NetBSD/gnu/usr.bin/gcc2/arch/i386/md

4620 lines
122 KiB
Plaintext
Raw Normal View History

1993-08-23 13:20:31 +04:00
;; GCC machine description for Intel 80386.
;; Copyright (C) 1988 Free Software Foundation, Inc.
;; Mostly by William Schelter.
;; This file is part of GNU CC.
;; GNU CC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.
;; GNU CC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU CC; see the file COPYING. If not, write to
;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
1993-08-23 13:45:50 +04:00
;; $Id: md,v 1.3 1993/08/23 09:46:01 cgd Exp $
1993-08-23 13:20:31 +04:00
;; The original PO technology requires these to be ordered by speed,
;; so that assigner will pick the fastest.
;; See file "rtl.def" for documentation on define_insn, match_*, et. al.
;; Macro #define NOTICE_UPDATE_CC in file i386.h handles condition code
;; updates for most instructions.
;; Macro REG_CLASS_FROM_LETTER in file i386.h defines the register
;; constraint letters.
;; the special asm out single letter directives following a '%' are:
;; 'z' mov%z1 would be movl, movw, or movb depending on the mode of
;; operands[1].
;; 'L' Print the opcode suffix for a 32-bit integer opcode.
;; 'W' Print the opcode suffix for a 16-bit integer opcode.
;; 'B' Print the opcode suffix for an 8-bit integer opcode.
;; 'S' Print the opcode suffix for a 32-bit float opcode.
;; 'Q' Print the opcode suffix for a 64-bit float opcode.
;; 'b' Print the QImode name of the register for the indicated operand.
;; %b0 would print %al if operands[0] is reg 0.
;; 'w' Likewise, print the HImode name of the register.
;; 'k' Likewise, print the SImode name of the register.
;; 'h' Print the QImode name for a "high" register, either ah, bh, ch or dh.
;; 'y' Print "st(0)" instead of "st" as a register.
;; UNSPEC usage:
;; 0 This is a `scas' operation. The mode of the UNSPEC is always SImode.
;; operand 0 is the memory address to scan.
;; operand 1 is a register containing the value to scan for. The mode
;; of the scas opcode will be the same as the mode of this operand.
;; operand 2 is the known alignment of operand 0.
;; 1 This is a `sin' operation. The mode of the UNSPEC is MODE_FLOAT.
;; operand 0 is the argument for `sin'.
;; 2 This is a `cos' operation. The mode of the UNSPEC is MODE_FLOAT.
;; operand 0 is the argument for `cos'.
;; "movl MEM,REG / testl REG,REG" is faster on a 486 than "cmpl $0,MEM".
;; But restricting MEM here would mean that gcc could not remove a redundant
;; test in cases like "incl MEM / je TARGET".
;;
;; We don't want to allow a constant operand for test insns because
;; (set (cc0) (const_int foo)) has no mode information. Such insns will
;; be folded while optimizing anyway.
;; All test insns have expanders that save the operands away without
;; actually generating RTL. The bCOND or sCOND (emitted immediately
;; after the tstM or cmp) will actually emit the tstM or cmpM.
(define_insn "tstsi_1"
[(set (cc0)
(match_operand:SI 0 "nonimmediate_operand" "rm"))]
""
"*
{
if (REG_P (operands[0]))
return AS2 (test%L0,%0,%0);
operands[1] = const0_rtx;
return AS2 (cmp%L0,%1,%0);
}")
(define_expand "tstsi"
[(set (cc0)
(match_operand:SI 0 "nonimmediate_operand" ""))]
""
"
{
i386_compare_gen = gen_tstsi_1;
i386_compare_op0 = operands[0];
DONE;
}")
(define_insn "tsthi_1"
[(set (cc0)
(match_operand:HI 0 "nonimmediate_operand" "rm"))]
""
"*
{
if (REG_P (operands[0]))
return AS2 (test%W0,%0,%0);
operands[1] = const0_rtx;
return AS2 (cmp%W0,%1,%0);
}")
(define_expand "tsthi"
[(set (cc0)
(match_operand:HI 0 "nonimmediate_operand" ""))]
""
"
{
i386_compare_gen = gen_tsthi_1;
i386_compare_op0 = operands[0];
DONE;
}")
(define_insn "tstqi_1"
[(set (cc0)
(match_operand:QI 0 "nonimmediate_operand" "qm"))]
""
"*
{
if (REG_P (operands[0]))
return AS2 (test%B0,%0,%0);
operands[1] = const0_rtx;
return AS2 (cmp%B0,%1,%0);
}")
(define_expand "tstqi"
[(set (cc0)
(match_operand:QI 0 "nonimmediate_operand" ""))]
""
"
{
i386_compare_gen = gen_tstqi_1;
i386_compare_op0 = operands[0];
DONE;
}")
(define_insn "tstsf_cc"
[(set (cc0)
(match_operand:SF 0 "register_operand" "f"))
(clobber (match_scratch:HI 1 "=a"))]
"TARGET_80387 && ! TARGET_IEEE_FP"
"*
{
if (! STACK_TOP_P (operands[0]))
abort ();
output_asm_insn (\"ftst\", operands);
if (find_regno_note (insn, REG_DEAD, FIRST_STACK_REG))
output_asm_insn (AS1 (fstp,%y0), operands);
return (char *) output_fp_cc0_set (insn);
}")
;; Don't generate tstsf if generating IEEE code, since the `ftst' opcode
;; isn't IEEE compliant.
(define_expand "tstsf"
[(parallel [(set (cc0)
(match_operand:SF 0 "register_operand" ""))
(clobber (match_scratch:HI 1 ""))])]
"TARGET_80387 && ! TARGET_IEEE_FP"
"
{
i386_compare_gen = gen_tstsf_cc;
i386_compare_op0 = operands[0];
DONE;
}")
(define_insn "tstdf_cc"
[(set (cc0)
(match_operand:DF 0 "register_operand" "f"))
(clobber (match_scratch:HI 1 "=a"))]
"TARGET_80387 && ! TARGET_IEEE_FP"
"*
{
if (! STACK_TOP_P (operands[0]))
abort ();
output_asm_insn (\"ftst\", operands);
if (find_regno_note (insn, REG_DEAD, FIRST_STACK_REG))
output_asm_insn (AS1 (fstp,%y0), operands);
return (char *) output_fp_cc0_set (insn);
}")
;; Don't generate tstdf if generating IEEE code, since the `ftst' opcode
;; isn't IEEE compliant.
(define_expand "tstdf"
[(parallel [(set (cc0)
(match_operand:DF 0 "register_operand" ""))
(clobber (match_scratch:HI 1 ""))])]
"TARGET_80387 && ! TARGET_IEEE_FP"
"
{
i386_compare_gen = gen_tstdf_cc;
i386_compare_op0 = operands[0];
DONE;
}")
;;- compare instructions. See comments above tstM patterns about
;; expansion of these insns.
(define_insn "cmpsi_1"
[(set (cc0)
(compare (match_operand:SI 0 "nonimmediate_operand" "mr,r")
(match_operand:SI 1 "general_operand" "ri,mr")))]
"GET_CODE (operands[0]) != MEM || GET_CODE (operands[1]) != MEM"
"*
{
if (CONSTANT_P (operands[0]) || GET_CODE (operands[1]) == MEM)
{
cc_status.flags |= CC_REVERSED;
return AS2 (cmp%L0,%0,%1);
}
return AS2 (cmp%L0,%1,%0);
}")
(define_expand "cmpsi"
[(set (cc0)
(compare (match_operand:SI 0 "nonimmediate_operand" "")
(match_operand:SI 1 "general_operand" "")))]
""
"
{
if (GET_CODE (operands[0]) == MEM && GET_CODE (operands[1]) == MEM)
operands[0] = force_reg (SImode, operands[0]);
i386_compare_gen = gen_cmpsi_1;
i386_compare_op0 = operands[0];
i386_compare_op1 = operands[1];
DONE;
}")
(define_insn "cmphi_1"
[(set (cc0)
(compare (match_operand:HI 0 "nonimmediate_operand" "mr,r")
(match_operand:HI 1 "general_operand" "ri,mr")))]
"GET_CODE (operands[0]) != MEM || GET_CODE (operands[1]) != MEM"
"*
{
if (CONSTANT_P (operands[0]) || GET_CODE (operands[1]) == MEM)
{
cc_status.flags |= CC_REVERSED;
return AS2 (cmp%W0,%0,%1);
}
return AS2 (cmp%W0,%1,%0);
}")
(define_expand "cmphi"
[(set (cc0)
(compare (match_operand:HI 0 "nonimmediate_operand" "")
(match_operand:HI 1 "general_operand" "")))]
""
"
{
if (GET_CODE (operands[0]) == MEM && GET_CODE (operands[1]) == MEM)
operands[0] = force_reg (HImode, operands[0]);
i386_compare_gen = gen_cmphi_1;
i386_compare_op0 = operands[0];
i386_compare_op1 = operands[1];
DONE;
}")
(define_insn "cmpqi_1"
[(set (cc0)
(compare (match_operand:QI 0 "nonimmediate_operand" "q,mq")
(match_operand:QI 1 "general_operand" "qm,nq")))]
"GET_CODE (operands[0]) != MEM || GET_CODE (operands[1]) != MEM"
"*
{
if (CONSTANT_P (operands[0]) || GET_CODE (operands[1]) == MEM)
{
cc_status.flags |= CC_REVERSED;
return AS2 (cmp%B0,%0,%1);
}
return AS2 (cmp%B0,%1,%0);
}")
(define_expand "cmpqi"
[(set (cc0)
(compare (match_operand:QI 0 "nonimmediate_operand" "")
(match_operand:QI 1 "general_operand" "")))]
""
"
{
if (GET_CODE (operands[0]) == MEM && GET_CODE (operands[1]) == MEM)
operands[0] = force_reg (QImode, operands[0]);
i386_compare_gen = gen_cmpqi_1;
i386_compare_op0 = operands[0];
i386_compare_op1 = operands[1];
DONE;
}")
;; These implement float point compares. For each of DFmode and
;; SFmode, there is the normal insn, and an insn where the second operand
;; is converted to the desired mode.
