NetBSD/sys/uvm/uvm_glue.c

432 lines
11 KiB
C
Raw Normal View History

/* $NetBSD: uvm_glue.c,v 1.147 2011/02/02 15:25:27 chuck Exp $ */
2001-05-25 08:06:11 +04:00
/*
* Copyright (c) 1997 Charles D. Cranor and Washington University.
2001-05-25 08:06:11 +04:00
* Copyright (c) 1991, 1993, The Regents of the University of California.
*
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
1998-02-07 14:07:38 +03:00
* from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
*
*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
2001-05-25 08:06:11 +04:00
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
2001-05-25 08:06:11 +04:00
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
2001-05-25 08:06:11 +04:00
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.147 2011/02/02 15:25:27 chuck Exp $");
2001-05-30 19:24:23 +04:00
#include "opt_kgdb.h"
#include "opt_kstack.h"
2001-05-30 19:24:23 +04:00
#include "opt_uvmhist.h"
/*
* uvm_glue.c: glue functions
*/
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
#include <sys/buf.h>
#include <sys/syncobj.h>
#include <sys/cpu.h>
2008-01-02 14:48:20 +03:00
#include <sys/atomic.h>
#include <sys/lwp.h>
#include <uvm/uvm.h>
/*
* XXXCDC: do these really belong here?
*/
/*
* uvm_kernacc: can the kernel access a region of memory
*
* - used only by /dev/kmem driver (mem.c)
*/
bool
uvm_kernacc(void *addr, size_t len, int rw)
{
bool rv;
vaddr_t saddr, eaddr;
1998-03-09 03:58:55 +03:00
vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
saddr = trunc_page((vaddr_t)addr);
eaddr = round_page((vaddr_t)addr + len);
1998-03-09 03:58:55 +03:00
vm_map_lock_read(kernel_map);
rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
vm_map_unlock_read(kernel_map);
return(rv);
}
#ifdef KGDB
/*
* Change protections on kernel pages from addr to addr+len
* (presumably so debugger can plant a breakpoint).
*
* We force the protection change at the pmap level. If we were
* to use vm_map_protect a change to allow writing would be lazily-
* applied meaning we would still take a protection fault, something
* we really don't want to do. It would also fragment the kernel
* map unnecessarily. We cannot use pmap_protect since it also won't
* enforce a write-enable request. Using pmap_enter is the only way
* we can ensure the change takes place properly.
*/
1998-03-09 03:58:55 +03:00
void
uvm_chgkprot(void *addr, size_t len, int rw)
{
1998-03-09 03:58:55 +03:00
vm_prot_t prot;
paddr_t pa;
vaddr_t sva, eva;
1998-03-09 03:58:55 +03:00
prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
eva = round_page((vaddr_t)addr + len);
for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
1998-03-09 03:58:55 +03:00
/*
* Extract physical address for the page.
