449 lines
9.7 KiB
C
449 lines
9.7 KiB
C
|
/* Target-machine dependent code for Zilog Z8000, for GDB.
|
||
|
Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc.
|
||
|
|
||
|
This file is part of GDB.
|
||
|
|
||
|
This program is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
This program is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with this program; if not, write to the Free Software
|
||
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||
|
|
||
|
/*
|
||
|
Contributed by Steve Chamberlain
|
||
|
sac@cygnus.com
|
||
|
*/
|
||
|
|
||
|
#include "defs.h"
|
||
|
#include "frame.h"
|
||
|
#include "obstack.h"
|
||
|
#include "symtab.h"
|
||
|
#include "gdbcmd.h"
|
||
|
#include "gdbtypes.h"
|
||
|
#include "dis-asm.h"
|
||
|
|
||
|
/* Return the saved PC from this frame.
|
||
|
|
||
|
If the frame has a memory copy of SRP_REGNUM, use that. If not,
|
||
|
just use the register SRP_REGNUM itself. */
|
||
|
|
||
|
CORE_ADDR
|
||
|
frame_saved_pc (frame)
|
||
|
struct frame_info *frame;
|
||
|
{
|
||
|
return read_memory_pointer (frame->frame + (BIG ? 4 : 2));
|
||
|
}
|
||
|
|
||
|
#define IS_PUSHL(x) (BIG ? ((x & 0xfff0) == 0x91e0):((x & 0xfff0) == 0x91F0))
|
||
|
#define IS_PUSHW(x) (BIG ? ((x & 0xfff0) == 0x93e0):((x & 0xfff0)==0x93f0))
|
||
|
#define IS_MOVE_FP(x) (BIG ? x == 0xa1ea : x == 0xa1fa)
|
||
|
#define IS_MOV_SP_FP(x) (BIG ? x == 0x94ea : x == 0x0d76)
|
||
|
#define IS_SUB2_SP(x) (x==0x1b87)
|
||
|
#define IS_MOVK_R5(x) (x==0x7905)
|
||
|
#define IS_SUB_SP(x) ((x & 0xffff) == 0x020f)
|
||
|
#define IS_PUSH_FP(x) (BIG ? (x == 0x93ea) : (x == 0x93fa))
|
||
|
|
||
|
/* work out how much local space is on the stack and
|
||
|
return the pc pointing to the first push */
|
||
|
|
||
|
static CORE_ADDR
|
||
|
skip_adjust (pc, size)
|
||
|
CORE_ADDR pc;
|
||
|
int *size;
|
||
|
{
|
||
|
*size = 0;
|
||
|
|
||
|
if (IS_PUSH_FP (read_memory_short (pc))
|
||
|
&& IS_MOV_SP_FP (read_memory_short (pc + 2)))
|
||
|
{
|
||
|
/* This is a function with an explict frame pointer */
|
||
|
pc += 4;
|
||
|
*size += 2; /* remember the frame pointer */
|
||
|
}
|
||
|
|
||
|
/* remember any stack adjustment */
|
||
|
if (IS_SUB_SP (read_memory_short (pc)))
|
||
|
{
|
||
|
*size += read_memory_short (pc + 2);
|
||
|
pc += 4;
|
||
|
}
|
||
|
return pc;
|
||
|
}
|
||
|
|
||
|
int
|
||
|
examine_frame (pc, regs, sp)
|
||
|
CORE_ADDR pc;
|
||
|
struct frame_saved_regs *regs;
|
||
|
CORE_ADDR sp;
|
||
|
{
|
||
|
int w = read_memory_short (pc);
|
||
|
int offset = 0;
|
||
|
int regno;
|
||
|
|
||
|
for (regno = 0; regno < NUM_REGS; regno++)
|
||
|
regs->regs[regno] = 0;
|
||
|
|
||
|
while (IS_PUSHW (w) || IS_PUSHL (w))
|
||
|
{
|
||
|
/* work out which register is being pushed to where */
|
||
|
if (IS_PUSHL (w))
|
||
|
{
|
||
|
regs->regs[w & 0xf] = offset;
|
||
|
regs->regs[(w & 0xf) + 1] = offset + 2;
|
||
|
offset += 4;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
regs->regs[w & 0xf] = offset;
|
||
|
offset += 2;
|
||
|
}
|
||
|
pc += 2;
|
||
|
w = read_memory_short (pc);
|
||
|
}
|
||
|
|
||
|
if (IS_MOVE_FP (w))
|
||
|
{
|
||
|
/* We know the fp */
|
||
|
|
||
|
}
|
||
|
else if (IS_SUB_SP (w))
|
||
|
{
|
||
|
/* Subtracting a value from the sp, so were in a function
|
||
|