(define_insn ""
[(set (cc0)
(match_operator 2 "VOIDmode_compare_op"
[(match_operand:DF 0 "nonimmediate_operand" "f,fm")
(match_operand:DF 1 "nonimmediate_operand" "fm,f")]))
(clobber (match_scratch:HI 3 "=a,a"))]
"TARGET_80387
&& (GET_CODE (operands[0]) != MEM || GET_CODE (operands[1]) != MEM)"
"* return (char *) output_float_compare (insn, operands);")
(define_insn ""
[(set (cc0)
(match_operator 2 "VOIDmode_compare_op"
[(match_operand:DF 0 "register_operand" "f")
(float:DF
(match_operand:SI 1 "nonimmediate_operand" "rm"))]))
(clobber (match_scratch:HI 3 "=a"))]
"TARGET_80387"
"* return (char *) output_float_compare (insn, operands);")
(define_insn ""
[(set (cc0)
(match_operator 2 "VOIDmode_compare_op"
[(float:DF
(match_operand:SI 0 "nonimmediate_operand" "rm"))
(match_operand:DF 1 "register_operand" "f")]))
(clobber (match_scratch:HI 3 "=a"))]
"TARGET_80387"
"* return (char *) output_float_compare (insn, operands);")
(define_insn ""
[(set (cc0)
(match_operator 2 "VOIDmode_compare_op"
[(match_operand:DF 0 "register_operand" "f")
(float_extend:DF
(match_operand:SF 1 "nonimmediate_operand" "fm"))]))
(clobber (match_scratch:HI 3 "=a"))]
"TARGET_80387"
"* return (char *) output_float_compare (insn, operands);")
(define_insn ""
[(set (cc0)
(match_operator 2 "VOIDmode_compare_op"
[(float_extend:DF
(match_operand:SF 0 "nonimmediate_operand" "fm"))
(match_operand:DF 1 "register_operand" "f")]))
(clobber (match_scratch:HI 3 "=a"))]
"TARGET_80387"
"* return (char *) output_float_compare (insn, operands);")
(define_insn ""
[(set (cc0)
(compare:CCFPEQ (match_operand:DF 0 "register_operand" "f")
(match_operand:DF 1 "register_operand" "f")))
(clobber (match_scratch:HI 2 "=a"))]
"TARGET_80387"
"* return (char *) output_float_compare (insn, operands);")
;; These two insns will never be generated by combine due to the mode of
;; the COMPARE.
;(define_insn ""
; [(set (cc0)
; (compare:CCFPEQ (match_operand:DF 0 "register_operand" "f")
; (float_extend:DF
; (match_operand:SF 1 "register_operand" "f"))))
; (clobber (match_scratch:HI 2 "=a"))]
; "TARGET_80387"
; "* return (char *) output_float_compare (insn, operands);")
;
;(define_insn ""
; [(set (cc0)
; (compare:CCFPEQ (float_extend:DF
; (match_operand:SF 0 "register_operand" "f"))
; (match_operand:DF 1 "register_operand" "f")))
; (clobber (match_scratch:HI 2 "=a"))]
; "TARGET_80387"
; "* return (char *) output_float_compare (insn, operands);")
(define_insn "cmpsf_cc_1"
[(set (cc0)
(match_operator 2 "VOIDmode_compare_op"
[(match_operand:SF 0 "nonimmediate_operand" "f,fm")
(match_operand:SF 1 "nonimmediate_operand" "fm,f")]))
(clobber (match_scratch:HI 3 "=a,a"))]
"TARGET_80387
&& (GET_CODE (operands[0]) != MEM || GET_CODE (operands[1]) != MEM)"
"* return (char *) output_float_compare (insn, operands);")
(define_insn ""
[(set (cc0)
(match_operator 2 "VOIDmode_compare_op"
[(match_operand:SF 0 "register_operand" "f")
(float:SF
(match_operand:SI 1 "nonimmediate_operand" "rm"))]))
(clobber (match_scratch:HI 3 "=a"))]
"TARGET_80387"
"* return (char *) output_float_compare (insn, operands);")
(define_insn ""
[(set (cc0)
(match_operator 2 "VOIDmode_compare_op"
[(float:SF
(match_operand:SI 0 "nonimmediate_operand" "rm"))
(match_operand:SF 1 "register_operand" "f")]))
(clobber (match_scratch:HI 3 "=a"))]
"TARGET_80387"
"* return (char *) output_float_compare (insn, operands);")
(define_insn ""
[(set (cc0)
(compare:CCFPEQ (match_operand:SF 0 "register_operand" "f")
(match_operand:SF 1 "register_operand" "f")))
(clobber (match_scratch:HI 2 "=a"))]
"TARGET_80387"
"* return (char *) output_float_compare (insn, operands);")
(define_expand "cmpdf"
[(set (cc0)
(compare (match_operand:DF 0 "register_operand" "")
(match_operand:DF 1 "nonimmediate_operand" "")))]
"TARGET_80387"
"
{
i386_compare_gen = gen_cmpdf_cc;
i386_compare_gen_eq = gen_cmpdf_ccfpeq;
i386_compare_op0 = operands[0];
i386_compare_op1 = operands[1];
DONE;
}")
(define_expand "cmpsf"
[(set (cc0)
(compare (match_operand:SF 0 "register_operand" "")
(match_operand:SF 1 "nonimmediate_operand" "")))]
"TARGET_80387"
"
{
i386_compare_gen = gen_cmpsf_cc;
i386_compare_gen_eq = gen_cmpsf_ccfpeq;
i386_compare_op0 = operands[0];
i386_compare_op1 = operands[1];
DONE;
}")
(define_expand "cmpdf_cc"
[(parallel [(set (cc0)
(compare (match_operand:DF 0 "register_operand" "")
(match_operand:DF 1 "register_operand" "")))
(clobber (match_scratch:HI 2 ""))])]
"TARGET_80387"
"")
(define_expand "cmpdf_ccfpeq"
[(parallel [(set (cc0)
(compare:CCFPEQ (match_operand:DF 0 "register_operand" "")
(match_operand:DF 1 "register_operand" "")))
(clobber (match_scratch:HI 2 ""))])]
"TARGET_80387"
"
{
if (! register_operand (operands[1], DFmode))
operands[1] = copy_to_mode_reg (DFmode, operands[1]);
}")
(define_expand "cmpsf_cc"
[(parallel [(set (cc0)
(compare (match_operand:SF 0 "register_operand" "")
(match_operand:SF 1 "register_operand" "")))
(clobber (match_scratch:HI 2 ""))])]
"TARGET_80387"
"")
(define_expand "cmpsf_ccfpeq"
[(parallel [(set (cc0)
(compare:CCFPEQ (match_operand:SF 0 "register_operand" "")
(match_operand:SF 1 "register_operand" "")))
(clobber (match_scratch:HI 2 ""))])]
"TARGET_80387"
"
{
if (! register_operand (operands[1], SFmode))
operands[1] = copy_to_mode_reg (SFmode, operands[1]);
}")
;; logical compare
(define_insn ""
[(set (cc0)
(and:SI (match_operand:SI 0 "general_operand" "%ro")
(match_operand:SI 1 "general_operand" "ri")))]
""
"*
{
/* For small integers, we may actually use testb. */
if (GET_CODE (operands[1]) == CONST_INT
&& ! (GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))
&& (! REG_P (operands[0]) || QI_REG_P (operands[0])))
{
/* We may set the sign bit spuriously. */
if ((INTVAL (operands[1]) & ~0xff) == 0)
{
cc_status.flags |= CC_NOT_NEGATIVE;
return AS2 (test%B0,%1,%b0);
}
if ((INTVAL (operands[1]) & ~0xff00) == 0)
{
cc_status.flags |= CC_NOT_NEGATIVE;
operands[1] = GEN_INT (INTVAL (operands[1]) >> 8);
if (QI_REG_P (operands[0]))
return AS2 (test%B0,%1,%h0);
else
{
operands[0] = adj_offsettable_operand (operands[0], 1);
return AS2 (test%B0,%1,%b0);
}
}
if (GET_CODE (operands[0]) == MEM
&& (INTVAL (operands[1]) & ~0xff0000) == 0)
{
cc_status.flags |= CC_NOT_NEGATIVE;
operands[1] = GEN_INT (INTVAL (operands[1]) >> 16);
operands[0] = adj_offsettable_operand (operands[0], 2);
return AS2 (test%B0,%1,%b0);
}
if (GET_CODE (operands[0]) == MEM
&& (INTVAL (operands[1]) & ~0xff000000) == 0)
{
operands[1] = GEN_INT ((INTVAL (operands[1]) >> 24) & 0xff);
operands[0] = adj_offsettable_operand (operands[0], 3);
return AS2 (test%B0,%1,%b0);
}
}
if (CONSTANT_P (operands[1]) || GET_CODE (operands[0]) == MEM)
return AS2 (test%L0,%1,%0);
return AS2 (test%L1,%0,%1);
}")
(define_insn ""
[(set (cc0)
(and:HI (match_operand:HI 0 "general_operand" "%ro")
(match_operand:HI 1 "general_operand" "ri")))]
""
"*
{
if (GET_CODE (operands[1]) == CONST_INT
&& ! (GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))
&& (! REG_P (operands[0]) || QI_REG_P (operands[0])))
{
if ((INTVAL (operands[1]) & 0xff00) == 0)
{
/* ??? This might not be necessary. */
if (INTVAL (operands[1]) & 0xffff0000)
operands[1] = GEN_INT (INTVAL (operands[1]) & 0xff);
/* We may set the sign bit spuriously. */
cc_status.flags |= CC_NOT_NEGATIVE;
return AS2 (test%B0,%1,%b0);
}
if ((INTVAL (operands[1]) & 0xff) == 0)
{
operands[1] = GEN_INT ((INTVAL (operands[1]) >> 8) & 0xff);
if (QI_REG_P (operands[0]))
return AS2 (test%B0,%1,%h0);
else
{
operands[0] = adj_offsettable_operand (operands[0], 1);
return AS2 (test%B0,%1,%b0);
}
}
}
if (CONSTANT_P (operands[1]) || GET_CODE (operands[0]) == MEM)
return AS2 (test%W0,%1,%0);
return AS2 (test%W1,%0,%1);
}")
(define_insn ""
[(set (cc0)
(and:QI (match_operand:QI 0 "general_operand" "%qm")
(match_operand:QI 1 "general_operand" "qi")))]
""
"*
{
if (CONSTANT_P (operands[1]) || GET_CODE (operands[0]) == MEM)
return AS2 (test%B0,%1,%0);
return AS2 (test%B1,%0,%1);
}")
;; move instructions.
