NetBSD/sys/kern/subr_physmap.c

389 lines
9.6 KiB
C
Raw Normal View History

/* $NetBSD: subr_physmap.c,v 1.3 2020/06/06 23:02:25 ad Exp $ */
/*-
* Copyright (c) 2013 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Matt Thomas of 3am Software Foundry.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(1, "$NetBSD: subr_physmap.c,v 1.3 2020/06/06 23:02:25 ad Exp $");
#include <sys/param.h>
#include <sys/physmap.h>
#include <sys/kmem.h>
#include <dev/mm.h>
/*
* This file contain support routines used to create and destroy lists of
* physical pages from lists of pages or ranges of virtual address. By using
* these physical maps, the kernel can avoid mapping physical I/O in the
* kernel's address space in most cases.
*/
typedef struct {
physmap_t *pc_physmap;
physmap_segment_t *pc_segs;
vsize_t pc_offset;
vsize_t pc_klen;
vaddr_t pc_kva;
u_int pc_nsegs;
vm_prot_t pc_prot;
bool pc_direct_mapped;
} physmap_cookie_t;
/*
* Allocate a physmap structure that requires "maxsegs" segments.
*/
static physmap_t *
physmap_alloc(size_t maxsegs)
{
const size_t mapsize = offsetof(physmap_t, pm_segs[maxsegs]);
KASSERT(maxsegs > 0);
physmap_t * const map = kmem_zalloc(mapsize, KM_SLEEP);
map->pm_maxsegs = maxsegs;
return map;
}
static int
physmap_fill(physmap_t *map, pmap_t pmap, vaddr_t va, vsize_t len)
{
size_t nsegs = map->pm_nsegs;
physmap_segment_t *ps = &map->pm_segs[nsegs];
vsize_t offset = va - trunc_page(va);
if (nsegs == 0) {
if (!pmap_extract(pmap, va, &ps->ps_addr)) {
return EFAULT;
}
ps->ps_len = MIN(len, PAGE_SIZE - offset);
if (ps->ps_len == len) {
map->pm_nsegs = 1;
return 0;
}
offset = 0;
} else {
/*
* Backup to the last segment since we have to see if we can
* merge virtual addresses that are physically contiguous into
* as few segments as possible.
*/
ps--;
nsegs--;
}
paddr_t lastaddr = ps->ps_addr + ps->ps_len;
for (;;) {
paddr_t curaddr;
if (!pmap_extract(pmap, va, &curaddr)) {
return EFAULT;
}
if (curaddr != lastaddr) {
ps++;
nsegs++;
KASSERT(nsegs < map->pm_maxsegs);
ps->ps_addr = curaddr;
lastaddr = curaddr;
}
if (offset + len > PAGE_SIZE) {
ps->ps_len += PAGE_SIZE - offset;
lastaddr = ps->ps_addr + ps->ps_len;
len -= PAGE_SIZE - offset;
lastaddr += PAGE_SIZE - offset;
offset = 0;
} else {
ps->ps_len += len;
map->pm_nsegs = nsegs + 1;
return 0;
}
}
}
/*
* Create a physmap and populate it with the pages that are used to mapped
* linear range of virtual addresses. It is assumed that uvm_vslock has been
* called to lock these pages into memory.
*/
int
physmap_create_linear(physmap_t **map_p, const struct vmspace *vs, vaddr_t va,
vsize_t len)
{
const size_t maxsegs = atop(round_page(va + len) - trunc_page(va));
physmap_t * const map = physmap_alloc(maxsegs);
int error = physmap_fill(map, vs->vm_map.pmap, va, len);
if (error) {
physmap_destroy(map);
*map_p = NULL;
return error;
}
*map_p = map;
return 0;
}
/*
* Create a physmap and populate it with the pages that are contained in an
* iovec array. It is assumed that uvm_vslock has been called to lock these
* pages into memory.
*/
int
physmap_create_iov(physmap_t **map_p, const struct vmspace *vs,
struct iovec *iov, size_t iovlen)
{
size_t maxsegs = 0;
for (size_t i = 0; i < iovlen; i++) {
const vaddr_t start = (vaddr_t) iov[i].iov_base;
const vaddr_t end = start + iov[i].iov_len;
maxsegs += atop(round_page(end) - trunc_page(start));
}
physmap_t * const map = physmap_alloc(maxsegs);
for (size_t i = 0; i < iovlen; i++) {
int error = physmap_fill(map, vs->vm_map.pmap,
(vaddr_t) iov[i].iov_base, iov[i].iov_len);
if (error) {
physmap_destroy(map);
*map_p = NULL;
return error;
}
}
*map_p = map;
return 0;
}
/*
* This uses a list of vm_page structure to create a physmap.
*/
physmap_t *
physmap_create_pagelist(struct vm_page **pgs, size_t npgs)
{
physmap_t * const map = physmap_alloc(npgs);
physmap_segment_t *ps = map->pm_segs;
/*
* Initialize the first segment.
*/
paddr_t lastaddr = VM_PAGE_TO_PHYS(pgs[0]);
ps->ps_addr = lastaddr;
ps->ps_len = PAGE_SIZE;
for (pgs++; npgs-- > 1; pgs++) {
/*
* lastaddr needs to be increased by a page.