which needs stack space for locals, but has no fp. We fake up
|
||
|
the values as if we had an fp */
|
||
|
regs->regs[FP_REGNUM] = sp;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* This one didn't have an fp, we'll fake it up */
|
||
|
regs->regs[SP_REGNUM] = sp;
|
||
|
}
|
||
|
/* stack pointer contains address of next frame */
|
||
|
/* regs->regs[fp_regnum()] = fp;*/
|
||
|
regs->regs[SP_REGNUM] = sp;
|
||
|
return pc;
|
||
|
}
|
||
|
|
||
|
CORE_ADDR
|
||
|
z8k_skip_prologue (start_pc)
|
||
|
CORE_ADDR start_pc;
|
||
|
{
|
||
|
struct frame_saved_regs dummy;
|
||
|
|
||
|
return examine_frame (start_pc, &dummy, 0);
|
||
|
}
|
||
|
|
||
|
CORE_ADDR
|
||
|
addr_bits_remove (x)
|
||
|
CORE_ADDR x;
|
||
|
{
|
||
|
return x & PTR_MASK;
|
||
|
}
|
||
|
|
||
|
int
|
||
|
read_memory_pointer (x)
|
||
|
CORE_ADDR x;
|
||
|
{
|
||
|
return read_memory_integer (ADDR_BITS_REMOVE (x), BIG ? 4 : 2);
|
||
|
}
|
||
|
|
||
|
CORE_ADDR
|
||
|
frame_chain (thisframe)
|
||
|
struct frame_info *thisframe;
|
||
|
{
|
||
|
if (thisframe->prev == 0)
|
||
|
{
|
||
|
/* This is the top of the stack, let's get the sp for real */
|
||
|
}
|
||
|
if (!inside_entry_file (thisframe->pc))
|
||
|
{
|
||
|
return read_memory_pointer (thisframe->frame);
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
init_frame_pc ()
|
||
|
{
|
||
|
abort ();
|
||
|
}
|
||
|
|
||
|
/* Put here the code to store, into a struct frame_saved_regs,
|
||
|
the addresses of the saved registers of frame described by FRAME_INFO.
|
||
|
This includes special registers such as pc and fp saved in special
|
||
|
ways in the stack frame. sp is even more special:
|
||
|
the address we return for it IS the sp for the next frame. */
|
||
|
|
||
|
void
|
||
|
get_frame_saved_regs (frame_info, frame_saved_regs)
|
||
|
struct frame_info *frame_info;
|
||
|
struct frame_saved_regs *frame_saved_regs;
|
||
|
|
||
|
{
|
||
|
CORE_ADDR pc;
|
||
|
int w;
|
||
|
|
||
|
memset (frame_saved_regs, '\0', sizeof (*frame_saved_regs));
|
||
|
pc = get_pc_function_start (frame_info->pc);
|
||
|
|
||
|
/* wander down the instruction stream */
|
||
|
examine_frame (pc, frame_saved_regs, frame_info->frame);
|
||
|
|
||
|
}
|
||
|
|
||
|
void
|
||
|
z8k_push_dummy_frame ()
|
||
|
{
|
||
|
abort ();
|
||
|
}
|
||
|
|
||
|
int
|
||
|
gdb_print_insn_z8k (memaddr, info)
|
||
|
bfd_vma memaddr;
|
||
|
disassemble_info *info;
|
||
|
{
|
||
|
if (BIG)
|
||
|
return print_insn_z8001 (memaddr, info);
|
||
|
else
|
||
|
return print_insn_z8002 (memaddr, info);
|
||
|
}
|
||
|
|
||
|
/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
|
||
|
is not the address of a valid instruction, the address of the next
|
||
|
instruction beyond ADDR otherwise. *PWORD1 receives the first word
|
||
|
of the instruction.*/
|
||
|
|
||
|
CORE_ADDR
|
||
|
NEXT_PROLOGUE_INSN (addr, lim, pword1)
|
||
|
CORE_ADDR addr;
|
||
|
CORE_ADDR lim;
|
||
|
short *pword1;
|
||
|
{
|
||
|
char buf[2];
|
||
|
if (addr < lim + 8)
|
||
|
{
|
||
|
read_memory (addr, buf, 2);
|
||
|
*pword1 = extract_signed_integer (buf, 2);
|
||
|
|
||
|
return addr + 2;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Put here the code to store, into a struct frame_saved_regs,
|
||
|
the addresses of the saved registers of frame described by FRAME_INFO.