;; There is one for each machine mode,
;; and each is preceded by a corresponding push-insn pattern
;; (since pushes are not general_operands on the 386).
(define_insn ""
[(set (match_operand:SI 0 "push_operand" "=<")
(match_operand:SI 1 "general_operand" "g"))]
"! TARGET_486"
"push%L0 %1")
;; On a 486, it is faster to move MEM to a REG and then push, rather than
;; push MEM directly.
(define_insn ""
[(set (match_operand:SI 0 "push_operand" "=<")
(match_operand:SI 1 "general_operand" "ri"))]
"TARGET_486"
"push%L0 %1")
;; General case of fullword move.
;; If generating PIC code and operands[1] is a symbolic CONST, emit a
;; move to get the address of the symbolic object from the GOT.
(define_expand "movsi"
[(set (match_operand:SI 0 "general_operand" "")
(match_operand:SI 1 "general_operand" ""))]
""
"
{
extern int flag_pic;
if (flag_pic && SYMBOLIC_CONST (operands[1]))
emit_pic_move (operands, SImode);
}")
;; On i486, incl reg is faster than movl $1,reg.
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=g,r")
(match_operand:SI 1 "general_operand" "ri,m"))]
""
"*
{
rtx link;
if (operands[1] == const0_rtx && REG_P (operands[0]))
return AS2 (xor%L0,%0,%0);
if (operands[1] == const1_rtx
&& (link = find_reg_note (insn, REG_WAS_0, 0))
/* Make sure the insn that stored the 0 is still present. */
&& ! INSN_DELETED_P (XEXP (link, 0))
&& GET_CODE (XEXP (link, 0)) != NOTE
/* Make sure cross jumping didn't happen here. */
&& no_labels_between_p (XEXP (link, 0), insn)
/* Make sure the reg hasn't been clobbered. */
&& ! reg_set_between_p (operands[0], XEXP (link, 0), insn))
/* Fastest way to change a 0 to a 1. */
return AS1 (inc%L0,%0);
return AS2 (mov%L0,%1,%0);
}")
(define_insn ""
[(set (match_operand:HI 0 "push_operand" "=<")
(match_operand:HI 1 "general_operand" "g"))]
""
"push%W0 %1")
;; On i486, an incl and movl are both faster than incw and movw.
(define_insn "movhi"
[(set (match_operand:HI 0 "general_operand" "=g,r")
(match_operand:HI 1 "general_operand" "ri,m"))]
""
"*
{
rtx link;
if (REG_P (operands[0]) && operands[1] == const0_rtx)
return AS2 (xor%L0,%k0,%k0);
if (REG_P (operands[0]) && operands[1] == const1_rtx
&& (link = find_reg_note (insn, REG_WAS_0, 0))
/* Make sure the insn that stored the 0 is still present. */
&& ! INSN_DELETED_P (XEXP (link, 0))
&& GET_CODE (XEXP (link, 0)) != NOTE
/* Make sure cross jumping didn't happen here. */
&& no_labels_between_p (XEXP (link, 0), insn)
/* Make sure the reg hasn't been clobbered. */
&& ! reg_set_between_p (operands[0], XEXP (link, 0), insn))
/* Fastest way to change a 0 to a 1. */
return AS1 (inc%L0,%k0);
if (REG_P (operands[0]))
{
if (REG_P (operands[1]))
return AS2 (mov%L0,%k1,%k0);
else if (CONSTANT_P (operands[1]))
return AS2 (mov%L0,%1,%k0);
}
return AS2 (mov%W0,%1,%0);
}")
(define_insn "movstricthi"
[(set (strict_low_part (match_operand:HI 0 "general_operand" "+g,r"))
(match_operand:HI 1 "general_operand" "ri,m"))]
""
"*
{
rtx link;
if (operands[1] == const0_rtx && REG_P (operands[0]))
return AS2 (xor%W0,%0,%0);
if (operands[1] == const1_rtx
&& (link = find_reg_note (insn, REG_WAS_0, 0))
/* Make sure the insn that stored the 0 is still present. */
&& ! INSN_DELETED_P (XEXP (link, 0))
&& GET_CODE (XEXP (link, 0)) != NOTE
/* Make sure cross jumping didn't happen here. */
&& no_labels_between_p (XEXP (link, 0), insn)
/* Make sure the reg hasn't been clobbered. */
&& ! reg_set_between_p (operands[0], XEXP (link, 0), insn))
/* Fastest way to change a 0 to a 1. */
return AS1 (inc%W0,%0);
return AS2 (mov%W0,%1,%0);
}")
;; emit_push_insn when it calls move_by_pieces
;; requires an insn to "push a byte".
;; But actually we use pushw, which has the effect of rounding
;; the amount pushed up to a halfword.
(define_insn ""
[(set (match_operand:QI 0 "push_operand" "=<")
(match_operand:QI 1 "general_operand" "q"))]
""
"*
{
operands[1] = gen_rtx (REG, HImode, REGNO (operands[1]));
return AS1 (push%W0,%1);
}")
;; On i486, incb reg is faster than movb $1,reg.
;; ??? Do a recognizer for zero_extract that looks just like this, but reads
;; or writes %ah, %bh, %ch, %dh.
(define_insn "movqi"
[(set (match_operand:QI 0 "general_operand" "=q,*r,qm")
(match_operand:QI 1 "general_operand" "*g,q,qn"))]
""
"*
{
rtx link;
if (operands[1] == const0_rtx && REG_P (operands[0]))
return AS2 (xor%B0,%0,%0);
if (operands[1] == const1_rtx
&& (link = find_reg_note (insn, REG_WAS_0, 0))
/* Make sure the insn that stored the 0 is still present. */
&& ! INSN_DELETED_P (XEXP (link, 0))
&& GET_CODE (XEXP (link, 0)) != NOTE
/* Make sure cross jumping didn't happen here. */
&& no_labels_between_p (XEXP (link, 0), insn)
/* Make sure the reg hasn't been clobbered. */
&& ! reg_set_between_p (operands[0], XEXP (link, 0), insn))
/* Fastest way to change a 0 to a 1. */
return AS1 (inc%B0,%0);
/* If mov%B0 isn't allowed for one of these regs, use mov%L0. */
if (NON_QI_REG_P (operands[0]) || NON_QI_REG_P (operands[1]))
return (AS2 (mov%L0,%k1,%k0));
return (AS2 (mov%B0,%1,%0));
}")
;; If it becomes necessary to support movstrictqi into %esi or %edi,
;; use the insn sequence:
;;
;; shrdl $8,srcreg,dstreg
;; rorl $24,dstreg
;;
;; If operands[1] is a constant, then an andl/orl sequence would be
;; faster.
(define_insn "movstrictqi"
[(set (strict_low_part (match_operand:QI 0 "general_operand" "+q,qm"))
(match_operand:QI 1 "general_operand" "*g,qn"))]
""
"*
{
rtx link;
if (operands[1] == const0_rtx && REG_P (operands[0]))
return AS2 (xor%B0,%0,%0);
if (operands[1] == const1_rtx
&& (link = find_reg_note (insn, REG_WAS_0, 0))
/* Make sure the insn that stored the 0 is still present. */
&& ! INSN_DELETED_P (XEXP (link, 0))
&& GET_CODE (XEXP (link, 0)) != NOTE
/* Make sure cross jumping didn't happen here. */
&& no_labels_between_p (XEXP (link, 0), insn)
/* Make sure the reg hasn't been clobbered. */
&& ! reg_set_between_p (operands[0], XEXP (link, 0), insn))
/* Fastest way to change a 0 to a 1. */
return AS1 (inc%B0,%0);
/* If mov%B0 isn't allowed for one of these regs, use mov%W0. */
if (NON_QI_REG_P (operands[0]) || NON_QI_REG_P (operands[1]))
{
abort ();
return (AS2 (mov%L0,%k1,%k0));
}
return AS2 (mov%B0,%1,%0);
}")
(define_insn ""
[(set (match_operand:SF 0 "push_operand" "=<,<")
(match_operand:SF 1 "general_operand" "gF,f"))]
""
"*
{
if (STACK_REG_P (operands[1]))
{
rtx xops[3];
if (! STACK_TOP_P (operands[1]))
abort ();
xops[0] = AT_SP (SFmode);
xops[1] = GEN_INT (4);
xops[2] = stack_pointer_rtx;
output_asm_insn (AS2 (sub%L2,%1,%2), xops);
if (find_regno_note (insn, REG_DEAD, FIRST_STACK_REG))
output_asm_insn (AS1 (fstp%S0,%0), xops);
else
output_asm_insn (AS1 (fst%S0,%0), xops);
RET;
}
return AS1 (push%L1,%1);
}")
;; Allow MEM-MEM moves before reload. The reload class for such a
;; move will be ALL_REGS. PREFERRED_RELOAD_CLASS will narrow this to
;; GENERAL_REGS. For the purposes of regclass, prefer FLOAT_REGS.
(define_insn "movsf"
[(set (match_operand:SF 0 "general_operand" "=*rfm,*rf,f,!*rm")
(match_operand:SF 1 "general_operand" "*rf,*rfm,fG,fF"))]
""
"*
{
int stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0;
/* First handle a `pop' insn or a `fld %st(0)' */
if (STACK_TOP_P (operands[0]) && STACK_TOP_P (operands[1]))
{
if (stack_top_dies)
return AS1 (fstp,%y0);
else
return AS1 (fld,%y0);
}
/* Handle a transfer between the 387 and a 386 register */
if (STACK_TOP_P (operands[0]) && NON_STACK_REG_P (operands[1]))
{
output_op_from_reg (operands[1], AS1 (fld%z0,%y1));
RET;
}
if (STACK_TOP_P (operands[1]) && NON_STACK_REG_P (operands[0]))
{
output_to_reg (operands[0], stack_top_dies);
RET;
}
/* Handle other kinds of writes from the 387 */
if (STACK_TOP_P (operands[1]))
{
if (stack_top_dies)
return AS1 (fstp%z0,%y0);
else
return AS1 (fst%z0,%y0);
}
/* Handle other kinds of reads to the 387 */
if (STACK_TOP_P (operands[0]) && GET_CODE (operands[1]) == CONST_DOUBLE)
return (char *) output_move_const_single (operands);
if (STACK_TOP_P (operands[0]))
return AS1 (fld%z1,%y1);
/* Handle all SFmode moves not involving the 387 */
return (char *) singlemove_string (operands);
}")
;;should change to handle the memory operands[1] without doing df push..