*/
lastaddr += PAGE_SIZE;
paddr_t curaddr = VM_PAGE_TO_PHYS(*pgs);
if (curaddr != lastaddr) {
/*
* If the addresses are not the same, we need to use
* a new segemnt. Set its address and update lastaddr.
*/
ps++;
ps->ps_addr = curaddr;
lastaddr = curaddr;
}
/*
* Increase this segment's length by a page
*/
ps->ps_len += PAGE_SIZE;
}
map->pm_nsegs = ps + 1 - map->pm_segs;
return map;
}
void
physmap_destroy(physmap_t *map)
{
const size_t mapsize = offsetof(physmap_t, pm_segs[map->pm_maxsegs]);
kmem_free(map, mapsize);
}
void *
physmap_map_init(physmap_t *map, size_t offset, vm_prot_t prot)
{
physmap_cookie_t * const pc = kmem_zalloc(sizeof(*pc), KM_SLEEP);
KASSERT(prot == VM_PROT_READ || prot == (VM_PROT_READ|VM_PROT_WRITE));
pc->pc_physmap = map;
pc->pc_segs = map->pm_segs;
pc->pc_nsegs = map->pm_nsegs;
pc->pc_prot = prot;
pc->pc_klen = 0;
pc->pc_kva = 0;
pc->pc_direct_mapped = false;
/*
* Skip to the first segment we are interested in.
*/
while (offset >= pc->pc_segs->ps_len) {
offset -= pc->pc_segs->ps_len;
pc->pc_segs++;
pc->pc_nsegs--;
}
pc->pc_offset = offset;
return pc;
}
size_t
physmap_map(void *cookie, vaddr_t *kvap)
{
physmap_cookie_t * const pc = cookie;
/*
* If there is currently a non-direct mapped KVA region allocated,
* free it now.
*/
if (pc->pc_kva != 0 && !pc->pc_direct_mapped) {
pmap_kremove(pc->pc_kva, pc->pc_klen);
pmap_update(pmap_kernel());
uvm_km_free(kernel_map, pc->pc_kva, pc->pc_klen,
UVM_KMF_VAONLY);
}
/*
* If there are no more segments to process, return 0 indicating
* we are done.
*/
if (pc->pc_nsegs == 0) {
return 0;
}
/*
* Get starting physical address of this segment and its length.
*/
paddr_t pa = pc->pc_segs->ps_addr + pc->pc_offset;
const size_t koff = pa & PAGE_MASK;
const size_t len = pc->pc_segs->ps_len - pc->pc_offset;
/*
* Now that we have the starting offset in the page, reset to the
* beginning of the page.
*/
pa = trunc_page(pa);
/*
* We are now done with this segment; advance to the next one.
*/
pc->pc_segs++;
pc->pc_nsegs--;
pc->pc_offset = 0;
/*
* Find out how many pages we are mapping.
*/
pc->pc_klen = round_page(len);
#ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
/*
* Always try to direct map it since that's nearly zero cost.
*/
pc->pc_direct_mapped = mm_md_direct_mapped_phys(pa, &pc->pc_kva);
#endif
if (!pc->pc_direct_mapped) {
/*
* If we can't direct map it, we have to allocate some KVA
* so we map it via the kernel_map.
*/
pc->pc_kva = uvm_km_alloc(kernel_map, pc->pc_klen,
atop(pa) & uvmexp.colormask,
UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
KASSERT(pc->pc_kva != 0);
/*
* Setup mappings for this segment.
*/
for (size_t poff = 0; poff < pc->pc_klen; poff += PAGE_SIZE) {
pmap_kenter_pa(pc->pc_kva + poff, pa + poff,
pc->pc_prot, 0);
}
/*
* Make them real.
*/
pmap_update(pmap_kernel());
}
/*
* Return the starting KVA (including offset into the page) and
* the length of this segment.
*/
*kvap = pc->pc_kva + koff;
return len;
}
void
physmap_map_fini(void *cookie)
{
physmap_cookie_t * const pc = cookie;
/*
* If there is currently a non-direct mapped KVA region allocated,
* free it now.
*/
if (pc->pc_kva != 0 && !pc->pc_direct_mapped) {
pmap_kremove(pc->pc_kva, pc->pc_klen);
pmap_update(pmap_kernel());
uvm_km_free(kernel_map, pc->pc_kva, pc->pc_klen,
UVM_KMF_VAONLY);
}
/*
* Free the cookie.
*/
kmem_free(pc, sizeof(*pc));
}
/*
* genio needs to zero pages past the EOF or without backing storage (think
* sparse files). But since we are using physmaps, there is no kva to use with
* memset so we need a helper to obtain a kva and memset the desired memory.
*/
void
physmap_zero(physmap_t *map, size_t offset, size_t len)
{
void * const cookie = physmap_map_init(map, offset,
VM_PROT_READ|VM_PROT_WRITE);
for (;;) {
vaddr_t kva;
size_t seglen = physmap_map(cookie, &kva);
KASSERT(seglen != 0);
if (seglen > len)
seglen = len;
memset((void *)kva, 0, seglen);
if (seglen == len)
break;
}
physmap_map_fini(cookie);
}