|
||
|
This includes special registers such as pc and fp saved in special
|
||
|
ways in the stack frame. sp is even more special:
|
||
|
the address we return for it IS the sp for the next frame.
|
||
|
|
||
|
We cache the result of doing this in the frame_cache_obstack, since
|
||
|
it is fairly expensive. */
|
||
|
|
||
|
void
|
||
|
frame_find_saved_regs (fip, fsrp)
|
||
|
struct frame_info *fip;
|
||
|
struct frame_saved_regs *fsrp;
|
||
|
{
|
||
|
int locals;
|
||
|
CORE_ADDR pc;
|
||
|
CORE_ADDR adr;
|
||
|
int i;
|
||
|
|
||
|
memset (fsrp, 0, sizeof *fsrp);
|
||
|
|
||
|
pc = skip_adjust (get_pc_function_start (fip->pc), &locals);
|
||
|
|
||
|
{
|
||
|
adr = FRAME_FP (fip) - locals;
|
||
|
for (i = 0; i < 8; i++)
|
||
|
{
|
||
|
int word = read_memory_short (pc);
|
||
|
|
||
|
pc += 2;
|
||
|
if (IS_PUSHL (word))
|
||
|
{
|
||
|
fsrp->regs[word & 0xf] = adr;
|
||
|
fsrp->regs[(word & 0xf) + 1] = adr - 2;
|
||
|
adr -= 4;
|
||
|
}
|
||
|
else if (IS_PUSHW (word))
|
||
|
{
|
||
|
fsrp->regs[word & 0xf] = adr;
|
||
|
adr -= 2;
|
||
|
}
|
||
|
else
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
fsrp->regs[PC_REGNUM] = fip->frame + 4;
|
||
|
fsrp->regs[FP_REGNUM] = fip->frame;
|
||
|
|
||
|
}
|
||
|
|
||
|
int
|
||
|
saved_pc_after_call ()
|
||
|
{
|
||
|
return addr_bits_remove
|
||
|
(read_memory_integer (read_register (SP_REGNUM), PTR_SIZE));
|
||
|
}
|
||
|
|
||
|
|
||
|
extract_return_value (type, regbuf, valbuf)
|
||
|
struct type *type;
|
||
|
char *regbuf;
|
||
|
char *valbuf;
|
||
|
{
|
||
|
int b;
|
||
|
int len = TYPE_LENGTH (type);
|
||
|
|
||
|
for (b = 0; b < len; b += 2)
|
||
|
{
|
||
|
int todo = len - b;
|
||
|
|
||
|
if (todo > 2)
|
||
|
todo = 2;
|
||
|
memcpy (valbuf + b, regbuf + b, todo);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void
|
||
|
write_return_value (type, valbuf)
|
||
|
struct type *type;
|
||
|
char *valbuf;
|
||
|
{
|
||
|
int reg;
|
||
|
int len;
|
||
|
|
||
|
for (len = 0; len < TYPE_LENGTH (type); len += 2)
|
||
|
write_register_bytes (REGISTER_BYTE (len / 2 + 2), valbuf + len, 2);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
store_struct_return (addr, sp)
|
||
|
CORE_ADDR addr;
|
||
|
CORE_ADDR sp;
|
||
|
{
|
||
|
write_register (2, addr);
|
||
|
}
|
||
|
|
||
|
|
||
|
void
|
||
|
print_register_hook (regno)
|
||
|
int regno;
|
||
|
{
|
||
|
if ((regno & 1) == 0 && regno < 16)
|
||
|
{
|
||
|
unsigned short l[2];
|
||
|
|
||
|
read_relative_register_raw_bytes (regno, (char *) (l + 0));
|
||
|
read_relative_register_raw_bytes (regno + 1, (char *) (l + 1));
|
||
|
printf_unfiltered ("\t");
|
||
|