(define_insn ""
[(set (match_operand:DF 0 "push_operand" "=<,<")
(match_operand:DF 1 "general_operand" "gF,f"))]
""
"*
{
if (STACK_REG_P (operands[1]))
{
rtx xops[3];
xops[0] = AT_SP (SFmode);
xops[1] = GEN_INT (8);
xops[2] = stack_pointer_rtx;
output_asm_insn (AS2 (sub%L2,%1,%2), xops);
if (find_regno_note (insn, REG_DEAD, FIRST_STACK_REG))
output_asm_insn (AS1 (fstp%Q0,%0), xops);
else
output_asm_insn (AS1 (fst%Q0,%0), xops);
RET;
}
else
return (char *) output_move_double (operands);
}")
(define_insn "swapdf"
[(set (match_operand:DF 0 "register_operand" "f")
(match_operand:DF 1 "register_operand" "f"))
(set (match_dup 1)
(match_dup 0))]
""
"*
{
if (STACK_TOP_P (operands[0]))
return AS1 (fxch,%1);
else
return AS1 (fxch,%0);
}")
;; Allow MEM-MEM moves before reload. The reload class for such a
;; move will be ALL_REGS. PREFERRED_RELOAD_CLASS will narrow this to
;; GENERAL_REGS. For the purposes of regclass, prefer FLOAT_REGS.
(define_insn "movdf"
[(set (match_operand:DF 0 "general_operand" "=*rfm,*rf,f,!*rm")
(match_operand:DF 1 "general_operand" "*rf,*rfm,fG,fF"))]
""
"*
{
int stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0;
/* First handle a `pop' insn or a `fld %st(0)' */
if (STACK_TOP_P (operands[0]) && STACK_TOP_P (operands[1]))
{
if (stack_top_dies)
return AS1 (fstp,%y0);
else
return AS1 (fld,%y0);
}
/* Handle a transfer between the 387 and a 386 register */
if (STACK_TOP_P (operands[0]) && NON_STACK_REG_P (operands[1]))
{
output_op_from_reg (operands[1], AS1 (fld%z0,%y1));
RET;
}
if (STACK_TOP_P (operands[1]) && NON_STACK_REG_P (operands[0]))
{
output_to_reg (operands[0], stack_top_dies);
RET;
}
/* Handle other kinds of writes from the 387 */
if (STACK_TOP_P (operands[1]))
{
if (stack_top_dies)
return AS1 (fstp%z0,%y0);
else
return AS1 (fst%z0,%y0);
}
/* Handle other kinds of reads to the 387 */
if (STACK_TOP_P (operands[0]) && GET_CODE (operands[1]) == CONST_DOUBLE)
return (char *) output_move_const_single (operands);
if (STACK_TOP_P (operands[0]))
return AS1 (fld%z1,%y1);
/* Handle all DFmode moves not involving the 387 */
return (char *) output_move_double (operands);
}")
(define_insn ""
[(set (match_operand:DI 0 "push_operand" "=<")
(match_operand:DI 1 "general_operand" "roiF"))]
""
"*
{
return (char *) output_move_double (operands);
}")
(define_insn "movdi"
[(set (match_operand:DI 0 "general_operand" "=r,rm")
(match_operand:DI 1 "general_operand" "m,riF"))]
""
"*
{
return (char *) output_move_double (operands);
}")
;;- conversion instructions
;;- NONE
;;- zero extension instructions
;; See comments by `andsi' for when andl is faster than movzx.
(define_insn "zero_extendhisi2"
[(set (match_operand:SI 0 "general_operand" "=r")
(zero_extend:SI
(match_operand:HI 1 "nonimmediate_operand" "rm")))]
""
"*
{
if ((TARGET_486 || REGNO (operands[0]) == 0)
&& REG_P (operands[1]) && REGNO (operands[0]) == REGNO (operands[1]))
{
rtx xops[2];
xops[0] = operands[0];
xops[1] = GEN_INT (0xffff);
output_asm_insn (AS2 (and%L0,%1,%k0), xops);
RET;
}
#ifdef INTEL_SYNTAX
return AS2 (movzx,%1,%0);
#else
return AS2 (movz%W0%L0,%1,%0);
#endif
}")
(define_insn "zero_extendqihi2"
[(set (match_operand:HI 0 "general_operand" "=r")
(zero_extend:HI
(match_operand:QI 1 "nonimmediate_operand" "qm")))]
""
"*
{
if ((TARGET_486 || REGNO (operands[0]) == 0)
&& REG_P (operands[1]) && REGNO (operands[0]) == REGNO (operands[1]))
{
rtx xops[2];
xops[0] = operands[0];
xops[1] = GEN_INT (0xff);
output_asm_insn (AS2 (and%L0,%1,%k0), xops);
RET;
}
#ifdef INTEL_SYNTAX
return AS2 (movzx,%1,%0);
#else
return AS2 (movz%B0%W0,%1,%0);
#endif
}")
(define_insn "zero_extendqisi2"
[(set (match_operand:SI 0 "general_operand" "=r")
(zero_extend:SI
(match_operand:QI 1 "nonimmediate_operand" "qm")))]
""
"*
{
if ((TARGET_486 || REGNO (operands[0]) == 0)
&& REG_P (operands[1]) && REGNO (operands[0]) == REGNO (operands[1]))
{
rtx xops[2];
xops[0] = operands[0];
xops[1] = GEN_INT (0xff);
output_asm_insn (AS2 (and%L0,%1,%k0), xops);
RET;
}
#ifdef INTEL_SYNTAX
return AS2 (movzx,%1,%0);
#else
return AS2 (movz%B0%L0,%1,%0);
#endif
}")
(define_insn "zero_extendsidi2"
[(set (match_operand:DI 0 "register_operand" "=r")
(zero_extend:DI
(match_operand:SI 1 "register_operand" "0")))]
""
"*
{
operands[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
return AS2 (xor%L0,%0,%0);
}")
;;- sign extension instructions
(define_insn "extendsidi2"
[(set (match_operand:DI 0 "register_operand" "=r")
(sign_extend:DI
(match_operand:SI 1 "register_operand" "0")))]
""
"*
{
if (REGNO (operands[0]) == 0)
{
/* This used to be cwtl, but that extends HI to SI somehow. */
#ifdef INTEL_SYNTAX
return \"cdq\";
#else
return \"cltd\";
#endif
}
operands[1] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
output_asm_insn (AS2 (mov%L0,%0,%1), operands);
operands[0] = GEN_INT (31);
return AS2 (sar%L1,%0,%1);
}")
;; Note that the i386 programmers' manual says that the opcodes
;; are named movsx..., but the assembler on Unix does not accept that.
;; We use what the Unix assembler expects.
(define_insn "extendhisi2"
[(set (match_operand:SI 0 "general_operand" "=r")
(sign_extend:SI
(match_operand:HI 1 "nonimmediate_operand" "rm")))]
""
"*
{
if (REGNO (operands[0]) == 0
&& REG_P (operands[1]) && REGNO (operands[1]) == 0)
#ifdef INTEL_SYNTAX
return \"cwde\";
#else
return \"cwtl\";
#endif
#ifdef INTEL_SYNTAX
return AS2 (movsx,%1,%0);
#else
return AS2 (movs%W0%L0,%1,%0);
#endif
}")
(define_insn "extendqihi2"
[(set (match_operand:HI 0 "general_operand" "=r")
(sign_extend:HI
(match_operand:QI 1 "nonimmediate_operand" "qm")))]
""
"*
{
if (REGNO (operands[0]) == 0
&& REG_P (operands[1]) && REGNO (operands[1]) == 0)
return \"cbtw\";
#ifdef INTEL_SYNTAX
return AS2 (movsx,%1,%0);
#else
return AS2 (movs%B0%W0,%1,%0);
#endif
}")
(define_insn "extendqisi2"
[(set (match_operand:SI 0 "general_operand" "=r")
(sign_extend:SI
(match_operand:QI 1 "nonimmediate_operand" "qm")))]
""
"*
{
#ifdef INTEL_SYNTAX
return AS2 (movsx,%1,%0);
#else
return AS2 (movs%B0%L0,%1,%0);
#endif
}")
;; Conversions between float and double.
(define_insn "extendsfdf2"
[(set (match_operand:DF 0 "general_operand" "=fm,f")
(float_extend:DF
(match_operand:SF 1 "general_operand" "f,fm")))]
"TARGET_80387"
"*
{
int stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0;
if (NON_STACK_REG_P (operands[1]))
{
output_op_from_reg (operands[1], AS1 (fld%z0,%y1));
RET;
}
if (NON_STACK_REG_P (operands[0]))
{
output_to_reg (operands[0], stack_top_dies);
RET;
}
if (STACK_TOP_P (operands[0]))
return AS1 (fld%z1,%y1);
if (GET_CODE (operands[0]) == MEM)
{
if (stack_top_dies)
return AS1 (fstp%z0,%y0);
else
return AS1 (fst%z0,%y0);
}
abort ();
}")
(define_expand "truncdfsf2"
[(parallel [(set (match_operand:SF 0 "nonimmediate_operand" "")
(float_truncate:SF
(match_operand:DF 1 "register_operand" "")))
(clobber (match_dup 2))])]
"TARGET_80387"
"
{
operands[2] = (rtx) assign_386_stack_local (SFmode, 0);
}")
;; This cannot output into an f-reg because there is no way to be sure
;; of truncating in that case. Otherwise this is just like a simple move
;; insn. So we pretend we can output to a reg in order to get better
;; register preferencing, but we really use a stack slot.
(define_insn ""
[(set (match_operand:SF 0 "nonimmediate_operand" "=f,m")
(float_truncate:SF
(match_operand:DF 1 "register_operand" "0,f")))
(clobber (match_operand:SF 2 "memory_operand" "m,m"))]
"TARGET_80387"
"*
{
int stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0;
if (GET_CODE (operands[0]) == MEM)
{
if (stack_top_dies)
return AS1 (fstp%z0,%0);
else
return AS1 (fst%z0,%0);
}
else if (STACK_TOP_P (operands[0]))
{
output_asm_insn (AS1 (fstp%z2,%y2), operands);
return AS1 (fld%z2,%y2);
}
else
abort ();
}")
;; The 387 requires that the stack top dies after converting to DImode.
;; Represent an unsigned conversion from SImode to MODE_FLOAT by first
;; doing a signed conversion to DImode, and then taking just the low
;; part.
