_READ(sc, MID_VC(sc->rxslot[slot].atm_vci)),
EN_READ(sc, MID_DST_RP(sc->rxslot[slot].atm_vci)),
EN_READ(sc, MID_WP_ST_CNT(sc->rxslot[slot].atm_vci)));
}
}
if (level & END_DTQ) {
1996-10-13 05:37:04 +04:00
printf(" dtq [need_dtqs=%d,dtq_free=%d]:\n",
sc->need_dtqs, sc->dtq_free);
ptr = sc->dtq_chip;
while (ptr != sc->dtq_us) {
reg = EN_READ(sc, ptr);
1996-10-13 05:37:04 +04:00
printf("\t0x%x=[cnt=%d, chan=%d, end=%d, type=%d @ 0x%x]\n",
sc->dtq[MID_DTQ_A2REG(ptr)], MID_DMA_CNT(reg), MID_DMA_TXCHAN(reg),
(reg & MID_DMA_END) != 0, MID_DMA_TYPE(reg), EN_READ(sc, ptr+4));
EN_WRAPADD(MID_DTQOFF, MID_DTQEND, ptr, 8);
}
}
if (level & END_DRQ) {
1996-10-13 05:37:04 +04:00
printf(" drq [need_drqs=%d,drq_free=%d]:\n",
sc->need_drqs, sc->drq_free);
ptr = sc->drq_chip;
while (ptr != sc->drq_us) {
reg = EN_READ(sc, ptr);
1996-10-13 05:37:04 +04:00
printf("\t0x%x=[cnt=%d, chan=%d, end=%d, type=%d @ 0x%x]\n",
sc->drq[MID_DRQ_A2REG(ptr)], MID_DMA_CNT(reg), MID_DMA_RXVCI(reg),
(reg & MID_DMA_END) != 0, MID_DMA_TYPE(reg), EN_READ(sc, ptr+4));
EN_WRAPADD(MID_DRQOFF, MID_DRQEND, ptr, 8);
}
}
if (level & END_SWSL) {
1996-10-13 05:37:04 +04:00
printf(" swslist [size=%d]: ", sc->swsl_size);
for (cnt = sc->swsl_head ; cnt != sc->swsl_tail ;
cnt = (cnt + 1) % MID_SL_N)
1996-10-13 05:37:04 +04:00
printf("0x%x ", sc->swslist[cnt]);
printf("\n");
}
}
return(0);
}
/*
* en_dumpmem: dump the memory
*/
int en_dumpmem(unit, addr, len)
int unit, addr, len;
{
struct en_softc *sc;
u_int32_t reg;
if (unit < 0 || unit > en_cd.cd_ndevs ||
(sc = (struct en_softc *) en_cd.cd_devs[unit]) == NULL) {
1996-10-13 05:37:04 +04:00
printf("invalid unit number: %d\n", unit);
return(0);
}
addr = addr & ~3;
if (addr < MID_RAMOFF || addr + len*4 > MID_MAXOFF || len <= 0) {
1996-10-13 05:37:04 +04:00
printf("invalid addr/len number: %d, %d\n", addr, len);
return(0);
}
1996-10-13 05:37:04 +04:00
printf("dumping %d words starting at offset 0x%x\n", len, addr);
while (len--) {
reg = EN_READ(sc, addr);
1996-10-13 05:37:04 +04:00
printf("mem[0x%x] = 0x%x\n", addr, reg);
addr += 4;
}
return(0);
}
#endif
#endif /* NEN > 0 || !defined(__FreeBSD__) */