printf_unfiltered ("%04x%04x", l[0], l[1]);
|
||
|
}
|
||
|
|
||
|
if ((regno & 3) == 0 && regno < 16)
|
||
|
{
|
||
|
unsigned short l[4];
|
||
|
|
||
|
read_relative_register_raw_bytes (regno, (char *) (l + 0));
|
||
|
read_relative_register_raw_bytes (regno + 1, (char *) (l + 1));
|
||
|
read_relative_register_raw_bytes (regno + 2, (char *) (l + 2));
|
||
|
read_relative_register_raw_bytes (regno + 3, (char *) (l + 3));
|
||
|
|
||
|
printf_unfiltered ("\t");
|
||
|
printf_unfiltered ("%04x%04x%04x%04x", l[0], l[1], l[2], l[3]);
|
||
|
}
|
||
|
if (regno == 15)
|
||
|
{
|
||
|
unsigned short rval;
|
||
|
int i;
|
||
|
|
||
|
read_relative_register_raw_bytes (regno, (char *) (&rval));
|
||
|
|
||
|
printf_unfiltered ("\n");
|
||
|
for (i = 0; i < 10; i += 2)
|
||
|
{
|
||
|
printf_unfiltered ("(sp+%d=%04x)", i, read_memory_short (rval + i));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
void
|
||
|
z8k_pop_frame ()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
struct cmd_list_element *setmemorylist;
|
||
|
|
||
|
void
|
||
|
z8k_set_pointer_size (newsize)
|
||
|
int newsize;
|
||
|
{
|
||
|
static int oldsize = 0;
|
||
|
|
||
|
if (oldsize != newsize)
|
||
|
{
|
||
|
printf_unfiltered ("pointer size set to %d bits\n", newsize);
|
||
|
oldsize = newsize;
|
||
|
if (newsize == 32)
|
||
|
{
|
||
|
BIG = 1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
BIG = 0;
|
||
|
}
|
||
|
_initialize_gdbtypes ();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
segmented_command (args, from_tty)
|
||
|
char *args;
|
||
|
int from_tty;
|
||
|
{
|
||
|
z8k_set_pointer_size (32);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
unsegmented_command (args, from_tty)
|
||
|
char *args;
|
||
|
int from_tty;
|
||
|
{
|
||
|
z8k_set_pointer_size (16);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
set_memory (args, from_tty)
|
||
|
char *args;
|
||
|
int from_tty;
|
||
|
{
|
||
|
printf_unfiltered ("\"set memory\" must be followed by the name of a memory subcommand.\n");
|
||
|
help_list (setmemorylist, "set memory ", -1, gdb_stdout);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
_initialize_z8ktdep ()
|
||
|
{
|
||
|
tm_print_insn = gdb_print_insn_z8k;
|
||
|
|
||
|
add_prefix_cmd ("memory", no_class, set_memory,
|
||
|
"set the memory model", &setmemorylist, "set memory ", 0,
|
||
|
&setlist);
|
||
|
add_cmd ("segmented", class_support, segmented_command,
|
||
|
"Set segmented memory model.", &setmemorylist);
|
||
|
add_cmd ("unsegmented", class_support, unsegmented_command,
|
||
|
"Set unsegmented memory model.", &setmemorylist);
|
||
|
|
||
|
}
|