(define_expand "fixuns_truncdfsi2"
[(set (match_dup 4)
(match_operand:DF 1 "register_operand" ""))
(parallel [(set (match_dup 2)
(fix:DI (fix:DF (match_dup 4))))
(clobber (match_dup 4))
(clobber (match_dup 5))
(clobber (match_dup 6))
(clobber (match_scratch:SI 7 ""))])
(set (match_operand:SI 0 "general_operand" "")
(match_dup 3))]
"TARGET_80387"
"
{
operands[2] = gen_reg_rtx (DImode);
operands[3] = gen_lowpart (SImode, operands[2]);
operands[4] = gen_reg_rtx (DFmode);
operands[5] = (rtx) assign_386_stack_local (SImode, 0);
operands[6] = (rtx) assign_386_stack_local (SImode, 1);
}")
(define_expand "fixuns_truncsfsi2"
[(set (match_dup 4)
(match_operand:SF 1 "register_operand" ""))
(parallel [(set (match_dup 2)
(fix:DI (fix:SF (match_dup 4))))
(clobber (match_dup 4))
(clobber (match_dup 5))
(clobber (match_dup 6))
(clobber (match_scratch:SI 7 ""))])
(set (match_operand:SI 0 "general_operand" "")
(match_dup 3))]
"TARGET_80387"
"
{
operands[2] = gen_reg_rtx (DImode);
operands[3] = gen_lowpart (SImode, operands[2]);
operands[4] = gen_reg_rtx (SFmode);
operands[5] = (rtx) assign_386_stack_local (SImode, 0);
operands[6] = (rtx) assign_386_stack_local (SImode, 1);
}")
;; Signed conversion to DImode.
(define_expand "fix_truncdfdi2"
[(set (match_dup 2)
(match_operand:DF 1 "register_operand" ""))
(parallel [(set (match_operand:DI 0 "general_operand" "")
(fix:DI (fix:DF (match_dup 2))))
(clobber (match_dup 2))
(clobber (match_dup 3))
(clobber (match_dup 4))
(clobber (match_scratch:SI 5 ""))])]
"TARGET_80387"
"
{
operands[1] = copy_to_mode_reg (DFmode, operands[1]);
operands[2] = gen_reg_rtx (DFmode);
operands[3] = (rtx) assign_386_stack_local (SImode, 0);
operands[4] = (rtx) assign_386_stack_local (SImode, 1);
}")
(define_expand "fix_truncsfdi2"
[(set (match_dup 2)
(match_operand:SF 1 "register_operand" ""))
(parallel [(set (match_operand:DI 0 "general_operand" "")
(fix:DI (fix:SF (match_dup 2))))
(clobber (match_dup 2))
(clobber (match_dup 3))
(clobber (match_dup 4))
(clobber (match_scratch:SI 5 ""))])]
"TARGET_80387"
"
{
operands[1] = copy_to_mode_reg (SFmode, operands[1]);
operands[2] = gen_reg_rtx (SFmode);
operands[3] = (rtx) assign_386_stack_local (SImode, 0);
operands[4] = (rtx) assign_386_stack_local (SImode, 1);
}")
;; These match a signed conversion of either DFmode or SFmode to DImode.
(define_insn ""
[(set (match_operand:DI 0 "general_operand" "=rm")
(fix:DI (fix:DF (match_operand:DF 1 "register_operand" "f"))))
(clobber (match_dup 1))
(clobber (match_operand:SI 2 "memory_operand" "m"))
(clobber (match_operand:SI 3 "memory_operand" "m"))
(clobber (match_scratch:SI 4 "=&q"))]
"TARGET_80387"
"* return (char *) output_fix_trunc (insn, operands);")
(define_insn ""
[(set (match_operand:DI 0 "general_operand" "=rm")
(fix:DI (fix:SF (match_operand:SF 1 "register_operand" "f"))))
(clobber (match_dup 1))
(clobber (match_operand:SI 2 "memory_operand" "m"))
(clobber (match_operand:SI 3 "memory_operand" "m"))
(clobber (match_scratch:SI 4 "=&q"))]
"TARGET_80387"
"* return (char *) output_fix_trunc (insn, operands);")
;; Signed MODE_FLOAT conversion to SImode.
(define_expand "fix_truncdfsi2"
[(parallel [(set (match_operand:SI 0 "general_operand" "")
(fix:SI
(fix:DF (match_operand:DF 1 "register_operand" ""))))
(clobber (match_dup 2))
(clobber (match_dup 3))
(clobber (match_scratch:SI 4 ""))])]
"TARGET_80387"
"
{
operands[2] = (rtx) assign_386_stack_local (SImode, 0);
operands[3] = (rtx) assign_386_stack_local (SImode, 1);
}")
(define_expand "fix_truncsfsi2"
[(parallel [(set (match_operand:SI 0 "general_operand" "")
(fix:SI
(fix:SF (match_operand:SF 1 "register_operand" ""))))
(clobber (match_dup 2))
(clobber (match_dup 3))
(clobber (match_scratch:SI 4 ""))])]
"TARGET_80387"
"
{
operands[2] = (rtx) assign_386_stack_local (SImode, 0);
operands[3] = (rtx) assign_386_stack_local (SImode, 1);
}")
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=rm")
(fix:SI (fix:DF (match_operand:DF 1 "register_operand" "f"))))
(clobber (match_operand:SI 2 "memory_operand" "m"))
(clobber (match_operand:SI 3 "memory_operand" "m"))
(clobber (match_scratch:SI 4 "=&q"))]
"TARGET_80387"
"* return (char *) output_fix_trunc (insn, operands);")
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=rm")
(fix:SI (fix:SF (match_operand:SF 1 "register_operand" "f"))))
(clobber (match_operand:SI 2 "memory_operand" "m"))
(clobber (match_operand:SI 3 "memory_operand" "m"))
(clobber (match_scratch:SI 4 "=&q"))]
"TARGET_80387"
"* return (char *) output_fix_trunc (insn, operands);")
;; Conversion between fixed point and floating point.
;; The actual pattern that matches these is at the end of this file.
;; ??? Possibly represent floatunssidf2 here in gcc2.
(define_expand "floatsisf2"
[(set (match_operand:SF 0 "register_operand" "")
(float:SF (match_operand:SI 1 "nonimmediate_operand" "")))]
"TARGET_80387"
"")
(define_expand "floatdisf2"
[(set (match_operand:SF 0 "register_operand" "")
(float:SF (match_operand:DI 1 "nonimmediate_operand" "")))]
"TARGET_80387"
"")
(define_expand "floatsidf2"
[(set (match_operand:DF 0 "register_operand" "")
(float:DF (match_operand:SI 1 "nonimmediate_operand" "")))]
"TARGET_80387"
"")
(define_expand "floatdidf2"
[(set (match_operand:DF 0 "register_operand" "")
(float:DF (match_operand:DI 1 "nonimmediate_operand" "")))]
"TARGET_80387"
"")
;; This will convert from SImode or DImode to MODE_FLOAT.
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=f")
(float:DF (match_operand:DI 1 "nonimmediate_operand" "rm")))]
"TARGET_80387"
"*
{
if (NON_STACK_REG_P (operands[1]))
{
output_op_from_reg (operands[1], AS1 (fild%z0,%1));
RET;
}
else if (GET_CODE (operands[1]) == MEM)
return AS1 (fild%z1,%1);
else
abort ();
}")
(define_insn ""
[(set (match_operand:SF 0 "register_operand" "=f")
(float:SF (match_operand:DI 1 "nonimmediate_operand" "rm")))]
"TARGET_80387"
"*
{
if (NON_STACK_REG_P (operands[1]))
{
output_op_from_reg (operands[1], AS1 (fild%z0,%1));
RET;
}
else if (GET_CODE (operands[1]) == MEM)
return AS1 (fild%z1,%1);
else
abort ();
}")
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=f")
(float:DF (match_operand:SI 1 "nonimmediate_operand" "rm")))]
"TARGET_80387"
"*
{
if (NON_STACK_REG_P (operands[1]))
{
output_op_from_reg (operands[1], AS1 (fild%z0,%1));
RET;
}
else if (GET_CODE (operands[1]) == MEM)
return AS1 (fild%z1,%1);
else
abort ();
}")
(define_insn ""
[(set (match_operand:SF 0 "register_operand" "=f")
(float:SF (match_operand:SI 1 "nonimmediate_operand" "rm")))]
"TARGET_80387"
"*
{
if (NON_STACK_REG_P (operands[1]))
{
output_op_from_reg (operands[1], AS1 (fild%z0,%1));
RET;
}
else if (GET_CODE (operands[1]) == MEM)
return AS1 (fild%z1,%1);
else
abort ();
}")
;;- add instructions
(define_insn "adddi3"
[(set (match_operand:DI 0 "general_operand" "=&r,ro")
(plus:DI (match_operand:DI 1 "general_operand" "%0,0")
(match_operand:DI 2 "general_operand" "o,riF")))]
""
"*
{
rtx low[3], high[3];
CC_STATUS_INIT;
split_di (operands, 3, low, high);
if (GET_CODE (low[2]) != CONST_INT || INTVAL (low[2]) != 0)
{
output_asm_insn (AS2 (add%L0,%2,%0), low);
output_asm_insn (AS2 (adc%L0,%2,%0), high);
}
else
output_asm_insn (AS2 (add%L0,%2,%0), high);
RET;
}")
;; On a 486, it is faster to do movl/addl than to do a single leal if
;; operands[1] and operands[2] are both registers.
(define_insn "addsi3"
[(set (match_operand:SI 0 "general_operand" "=?r,rm,r")
(plus:SI (match_operand:SI 1 "general_operand" "%r,0,0")
(match_operand:SI 2 "general_operand" "ri,ri,rm")))]
""
"*
{
if (REG_P (operands[0]) && REGNO (operands[0]) != REGNO (operands[1]))
{
if (REG_P (operands[2]) && REGNO (operands[0]) == REGNO (operands[2]))
return AS2 (add%L0,%1,%0);
if (! TARGET_486 || ! REG_P (operands[2]))
{
CC_STATUS_INIT;
if (operands[2] == stack_pointer_rtx)
{
rtx temp;
temp = operands[1];
operands[1] = operands[2];
operands[2] = temp;
}
if (operands[2] != stack_pointer_rtx)
{
operands[1] = SET_SRC (PATTERN (insn));
return AS2 (lea%L0,%a1,%0);
}
}
output_asm_insn (AS2 (mov%L0,%1,%0), operands);
}
if (operands[2] == const1_rtx)
return AS1 (inc%L0,%0);
if (operands[2] == constm1_rtx)
return AS1 (dec%L0,%0);
return AS2 (add%L0,%2,%0);
}")
;; ??? `lea' here, for three operand add? If leaw is used, only %bx,
;; %si and %di can appear in SET_SRC, and output_asm_insn might not be
;; able to handle the operand. But leal always works?
