NetBSD/sys/arch/sun3/sun3x/clock.c

608 lines
14 KiB
C
Raw Normal View History

/* $NetBSD: clock.c,v 1.5 1997/01/26 06:17:07 gwr Exp $ */
/*
* Copyright (c) 1994 Gordon W. Ross
* Copyright (c) 1993 Adam Glass
* Copyright (c) 1988 University of Utah.
* Copyright (c) 1982, 1990, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Utah Hdr: clock.c 1.18 91/01/21$
* from: @(#)clock.c 8.2 (Berkeley) 1/12/94
*/
/*
* Machine-dependent clock routines for the Mostek48t02
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <machine/autoconf.h>
#include <machine/cpu.h>
#include <machine/mon.h>
#include <machine/obio.h>
#include <machine/machdep.h>
#include <sun3/sun3/interreg.h>
#include <sun3/sun3/sunmon.h>
#include "mostek48t02.h"
#define CLOCK_PRI 5
void _isr_clock __P((void)); /* in locore.s */
void clock_intr __P((struct clockframe));
/* Note: this is used by locore.s:__isr_clock */
static volatile void *clock_va;
static int clock_match __P((struct device *, struct cfdata *, void *args));
static void clock_attach __P((struct device *, struct device *, void *));
struct cfattach clock_ca = {
sizeof(struct device), clock_match, clock_attach
};
struct cfdriver clock_cd = {
NULL, "clock", DV_DULL
};
/*
* XXX - Need to determine which type of clock we have!
*/
static int
clock_match(parent, cf, args)
struct device *parent;
struct cfdata *cf;
void *args;
{
struct confargs *ca = args;
/* This driver only supports one unit. */
if (cf->cf_unit != 0)
return (0);
/* Validate the given address. */
if (ca->ca_paddr != OBIO_CLOCK2)
return (0);
/* Default interrupt priority. */
if (ca->ca_intpri == -1)
ca->ca_intpri = CLOCK_PRI;
return (1);
}
static void
clock_attach(parent, self, args)
struct device *parent;
struct device *self;
void *args;
{
printf("\n");
/*
* Can not hook up the ISR until cpu_initclocks()
* because hardclock is not ready until then.
* For now, the handler is _isr_autovec(), which
* will complain if it gets clock interrupts.
*/
}
/*
* Set and/or clear the desired clock bits in the interrupt
* register. We have to be extremely careful that we do it
* in such a manner that we don't get ourselves lost.
*/
void
set_clk_mode(on, off, enable)
u_char on, off;
int enable;
{
register u_char interreg;
register int s;
/* If we don't have this, we must not have touched it! */
if (!interrupt_reg)
return;
s = getsr();
if ((s & PSL_IPL) < PSL_IPL7)
panic("set_clk_mode: ipl");
/*
* make sure that we are only playing w/
* clock interrupt register bits
*/
on &= (IREG_CLOCK_ENAB_7 | IREG_CLOCK_ENAB_5);
off &= (IREG_CLOCK_ENAB_7 | IREG_CLOCK_ENAB_5);
/*
* Get a copy of current interrupt register,
* turning off any undesired bits (aka `off')
*/
interreg = *interrupt_reg & ~(off | IREG_ALL_ENAB);
*interrupt_reg &= ~IREG_ALL_ENAB;
/*
* Next we turns off the CLK5 and CLK7 bits to clear
* the flip-flops, then we disable clock interrupts.
* Now we can read the clock's interrupt register
* to clear any pending signals there.
*/
*interrupt_reg &= ~(IREG_CLOCK_ENAB_7 | IREG_CLOCK_ENAB_5);
/* XXX - hit the clock? */
/*
* Now we set all the desired bits
* in the interrupt register, then
* we turn the clock back on and
* finally we can enable all interrupts.
*/
*interrupt_reg |= (interreg | on); /* enable flip-flops */
/* XXX - hit the clock? */
*interrupt_reg |= IREG_ALL_ENAB; /* enable interrupts */
}
/* Called very early by internal_configure. */
void clock_init()
{
/* XXX - Yes, use the EEPROM address. Same H/W device. */
clock_va = obio_find_mapping(OBIO_EEPROM, sizeof(struct clockreg));
if (!clock_va || !interrupt_reg) {
mon_printf("clock_init\n");
sunmon_abort();
}
/* Turn off clock interrupts until cpu_initclocks() */
/* isr_init() already set the interrupt reg to zero. */
}
/*
* Set up the real-time clock (enable clock interrupts).
* Leave stathz 0 since there is no secondary clock available.
* Note that clock interrupts MUST STAY DISABLED until here.
*/
void
cpu_initclocks(void)
{
int s;
if (!clock_va)
panic("cpu_initclocks");
s = splhigh();
/* Install isr (in locore.s) that calls clock_intr(). */
isr_add_custom(5, (void*)_isr_clock);
/* Set the clock to interrupt 100 time per second. */
/* XXX - Hard wired? */
*interrupt_reg |= IREG_CLOCK_ENAB_5; /* enable clock */
/* XXX enable the clock? */
*interrupt_reg |= IREG_ALL_ENAB; /* enable interrupts */
splx(s);
}
/*
* This doesn't need to do anything, as we have only one timer and
* profhz==stathz==hz.