*/
2007-02-22 09:05:00 +03:00
if (pmap_extract(pmap_kernel(), sva, &pa) == false)
panic("%s: invalid page", __func__);
pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
1998-03-09 03:58:55 +03:00
}
pmap_update(pmap_kernel());
}
#endif
/*
a whole bunch of changes to improve performance and robustness under load: - remove special treatment of pager_map mappings in pmaps. this is required now, since I've removed the globals that expose the address range. pager_map now uses pmap_kenter_pa() instead of pmap_enter(), so there's no longer any need to special-case it. - eliminate struct uvm_vnode by moving its fields into struct vnode. - rewrite the pageout path. the pager is now responsible for handling the high-level requests instead of only getting control after a bunch of work has already been done on its behalf. this will allow us to UBCify LFS, which needs tighter control over its pages than other filesystems do. writing a page to disk no longer requires making it read-only, which allows us to write wired pages without causing all kinds of havoc. - use a new PG_PAGEOUT flag to indicate that a page should be freed on behalf of the pagedaemon when it's unlocked. this flag is very similar to PG_RELEASED, but unlike PG_RELEASED, PG_PAGEOUT can be cleared if the pageout fails due to eg. an indirect-block buffer being locked. this allows us to remove the "version" field from struct vm_page, and together with shrinking "loan_count" from 32 bits to 16, struct vm_page is now 4 bytes smaller. - no longer use PG_RELEASED for swap-backed pages. if the page is busy because it's being paged out, we can't release the swap slot to be reallocated until that write is complete, but unlike with vnodes we don't keep a count of in-progress writes so there's no good way to know when the write is done. instead, when we need to free a busy swap-backed page, just sleep until we can get it busy ourselves. - implement a fast-path for extending writes which allows us to avoid zeroing new pages. this substantially reduces cpu usage. - encapsulate the data used by the genfs code in a struct genfs_node, which must be the first element of the filesystem-specific vnode data for filesystems which use genfs_{get,put}pages(). - eliminate many of the UVM pagerops, since they aren't needed anymore now that the pager "put" operation is a higher-level operation. - enhance the genfs code to allow NFS to use the genfs_{get,put}pages instead of a modified copy. - clean up struct vnode by removing all the fields that used to be used by the vfs_cluster.c code (which we don't use anymore with UBC). - remove kmem_object and mb_object since they were useless. instead of allocating pages to these objects, we now just allocate pages with no object. such pages are mapped in the kernel until they are freed, so we can use the mapping to find the page to free it. this allows us to remove splvm() protection in several places. The sum of all these changes improves write throughput on my decstation 5000/200 to within 1% of the rate of NetBSD 1.5 and reduces the elapsed time for "make release" of a NetBSD 1.5 source tree on my 128MB pc to 10% less than a 1.5 kernel took.
2001-09-16 00:36:31 +04:00
* uvm_vslock: wire user memory for I/O
*
* - called from physio and sys___sysctl
* - XXXCDC: consider nuking this (or making it a macro?)
*/
int
uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
{
struct vm_map *map;
vaddr_t start, end;
int error;
map = &vs->vm_map;
start = trunc_page((vaddr_t)addr);
end = round_page((vaddr_t)addr + len);
error = uvm_fault_wire(map, start, end, access_type, 0);
return error;
}
/*
a whole bunch of changes to improve performance and robustness under load: - remove special treatment of pager_map mappings in pmaps. this is required now, since I've removed the globals that expose the address range. pager_map now uses pmap_kenter_pa() instead of pmap_enter(), so there's no longer any need to special-case it. - eliminate struct uvm_vnode by moving its fields into struct vnode. - rewrite the pageout path. the pager is now responsible for handling the high-level requests instead of only getting control after a bunch of work has already been done on its behalf. this will allow us to UBCify LFS, which needs tighter control over its pages than other filesystems do. writing a page to disk no longer requires making it read-only, which allows us to write wired pages without causing all kinds of havoc. - use a new PG_PAGEOUT flag to indicate that a page should be freed on behalf of the pagedaemon when it's unlocked. this flag is very similar to PG_RELEASED, but unlike PG_RELEASED, PG_PAGEOUT can be cleared if the pageout fails due to eg. an indirect-block buffer being locked. this allows us to remove the "version" field from struct vm_page, and together with shrinking "loan_count" from 32 bits to 16, struct vm_page is now 4 bytes smaller. - no longer use PG_RELEASED for swap-backed pages. if the page is busy because it's being paged out, we can't release the swap slot to be reallocated until that write is complete, but unlike with vnodes we don't keep a count of in-progress writes so there's no good way to know when the write is done. instead, when we need to free a busy swap-backed page, just sleep until we can get it busy ourselves. - implement a fast-path for extending writes which allows us to avoid zeroing new pages. this substantially reduces cpu usage. - encapsulate the data used by the genfs code in a struct genfs_node, which must be the first element of the filesystem-specific vnode data for filesystems which use genfs_{get,put}pages(). - eliminate many of the UVM pagerops, since they aren't needed anymore now that the pager "put" operation is a higher-level operation. - enhance the genfs code to allow NFS to use the genfs_{get,put}pages instead of a modified copy. - clean up struct vnode by removing all the fields that used to be used by the vfs_cluster.c code (which we don't use anymore with UBC). - remove kmem_object and mb_object since they were useless. instead of allocating pages to these objects, we now just allocate pages with no object. such pages are mapped in the kernel until they are freed, so we can use the mapping to find the page to free it. this allows us to remove splvm() protection in several places. The sum of all these changes improves write throughput on my decstation 5000/200 to within 1% of the rate of NetBSD 1.5 and reduces the elapsed time for "make release" of a NetBSD 1.5 source tree on my 128MB pc to 10% less than a 1.5 kernel took.