(define_insn "addhi3"
[(set (match_operand:HI 0 "general_operand" "=rm,r")
(plus:HI (match_operand:HI 1 "general_operand" "%0,0")
(match_operand:HI 2 "general_operand" "ri,rm")))]
""
"*
{
if (operands[2] == const1_rtx)
return AS1 (inc%W0,%0);
if (operands[2] == constm1_rtx)
return AS1 (dec%W0,%0);
return AS2 (add%W0,%2,%0);
}")
(define_insn "addqi3"
[(set (match_operand:QI 0 "general_operand" "=qm,q")
(plus:QI (match_operand:QI 1 "general_operand" "%0,0")
(match_operand:QI 2 "general_operand" "qn,qmn")))]
""
"*
{
if (operands[2] == const1_rtx)
return AS1 (inc%B0,%0);
if (operands[2] == constm1_rtx)
return AS1 (dec%B0,%0);
return AS2 (add%B0,%2,%0);
}")
;Lennart Augustsson <augustss@cs.chalmers.se>
;says this pattern just makes slower code:
; pushl %ebp
; addl $-80,(%esp)
;instead of
; leal -80(%ebp),%eax
; pushl %eax
;
;(define_insn ""
; [(set (match_operand:SI 0 "push_operand" "=<")
; (plus:SI (match_operand:SI 1 "general_operand" "%r")
; (match_operand:SI 2 "general_operand" "ri")))]
; ""
; "*
;{
; rtx xops[4];
; xops[0] = operands[0];
; xops[1] = operands[1];
; xops[2] = operands[2];
; xops[3] = gen_rtx (MEM, SImode, stack_pointer_rtx);
; output_asm_insn (\"push%z1 %1\", xops);
; output_asm_insn (AS2 (add%z3,%2,%3), xops);
; RET;
;}")
;; addsi3 is faster, so put this after.
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(match_operand:QI 1 "address_operand" "p"))]
""
"*
{
CC_STATUS_INIT;
/* Adding a constant to a register is faster with an add. */
/* ??? can this ever happen? */
if (GET_CODE (operands[1]) == PLUS
&& GET_CODE (XEXP (operands[1], 1)) == CONST_INT
&& rtx_equal_p (operands[0], XEXP (operands[1], 0)))
{
operands[1] = XEXP (operands[1], 1);
if (operands[1] == const1_rtx)
return AS1 (inc%L0,%0);
if (operands[1] == constm1_rtx)
return AS1 (dec%L0,%0);
return AS2 (add%L0,%1,%0);
}
return AS2 (lea%L0,%a1,%0);
}")
;; The patterns that match these are at the end of this file.
(define_expand "adddf3"
[(set (match_operand:DF 0 "register_operand" "")
(plus:DF (match_operand:DF 1 "nonimmediate_operand" "")
(match_operand:DF 2 "nonimmediate_operand" "")))]
"TARGET_80387"
"")
(define_expand "addsf3"
[(set (match_operand:SF 0 "register_operand" "")
(plus:SF (match_operand:SF 1 "nonimmediate_operand" "")
(match_operand:SF 2 "nonimmediate_operand" "")))]
"TARGET_80387"
"")
;;- subtract instructions
(define_insn "subdi3"
[(set (match_operand:DI 0 "general_operand" "=&r,ro")
(minus:DI (match_operand:DI 1 "general_operand" "0,0")
(match_operand:DI 2 "general_operand" "o,riF")))]
""
"*
{
rtx low[3], high[3];
CC_STATUS_INIT;
split_di (operands, 3, low, high);
if (GET_CODE (low[2]) != CONST_INT || INTVAL (low[2]) != 0)
{
output_asm_insn (AS2 (sub%L0,%2,%0), low);
output_asm_insn (AS2 (sbb%L0,%2,%0), high);
}
else
output_asm_insn (AS2 (sub%L0,%2,%0), high);
RET;
}")
(define_insn "subsi3"
[(set (match_operand:SI 0 "general_operand" "=rm,r")
(minus:SI (match_operand:SI 1 "general_operand" "0,0")
(match_operand:SI 2 "general_operand" "ri,rm")))]
""
"* return AS2 (sub%L0,%2,%0);")
(define_insn "subhi3"
[(set (match_operand:HI 0 "general_operand" "=rm,r")
(minus:HI (match_operand:HI 1 "general_operand" "0,0")
(match_operand:HI 2 "general_operand" "ri,rm")))]
""
"* return AS2 (sub%W0,%2,%0);")
(define_insn "subqi3"
[(set (match_operand:QI 0 "general_operand" "=qm,q")
(minus:QI (match_operand:QI 1 "general_operand" "0,0")
(match_operand:QI 2 "general_operand" "qn,qmn")))]
""
"* return AS2 (sub%B0,%2,%0);")
;; The patterns that match these are at the end of this file.
(define_expand "subdf3"
[(set (match_operand:DF 0 "register_operand" "")
(minus:DF (match_operand:DF 1 "nonimmediate_operand" "")
(match_operand:DF 2 "nonimmediate_operand" "")))]
"TARGET_80387"
"")
(define_expand "subsf3"
[(set (match_operand:SF 0 "register_operand" "")
(minus:SF (match_operand:SF 1 "nonimmediate_operand" "")
(match_operand:SF 2 "nonimmediate_operand" "")))]
"TARGET_80387"
"")
;;- multiply instructions
;(define_insn "mulqi3"
; [(set (match_operand:QI 0 "general_operand" "=a")
; (mult:QI (match_operand:QI 1 "general_operand" "%0")
; (match_operand:QI 2 "general_operand" "qm")))]
; ""
; "imul%B0 %2,%0")
(define_insn ""
[(set (match_operand:HI 0 "general_operand" "=r")
(mult:SI (match_operand:HI 1 "general_operand" "%0")
(match_operand:HI 2 "general_operand" "r")))]
"GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) == 0x80"
"* return AS2 (imul%W0,%2,%0);")
(define_insn "mulhi3"
[(set (match_operand:HI 0 "general_operand" "=r,r")
(mult:SI (match_operand:HI 1 "general_operand" "%0,rm")
(match_operand:HI 2 "general_operand" "g,i")))]
""
"*
{
if (GET_CODE (operands[1]) == REG
&& REGNO (operands[1]) == REGNO (operands[0])
&& (GET_CODE (operands[2]) == MEM || GET_CODE (operands[2]) == REG))
/* Assembler has weird restrictions. */
return AS2 (imul%W0,%2,%0);
return AS3 (imul%W0,%2,%1,%0);
}")
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=r")
(mult:SI (match_operand:SI 1 "general_operand" "%0")
(match_operand:SI 2 "general_operand" "r")))]
"GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) == 0x80"
"* return AS2 (imul%L0,%2,%0);")
(define_insn "mulsi3"
[(set (match_operand:SI 0 "general_operand" "=r,r")
(mult:SI (match_operand:SI 1 "general_operand" "%0,rm")
(match_operand:SI 2 "general_operand" "g,i")))]
""
"*
{
if (GET_CODE (operands[1]) == REG
&& REGNO (operands[1]) == REGNO (operands[0])
&& (GET_CODE (operands[2]) == MEM || GET_CODE (operands[2]) == REG))
/* Assembler has weird restrictions. */
return AS2 (imul%L0,%2,%0);
return AS3 (imul%L0,%2,%1,%0);
}")
(define_insn ""
[(set (match_operand:HI 0 "general_operand" "=a")
(mult:SI (zero_extend:HI
(match_operand:QI 1 "nonimmediate_operand" "%0"))
(zero_extend:HI
(match_operand:QI 2 "nonimmediate_operand" "qm"))))]
""
"mul%B0 %2")
;; The patterns that match these are at the end of this file.
(define_expand "muldf3"
[(set (match_operand:DF 0 "register_operand" "")
(mult:DF (match_operand:DF 1 "nonimmediate_operand" "")
(match_operand:DF 2 "nonimmediate_operand" "")))]
"TARGET_80387"
"")
(define_expand "mulsf3"
[(set (match_operand:SF 0 "register_operand" "")
(mult:SF (match_operand:SF 1 "nonimmediate_operand" "")
(match_operand:SF 2 "nonimmediate_operand" "")))]
"TARGET_80387"
"")
;;- divide instructions
(define_insn "divqi3"
[(set (match_operand:QI 0 "general_operand" "=a")
(div:QI (match_operand:HI 1 "general_operand" "0")
(match_operand:QI 2 "general_operand" "qm")))]
""
"idiv%B0 %2")
(define_insn "udivqi3"
[(set (match_operand:QI 0 "general_operand" "=a")
(udiv:QI (match_operand:HI 1 "general_operand" "0")
(match_operand:QI 2 "general_operand" "qm")))]
""
"div%B0 %2")
;; The patterns that match these are at the end of this file.
(define_expand "divdf3"
[(set (match_operand:DF 0 "register_operand" "")
(div:DF (match_operand:DF 1 "nonimmediate_operand" "")
(match_operand:DF 2 "nonimmediate_operand" "")))]
"TARGET_80387"
"")
(define_expand "divsf3"
[(set (match_operand:SF 0 "register_operand" "")
(div:SF (match_operand:SF 1 "nonimmediate_operand" "")
(match_operand:SF 2 "nonimmediate_operand" "")))]
"TARGET_80387"
"")
;; Remainder instructions.
(define_insn "divmodsi4"
[(set (match_operand:SI 0 "register_operand" "=a")
(div:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:SI 2 "general_operand" "rm")))
(set (match_operand:SI 3 "register_operand" "=&d")
(mod:SI (match_dup 1) (match_dup 2)))]
""
"*
{
#ifdef INTEL_SYNTAX
output_asm_insn (\"cdq\", operands);
#else
output_asm_insn (\"cltd\", operands);
#endif
return AS1 (idiv%L0,%2);
}")
(define_insn "divmodhi4"
[(set (match_operand:HI 0 "register_operand" "=a")
(div:HI (match_operand:HI 1 "register_operand" "0")
(match_operand:HI 2 "general_operand" "rm")))
(set (match_operand:HI 3 "register_operand" "=&d")
(mod:HI (match_dup 1) (match_dup 2)))]
""
"cwtd\;idiv%W0 %2")
;; ??? Can we make gcc zero extend operand[0]?