*/
void
setstatclockrate(newhz)
int newhz;
{
/* nothing */
}
/*
* This is is called by the "custom" interrupt handler.
*/
void
clock_intr(cf)
struct clockframe cf;
{
/* volatile struct clockreg *clk = clock_va; */
#if 1 /* XXX - Needed? */
/* Pulse the clock intr. enable low. */
*interrupt_reg &= ~IREG_CLOCK_ENAB_5;
*interrupt_reg |= IREG_CLOCK_ENAB_5;
#endif
/* XXX - Need to do anything? */
hardclock(&cf);
}
/*
* Return the best possible estimate of the time in the timeval
* to which tvp points. We do this by returning the current time
* plus the amount of time since the last clock interrupt.
*
* Check that this time is no less than any previously-reported time,
* which could happen around the time of a clock adjustment. Just for
* fun, we guarantee that the time will be greater than the value
* obtained by a previous call.
*/
void
microtime(tvp)
register struct timeval *tvp;
{
int s = splhigh();
static struct timeval lasttime;
*tvp = time;
tvp->tv_usec++; /* XXX */
while (tvp->tv_usec > 1000000) {
tvp->tv_sec++;
tvp->tv_usec -= 1000000;
}
if (tvp->tv_sec == lasttime.tv_sec &&
tvp->tv_usec <= lasttime.tv_usec &&
(tvp->tv_usec = lasttime.tv_usec + 1) > 1000000)
{
tvp->tv_sec++;
tvp->tv_usec -= 1000000;
}
lasttime = *tvp;
splx(s);
}
/*
* Machine-dependent clock routines.
*
* Inittodr initializes the time of day hardware which provides
* date functions.
*
* Resettodr restores the time of day hardware after a time change.
*/
#define SECDAY 86400L
#define SECYR (SECDAY * 365)
static long clk_get_secs(void);
static void clk_set_secs(long);
/*
* Initialize the time of day register, based on the time base
* which is, e.g. from a filesystem.
*/
void inittodr(fs_time)
time_t fs_time;
{
long diff, clk_time;
long long_ago = (5 * SECYR);
int clk_bad = 0;
/*
* Sanity check time from file system.
* If it is zero,assume filesystem time is just unknown
* instead of preposterous. Don't bark.
*/
if (fs_time < long_ago) {
/*
* If fs_time is zero, assume filesystem time is just
* unknown instead of preposterous. Don't bark.
*/
if (fs_time != 0)
printf("WARNING: preposterous time in file system\n");
/* 1991/07/01 12:00:00 */
fs_time = 21*SECYR + 186*SECDAY + SECDAY/2;
}
clk_time = clk_get_secs();
/* Sanity check time from clock. */
if (clk_time < long_ago) {
printf("WARNING: bad date in battery clock");
clk_bad = 1;
clk_time = fs_time;
} else {
/* Does the clock time jive with the file system? */
diff = clk_time - fs_time;
if (diff < 0)
diff = -diff;
if (diff >= (SECDAY*2)) {
printf("WARNING: clock %s %d days",
(clk_time < fs_time) ? "lost" : "gained",
(int) (diff / SECDAY));
clk_bad = 1;
}
}
if (clk_bad)
printf(" -- CHECK AND RESET THE DATE!\n");
time.tv_sec = clk_time;
}
/*
* Resettodr restores the time of day hardware after a time change.
*/
void resettodr()
{
clk_set_secs(time.tv_sec);
}
/*
* XXX - Todo: take one of the implementations of
* "POSIX time" to/from "YY/MM/DD/hh/mm/ss"
* and put that in libkern (or somewhere).
* Also put this stuct in some header...
*/
struct date_time {
u_char dt_year; /* since POSIX_BASE_YEAR (1970) */
u_char dt_mon;
u_char dt_day;
u_char dt_hour;
u_char dt_min;
u_char dt_sec;
u_char dt_csec; /* hundredths of a second */
u_char dt_wday; /* Day of week (needed?) */
};
void gmt_to_dt __P((long gmt, struct date_time *dt));
long dt_to_gmt __P((struct date_time *dt));
/* Traditional UNIX base year */
#define POSIX_BASE_YEAR 1970
/*
* XXX - End of stuff that should move to a header.
*/
/*
* Routines to copy state into and out of the clock.
* The clock CSR has to be set for read or write.