2001-09-16 00:36:31 +04:00
* uvm_vsunlock: unwire user memory wired by uvm_vslock()
*
* - called from physio and sys___sysctl
* - XXXCDC: consider nuking this (or making it a macro?)
*/
1998-03-09 03:58:55 +03:00
void
uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
{
uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
round_page((vaddr_t)addr + len));
}
/*
2003-01-18 11:51:40 +03:00
* uvm_proc_fork: fork a virtual address space
*
* - the address space is copied as per parent map's inherit values
2003-01-18 11:51:40 +03:00
*/
void
uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
2003-01-18 11:51:40 +03:00
{
2007-02-22 09:05:00 +03:00
if (shared == true) {
2003-01-18 11:51:40 +03:00
p2->p_vmspace = NULL;
uvmspace_share(p1, p2);
} else {
p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
}
cpu_proc_fork(p1, p2);
}
/*
* uvm_lwp_fork: fork a thread
*
* - a new PCB structure is allocated for the child process,
* and filled in by MD layer
* - if specified, the child gets a new user stack described by
* stack and stacksize
* - NOTE: the kernel stack may be at a different location in the child
* process, and thus addresses of automatic variables may be invalid
2003-01-18 11:51:40 +03:00
* after cpu_lwp_fork returns in the child process. We do nothing here
* after cpu_lwp_fork returns.
*/
1998-03-09 03:58:55 +03:00
void
2005-06-27 06:19:48 +04:00
uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
void (*func)(void *), void *arg)
{
2009-04-16 04:17:19 +04:00
/* Fill stack with magic number. */
kstack_setup_magic(l2);
1998-03-09 03:58:55 +03:00
/*
2003-01-18 11:51:40 +03:00
* cpu_lwp_fork() copy and update the pcb, and make the child ready
* to run. If this is a normal user fork, the child will exit
* directly to user mode via child_return() on its first time
* slice and will not return here. If this is a kernel thread,
* the specified entry point will be executed.
1998-03-09 03:58:55 +03:00
*/
2003-01-18 11:51:40 +03:00
cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
/* Inactive emap for new LWP. */
l2->l_emap_gen = UVM_EMAP_INACTIVE;
}
#ifndef USPACE_ALIGN
#define USPACE_ALIGN 0
#endif
static pool_cache_t uvm_uarea_cache;
static void *
uarea_poolpage_alloc(struct pool *pp, int flags)
{
#if defined(PMAP_MAP_POOLPAGE)
if (USPACE == PAGE_SIZE && USPACE_ALIGN == 0) {
struct vm_page *pg;
vaddr_t va;
pg = uvm_pagealloc(NULL, 0, NULL,
((flags & PR_WAITOK) == 0 ? UVM_KMF_NOWAIT : 0));
if (pg == NULL)
return NULL;
va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
if (va == 0)
uvm_pagefree(pg);
return (void *)va;
}
#endif
return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
USPACE_ALIGN, UVM_KMF_WIRED |
((flags & PR_WAITOK) ? UVM_KMF_WAITVA :
(UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)));
}
static void
uarea_poolpage_free(struct pool *pp, void *addr)
{
#if defined(PMAP_MAP_POOLPAGE)
if (USPACE == PAGE_SIZE && USPACE_ALIGN == 0) {
paddr_t pa;
pa = PMAP_UNMAP_POOLPAGE((vaddr_t) addr);
KASSERT(pa != 0);
uvm_pagefree(PHYS_TO_VM_PAGE(pa));
return;
}
#endif
uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
UVM_KMF_WIRED);
}
static struct pool_allocator uvm_uarea_allocator = {
.pa_alloc = uarea_poolpage_alloc,
.pa_free = uarea_poolpage_free,
.pa_pagesz = USPACE,
};
void
uvm_uarea_init(void)
{
int flags = PR_NOTOUCH;
/*
* specify PR_NOALIGN unless the alignment provided by
* the backend (USPACE_ALIGN) is sufficient to provide
* pool page size (UPSACE) alignment.