(define_insn "udivmodsi4"
[(set (match_operand:SI 0 "register_operand" "=a")
(udiv:SI (match_operand:SI 1 "register_operand" "0")
(match_operand:SI 2 "general_operand" "rm")))
(set (match_operand:SI 3 "register_operand" "=&d")
(umod:SI (match_dup 1) (match_dup 2)))]
""
"*
{
output_asm_insn (AS2 (xor%L3,%3,%3), operands);
return AS1 (div%L0,%2);
}")
;; ??? Can we make gcc zero extend operand[0]?
(define_insn "udivmodhi4"
[(set (match_operand:HI 0 "register_operand" "=a")
(udiv:HI (match_operand:HI 1 "register_operand" "0")
(match_operand:HI 2 "general_operand" "rm")))
(set (match_operand:HI 3 "register_operand" "=&d")
(umod:HI (match_dup 1) (match_dup 2)))]
""
"*
{
output_asm_insn (AS2 (xor%W0,%3,%3), operands);
return AS1 (div%W0,%2);
}")
/*
;;this should be a valid double division which we may want to add
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=a")
(udiv:DI (match_operand:DI 1 "register_operand" "a")
(match_operand:SI 2 "general_operand" "rm")))
(set (match_operand:SI 3 "register_operand" "=d")
(umod:SI (match_dup 1) (match_dup 2)))]
""
"div%L0 %2,%0")
*/
;;- and instructions
;; On i386,
;; movzbl %bl,%ebx
;; is faster than
;; andl $255,%ebx
;;
;; but if the reg is %eax, then the "andl" is faster.
;;
;; On i486, the "andl" is always faster than the "movzbl".
;;
;; On both i386 and i486, a three operand AND is as fast with movzbl or
;; movzwl as with andl, if operands[0] != operands[1].
;; The `r' in `rm' for operand 3 looks redundant, but it causes
;; optional reloads to be generated if op 3 is a pseudo in a stack slot.
;; ??? What if we only change one byte of an offsettable memory reference?
(define_insn "andsi3"
[(set (match_operand:SI 0 "general_operand" "=r,r,rm,r")
(and:SI (match_operand:SI 1 "general_operand" "%rm,qm,0,0")
(match_operand:SI 2 "general_operand" "L,K,ri,rm")))]
""
"*
{
if (GET_CODE (operands[2]) == CONST_INT
&& ! (GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0])))
{
if (INTVAL (operands[2]) == 0xffff && REG_P (operands[0])
&& (! REG_P (operands[1])
|| REGNO (operands[0]) != 0 || REGNO (operands[1]) != 0)
&& (! TARGET_486 || ! rtx_equal_p (operands[0], operands[1])))
{
/* ??? tege: Should forget CC_STATUS only if we clobber a
remembered operand. Fix that later. */
CC_STATUS_INIT;
#ifdef INTEL_SYNTAX
return AS2 (movzx,%w1,%0);
#else
return AS2 (movz%W0%L0,%w1,%0);
#endif
}
if (INTVAL (operands[2]) == 0xff && REG_P (operands[0])
&& !(REG_P (operands[1]) && NON_QI_REG_P (operands[1]))
&& (! REG_P (operands[1])
|| REGNO (operands[0]) != 0 || REGNO (operands[1]) != 0)
&& (! TARGET_486 || ! rtx_equal_p (operands[0], operands[1])))
{
/* ??? tege: Should forget CC_STATUS only if we clobber a
remembered operand. Fix that later. */
CC_STATUS_INIT;
#ifdef INTEL_SYNTAX
return AS2 (movzx,%b1,%0);
#else
return AS2 (movz%B0%L0,%b1,%0);
#endif
}
if (QI_REG_P (operands[0]) && ~(INTVAL (operands[2]) | 0xff) == 0)
{
CC_STATUS_INIT;
if (INTVAL (operands[2]) == 0xffffff00)
{
operands[2] = const0_rtx;
return AS2 (mov%B0,%2,%b0);
}
operands[2] = GEN_INT (INTVAL (operands[2]) & 0xff);
return AS2 (and%B0,%2,%b0);
}
if (QI_REG_P (operands[0]) && ~(INTVAL (operands[2]) | 0xff00) == 0)
{
CC_STATUS_INIT;
if (INTVAL (operands[2]) == 0xffff00ff)
{
operands[2] = const0_rtx;
return AS2 (mov%B0,%2,%h0);
}
operands[2] = GEN_INT ((INTVAL (operands[2]) >> 8) & 0xff);
return AS2 (and%B0,%2,%h0);
}
if (GET_CODE (operands[0]) == MEM && INTVAL (operands[2]) == 0xffff0000)
{
operands[2] = const0_rtx;
return AS2 (mov%W0,%2,%w0);
}
}
return AS2 (and%L0,%2,%0);
}")
(define_insn "andhi3"
[(set (match_operand:HI 0 "general_operand" "=rm,r")
(and:HI (match_operand:HI 1 "general_operand" "%0,0")
(match_operand:HI 2 "general_operand" "ri,rm")))]
""
"*
{
if (GET_CODE (operands[2]) == CONST_INT
&& ! (GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0])))
{
/* Can we ignore the upper byte? */
if ((! REG_P (operands[0]) || QI_REG_P (operands[0]))
&& (INTVAL (operands[2]) & 0xff00) == 0xff00)
{
CC_STATUS_INIT;
if ((INTVAL (operands[2]) & 0xff) == 0)
{
operands[2] = const0_rtx;
return AS2 (mov%B0,%2,%b0);
}
operands[2] = GEN_INT (INTVAL (operands[2]) & 0xff);
return AS2 (and%B0,%2,%b0);
}
/* Can we ignore the lower byte? */
/* ??? what about offsettable memory references? */
if (QI_REG_P (operands[0]) && (INTVAL (operands[2]) & 0xff) == 0xff)
{
CC_STATUS_INIT;
if ((INTVAL (operands[2]) & 0xff00) == 0)
{
operands[2] = const0_rtx;
return AS2 (mov%B0,%2,%h0);
}
operands[2] = GEN_INT ((INTVAL (operands[2]) >> 8) & 0xff);
return AS2 (and%B0,%2,%h0);
}
}
return AS2 (and%W0,%2,%0);
}")
(define_insn "andqi3"
[(set (match_operand:QI 0 "general_operand" "=qm,q")
(and:QI (match_operand:QI 1 "general_operand" "%0,0")
(match_operand:QI 2 "general_operand" "qn,qmn")))]
""
"* return AS2 (and%B0,%2,%0);")
/* I am nervous about these two.. add them later..
;I presume this means that we have something in say op0= eax which is small
;and we want to and it with memory so we can do this by just an
;andb m,%al and have success.
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=r")
(and:SI (zero_extend:SI
(match_operand:HI 1 "nonimmediate_operand" "rm"))
(match_operand:SI 2 "general_operand" "0")))]
"GET_CODE (operands[2]) == CONST_INT
&& (unsigned int) INTVAL (operands[2]) < (1 << GET_MODE_BITSIZE (HImode))"
"and%W0 %1,%0")
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=q")
(and:SI
(zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "qm"))
(match_operand:SI 2 "general_operand" "0")))]
"GET_CODE (operands[2]) == CONST_INT
&& (unsigned int) INTVAL (operands[2]) < (1 << GET_MODE_BITSIZE (QImode))"
"and%L0 %1,%0")
*/
;;- Bit set (inclusive or) instructions
;; ??? What if we only change one byte of an offsettable memory reference?
(define_insn "iorsi3"
[(set (match_operand:SI 0 "general_operand" "=rm,r")
(ior:SI (match_operand:SI 1 "general_operand" "%0,0")
(match_operand:SI 2 "general_operand" "ri,rm")))]
""
"*
{
if (GET_CODE (operands[2]) == CONST_INT
&& ! (GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0])))
{
if ((! REG_P (operands[0]) || QI_REG_P (operands[0]))
&& (INTVAL (operands[2]) & ~0xff) == 0)
{
CC_STATUS_INIT;
if (INTVAL (operands[2]) == 0xff)
return AS2 (mov%B0,%2,%b0);
return AS2 (or%B0,%2,%b0);
}
if (QI_REG_P (operands[0]) && (INTVAL (operands[2]) & ~0xff00) == 0)
{
CC_STATUS_INIT;
operands[2] = GEN_INT (INTVAL (operands[2]) >> 8);
if (INTVAL (operands[2]) == 0xff)
return AS2 (mov%B0,%2,%h0);
return AS2 (or%B0,%2,%h0);
}
}
return AS2 (or%L0,%2,%0);
}")
(define_insn "iorhi3"
[(set (match_operand:HI 0 "general_operand" "=rm,r")
(ior:HI (match_operand:HI 1 "general_operand" "%0,0")
(match_operand:HI 2 "general_operand" "ri,rm")))]
""
"*
{
if (GET_CODE (operands[2]) == CONST_INT
&& ! (GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0])))
{
/* Can we ignore the upper byte? */
if ((! REG_P (operands[0]) || QI_REG_P (operands[0]))
&& (INTVAL (operands[2]) & 0xff00) == 0)
{
CC_STATUS_INIT;
if (INTVAL (operands[2]) & 0xffff0000)
operands[2] = GEN_INT (INTVAL (operands[2]) & 0xffff);
if (INTVAL (operands[2]) == 0xff)
return AS2 (mov%B0,%2,%b0);
return AS2 (or%B0,%2,%b0);
}
/* Can we ignore the lower byte? */
/* ??? what about offsettable memory references? */
if (QI_REG_P (operands[0])
&& (INTVAL (operands[2]) & 0xff) == 0)
{
CC_STATUS_INIT;
operands[2] = GEN_INT ((INTVAL (operands[2]) >> 8) & 0xff);
if (INTVAL (operands[2]) == 0xff)
return AS2 (mov%B0,%2,%h0);
return AS2 (or%B0,%2,%h0);
}
}
return AS2 (or%W0,%2,%0);
}")
(define_insn "iorqi3"
[(set (match_operand:QI 0 "general_operand" "=qm,q")
(ior:QI (match_operand:QI 1 "general_operand" "%0,0")
(match_operand:QI 2 "general_operand" "qn,qmn")))]
""
"* return AS2 (or%B0,%2,%0);")
;;- xor instructions
;; ??? What if we only change one byte of an offsettable memory reference?