*/
static void
clk_get_dt(struct date_time *dt)
{
volatile struct clockreg *cl = clock_va;
int s;
s = splhigh();
/* enable read (stop time) */
cl->cl_csr |= CLK_READ;
/* Copy the info */
dt->dt_sec = cl->cl_sec;
dt->dt_min = cl->cl_min;
dt->dt_hour = cl->cl_hour;
dt->dt_wday = cl->cl_wday;
dt->dt_day = cl->cl_mday;
dt->dt_mon = cl->cl_month;
dt->dt_year = cl->cl_year;
/* Done reading (time wears on) */
cl->cl_csr &= ~CLK_READ;
splx(s);
}
static void
clk_set_dt(struct date_time *dt)
{
volatile struct clockreg *cl = clock_va;
int s;
s = splhigh();
/* enable write */
cl->cl_csr |= CLK_WRITE;
/* Copy the info */
cl->cl_sec = dt->dt_sec;
cl->cl_min = dt->dt_min;
cl->cl_hour = dt->dt_hour;
cl->cl_wday = dt->dt_wday;
cl->cl_mday = dt->dt_day;
cl->cl_month = dt->dt_mon;
cl->cl_year = dt->dt_year;
/* load them up */
cl->cl_csr &= ~CLK_WRITE;
splx(s);
}
/*
* Now routines to get and set clock as POSIX time.
* Our clock keeps "years since 1/1/1968", so we must
* convert to/from "years since 1/1/1970" before the
* common time conversion functions are used.
*/
#define CLOCK_YEAR_ADJUST (POSIX_BASE_YEAR - 1968)
static long
clk_get_secs()
{
struct date_time dt;
long gmt;
clk_get_dt(&dt);
dt.dt_year -= CLOCK_YEAR_ADJUST;
gmt = dt_to_gmt(&dt);
return (gmt);
}
static void
clk_set_secs(secs)
long secs;
{
struct date_time dt;
long gmt;
gmt = secs;
gmt_to_dt(gmt, &dt);
dt.dt_year += CLOCK_YEAR_ADJUST;
clk_set_dt(&dt);
}
/*****************************************************************
*
* Generic routines to convert to or from a POSIX date
* (seconds since 1/1/1970) and yr/mo/day/hr/min/sec
*
* These are organized this way mostly to so the code
* can easily be tested in an independent user program.
* (These are derived from the hp300 code.)
*
* XXX - Should move these to libkern or somewhere...
*/
static inline int leapyear __P((int year));
#define FEBRUARY 2
#define days_in_year(a) (leapyear(a) ? 366 : 365)
#define days_in_month(a) (month_days[(a) - 1])
/*
* Note: This array may be modified by gmt_to_dt(),
* but these functions DO NOT need to be reentrant.
* If we ever DO need reentrance, we should just make
* gmt_to_dt() copy this to a local before use. -gwr
*/
static int month_days[12] = {
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};
/* Use an inline to make the logic more obvious. */
static inline int
leapyear(year)
int year;
{
int rv = 0;
if ((year % 4) == 0) {
rv = 1;
if ((year % 100) == 0) {
rv = 0;
if ((year % 400) == 0)
rv = 1;
}
}
return rv;
}
void gmt_to_dt(long gmt, struct date_time *dt)
{
long secs;
int i, days;
days = gmt / SECDAY;
secs = gmt % SECDAY;
/* Hours, minutes, seconds are easy */
dt->dt_hour = secs / 3600;
secs = secs % 3600;
dt->dt_min = secs / 60;
secs = secs % 60;
dt->dt_sec = secs;
/* Day of week (Note: 1/1/1970 was a Thursday) */
dt->dt_wday = (days + 4) % 7;
/* Subtract out whole years... */
i = POSIX_BASE_YEAR;
while (days >= days_in_year(i)) {
days -= days_in_year(i);
i++;
}
dt->dt_year = i - POSIX_BASE_YEAR;
/* Subtract out whole months... */
/* XXX - Note temporary change to month_days */
if (leapyear(i))
days_in_month(FEBRUARY) = 29;
for (i = 1; days >= days_in_month(i); i++)
days -= days_in_month(i);
/* XXX - Undo temporary change to month_days */
days_in_month(FEBRUARY) = 28;
dt->dt_mon = i;
/* Days are what is left over (+1) from all that. */
dt->dt_day = days + 1;
}
long dt_to_gmt(struct date_time *dt)
{
long gmt;
int i, year;
/*
* Hours are different for some reason. Makes no sense really.
*/
gmt = 0;
if (dt->dt_hour >= 24) goto out;
if (dt->dt_day > 31) goto out;
if (dt->dt_mon > 12) goto out;
year = dt->dt_year + POSIX_BASE_YEAR;
/*
* Compute days since start of time
* First from years, then from months.
*/
for (i = POSIX_BASE_YEAR; i < year; i++)
gmt += days_in_year(i);
if (leapyear(year) && dt->dt_mon > FEBRUARY)
gmt++;
/* Months */
for (i = 1; i < dt->dt_mon; i++)
gmt += days_in_month(i);
gmt += (dt->dt_day - 1);
/* Now do hours */
gmt = gmt * 24 + dt->dt_hour;
/* Now do minutes */
gmt = gmt * 60 + dt->dt_min;
/* Now do seconds */
gmt = gmt * 60 + dt->dt_sec;
out:
return gmt;
}