*/
if ((USPACE_ALIGN == 0 && USPACE != PAGE_SIZE) ||
(USPACE_ALIGN % USPACE) != 0) {
flags |= PR_NOALIGN;
}
uvm_uarea_cache = pool_cache_init(USPACE, USPACE_ALIGN, 0, flags,
"uarea", &uvm_uarea_allocator, IPL_NONE, NULL, NULL, NULL);
}
/*
* uvm_uarea_alloc: allocate a u-area
*/
vaddr_t
uvm_uarea_alloc(void)
{
return (vaddr_t)pool_cache_get(uvm_uarea_cache, PR_WAITOK);
}
/*
* uvm_uarea_free: free a u-area
*/
void
uvm_uarea_free(vaddr_t uaddr)
{
pool_cache_put(uvm_uarea_cache, (void *)uaddr);
}
vaddr_t
uvm_lwp_getuarea(lwp_t *l)
{
return (vaddr_t)l->l_addr - UAREA_PCB_OFFSET;
}
void
uvm_lwp_setuarea(lwp_t *l, vaddr_t addr)
{
l->l_addr = (void *)(addr + UAREA_PCB_OFFSET);
}
/*
2008-02-29 15:08:04 +03:00
* uvm_proc_exit: exit a virtual address space
*
* - borrow proc0's address space because freeing the vmspace
* of the dead process may block.
*/
void
2005-06-27 06:19:48 +04:00
uvm_proc_exit(struct proc *p)
{
struct lwp *l = curlwp; /* XXX */
struct vmspace *ovm;
KASSERT(p == l->l_proc);
ovm = p->p_vmspace;
/*
* borrow proc0's address space.
*/
KPREEMPT_DISABLE(l);
pmap_deactivate(l);
p->p_vmspace = proc0.p_vmspace;
pmap_activate(l);
KPREEMPT_ENABLE(l);
uvmspace_free(ovm);
}
void
uvm_lwp_exit(struct lwp *l)
{
vaddr_t va = uvm_lwp_getuarea(l);
uvm_uarea_free(va);
#ifdef DIAGNOSTIC
uvm_lwp_setuarea(l, (vaddr_t)NULL);
#endif
}
/*
* uvm_init_limit: init per-process VM limits
*
* - called for process 0 and then inherited by all others.
*/
1998-03-09 03:58:55 +03:00
void
2005-06-27 06:19:48 +04:00
uvm_init_limits(struct proc *p)
{
1998-03-09 03:58:55 +03:00
/*
* Set up the initial limits on process VM. Set the maximum
* resident set size to be all of (reasonably) available memory.
* This causes any single, large process to start random page
* replacement once it fills memory.
*/
p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
1998-03-09 03:58:55 +03:00
p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
p->p_rlimit[RLIMIT_AS].rlim_cur = RLIM_INFINITY;
p->p_rlimit[RLIMIT_AS].rlim_max = RLIM_INFINITY;
p->p_rlimit[RLIMIT_RSS].rlim_cur = MIN(
VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free));
}
/*
* uvm_scheduler: process zero main loop.
*/
extern struct loadavg averunnable;
1998-03-09 03:58:55 +03:00
void
2005-06-27 06:19:48 +04:00
uvm_scheduler(void)
{
lwp_t *l = curlwp;
lwp_lock(l);
l->l_priority = PRI_VM;
l->l_class = SCHED_FIFO;
lwp_unlock(l);
for (;;) {
sched_pstats();
(void)kpause("uvm", false, hz, NULL);
}
}