(define_insn "xorsi3"
[(set (match_operand:SI 0 "general_operand" "=rm,r")
(xor:SI (match_operand:SI 1 "general_operand" "%0,0")
(match_operand:SI 2 "general_operand" "ri,rm")))]
""
"*
{
if (GET_CODE (operands[2]) == CONST_INT
&& ! (GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0])))
{
if ((! REG_P (operands[0]) || QI_REG_P (operands[0]))
&& (INTVAL (operands[2]) & ~0xff) == 0)
{
CC_STATUS_INIT;
if (INTVAL (operands[2]) == 0xff)
return AS1 (not%B0,%b0);
return AS2 (xor%B0,%2,%b0);
}
if (QI_REG_P (operands[0]) && (INTVAL (operands[2]) & ~0xff00) == 0)
{
CC_STATUS_INIT;
operands[2] = GEN_INT (INTVAL (operands[2]) >> 8);
if (INTVAL (operands[2]) == 0xff)
return AS1 (not%B0,%h0);
return AS2 (xor%B0,%2,%h0);
}
}
return AS2 (xor%L0,%2,%0);
}")
(define_insn "xorhi3"
[(set (match_operand:HI 0 "general_operand" "=rm,r")
(xor:HI (match_operand:HI 1 "general_operand" "%0,0")
(match_operand:HI 2 "general_operand" "ri,rm")))]
""
"*
{
if (GET_CODE (operands[2]) == CONST_INT
&& ! (GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0])))
{
/* Can we ignore the upper byte? */
if ((! REG_P (operands[0]) || QI_REG_P (operands[0]))
&& (INTVAL (operands[2]) & 0xff00) == 0)
{
CC_STATUS_INIT;
if (INTVAL (operands[2]) & 0xffff0000)
operands[2] = GEN_INT (INTVAL (operands[2]) & 0xffff);
if (INTVAL (operands[2]) == 0xff)
return AS1 (not%B0,%b0);
return AS2 (xor%B0,%2,%b0);
}
/* Can we ignore the lower byte? */
/* ??? what about offsettable memory references? */
if (QI_REG_P (operands[0])
&& (INTVAL (operands[2]) & 0xff) == 0)
{
CC_STATUS_INIT;
operands[2] = GEN_INT ((INTVAL (operands[2]) >> 8) & 0xff);
if (INTVAL (operands[2]) == 0xff)
return AS1 (not%B0,%h0);
return AS2 (xor%B0,%2,%h0);
}
}
return AS2 (xor%W0,%2,%0);
}")
(define_insn "xorqi3"
[(set (match_operand:QI 0 "general_operand" "=qm,q")
(xor:QI (match_operand:QI 1 "general_operand" "%0,0")
(match_operand:QI 2 "general_operand" "qn,qm")))]
""
"* return AS2 (xor%B0,%2,%0);")
;;- negation instructions
(define_insn "negdi2"
[(set (match_operand:DI 0 "general_operand" "=&ro")
(neg:DI (match_operand:DI 1 "general_operand" "0")))]
""
"*
{
rtx xops[2], low[1], high[1];
CC_STATUS_INIT;
split_di (operands, 1, low, high);
xops[0] = const0_rtx;
xops[1] = high[0];
output_asm_insn (AS1 (neg%L0,%0), low);
output_asm_insn (AS2 (adc%L1,%0,%1), xops);
output_asm_insn (AS1 (neg%L0,%0), high);
RET;
}")
(define_insn "negsi2"
[(set (match_operand:SI 0 "general_operand" "=rm")
(neg:SI (match_operand:SI 1 "general_operand" "0")))]
""
"neg%L0 %0")
(define_insn "neghi2"
[(set (match_operand:HI 0 "general_operand" "=rm")
(neg:HI (match_operand:HI 1 "general_operand" "0")))]
""
"neg%W0 %0")
(define_insn "negqi2"
[(set (match_operand:QI 0 "general_operand" "=qm")
(neg:QI (match_operand:QI 1 "general_operand" "0")))]
""
"neg%B0 %0")
(define_insn "negsf2"
[(set (match_operand:SF 0 "register_operand" "=f")
(neg:SF (match_operand:SF 1 "general_operand" "0")))]
"TARGET_80387"
"fchs")
(define_insn "negdf2"
[(set (match_operand:DF 0 "register_operand" "=f")
(neg:DF (match_operand:DF 1 "general_operand" "0")))]
"TARGET_80387"
"fchs")
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=f")
(neg:DF (float_extend:DF (match_operand:SF 1 "general_operand" "0"))))]
"TARGET_80387"
"fchs")
;; Absolute value instructions
(define_insn "abssf2"
[(set (match_operand:SF 0 "register_operand" "=f")
(abs:SF (match_operand:SF 1 "general_operand" "0")))]
"TARGET_80387"
"fabs")
(define_insn "absdf2"
[(set (match_operand:DF 0 "register_operand" "=f")
(abs:DF (match_operand:DF 1 "general_operand" "0")))]
"TARGET_80387"
"fabs")
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=f")
(abs:DF (float_extend:DF (match_operand:SF 1 "general_operand" "0"))))]
"TARGET_80387"
"fabs")
(define_insn "sqrtsf2"
[(set (match_operand:SF 0 "register_operand" "=f")
(sqrt:SF (match_operand:SF 1 "general_operand" "0")))]
1993-08-23 13:45:50 +04:00
"TARGET_80387 && (TARGET_IEEE_FP || flag_fast_math) && 0"
1993-08-23 13:20:31 +04:00
"fsqrt")
(define_insn "sqrtdf2"
[(set (match_operand:DF 0 "register_operand" "=f")
(sqrt:DF (match_operand:DF 1 "general_operand" "0")))]
1993-08-23 13:45:50 +04:00
"TARGET_80387 && (TARGET_IEEE_FP || flag_fast_math) && 0"
1993-08-23 13:20:31 +04:00
"fsqrt")
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=f")
(sqrt:DF (float_extend:DF
(match_operand:SF 1 "general_operand" "0"))))]
1993-08-23 13:45:50 +04:00
"TARGET_80387 && (TARGET_IEEE_FP || flag_fast_math) && 0"
1993-08-23 13:20:31 +04:00
"fsqrt")
(define_insn "sindf2"
[(set (match_operand:DF 0 "register_operand" "=f")
(unspec:DF [(match_operand:DF 1 "register_operand" "0")] 1))]
1993-08-23 13:45:50 +04:00
"TARGET_80387 && (TARGET_IEEE_FP || flag_fast_math) && 0"
1993-08-23 13:20:31 +04:00
"fsin")
(define_insn "sinsf2"
[(set (match_operand:SF 0 "register_operand" "=f")
(unspec:SF [(match_operand:SF 1 "register_operand" "0")] 1))]
1993-08-23 13:45:50 +04:00
"TARGET_80387 && (TARGET_IEEE_FP || flag_fast_math) && 0"
1993-08-23 13:20:31 +04:00
"fsin")
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=f")
(unspec:DF [(float_extend:DF
(match_operand:SF 1 "register_operand" "0"))] 1))]
1993-08-23 13:45:50 +04:00
"TARGET_80387 && (TARGET_IEEE_FP || flag_fast_math) && 0"
1993-08-23 13:20:31 +04:00
"fsin")
(define_insn "cosdf2"
[(set (match_operand:DF 0 "register_operand" "=f")
(unspec:DF [(match_operand:DF 1 "register_operand" "0")] 2))]
1993-08-23 13:45:50 +04:00
"TARGET_80387 && (TARGET_IEEE_FP || flag_fast_math) && 0"
1993-08-23 13:20:31 +04:00
"fcos")
(define_insn "cossf2"
[(set (match_operand:SF 0 "register_operand" "=f")
(unspec:SF [(match_operand:SF 1 "register_operand" "0")] 2))]
1993-08-23 13:45:50 +04:00
"TARGET_80387 && (TARGET_IEEE_FP || flag_fast_math) && 0"
1993-08-23 13:20:31 +04:00
"fcos")
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=f")
(unspec:DF [(float_extend:DF
(match_operand:SF 1 "register_operand" "0"))] 2))]
1993-08-23 13:45:50 +04:00
"TARGET_80387 && (TARGET_IEEE_FP || flag_fast_math) && 0"
1993-08-23 13:20:31 +04:00
"fcos")
;;- one complement instructions
(define_insn "one_cmplsi2"
[(set (match_operand:SI 0 "general_operand" "=rm")
(not:SI (match_operand:SI 1 "general_operand" "0")))]
""
"not%L0 %0")
(define_insn "one_cmplhi2"
[(set (match_operand:HI 0 "general_operand" "=rm")
(not:HI (match_operand:HI 1 "general_operand" "0")))]
""
"not%W0 %0")
(define_insn "one_cmplqi2"
[(set (match_operand:QI 0 "general_operand" "=qm")
(not:QI (match_operand:QI 1 "general_operand" "0")))]
""
"not%B0 %0")
;;- arithmetic shift instructions
;; DImode shifts are implemented using the i386 "shift double" opcode,
;; which is written as "sh[lr]d[lw] imm,reg,reg/mem". If the shift count
;; is variable, then the count is in %cl and the "imm" operand is dropped
;; from the assembler input.
;; This instruction shifts the target reg/mem as usual, but instead of
;; shifting in zeros, bits are shifted in from reg operand. If the insn
;; is a left shift double, bits are taken from the high order bits of
;; reg, else if the insn is a shift right double, bits are taken from the
;; low order bits of reg. So if %eax is "1234" and %edx is "5678",
;; "shldl $8,%edx,%eax" leaves %edx unchanged and sets %eax to "2345".
;; Since sh[lr]d does not change the `reg' operand, that is done
;; separately, making all shifts emit pairs of shift double and normal
;; shift. Since sh[lr]d does not shift more than 31 bits, and we wish to
;; support a 63 bit shift, each shift where the count is in a reg expands
;; to three pairs. If the overall shift is by N bits, then the first two
;; pairs shift by N / 2 and the last pair by N & 1.
;; If the shift count is a constant, we need never emit more than one
;; shift pair, instead using moves and sign extension for counts greater
;; than 31.
(define_expand "ashldi3"
[(set (match_operand:DI 0 "register_operand" "")
(ashift:DI (match_operand:DI 1 "register_operand" "")
(match_operand:QI 2 "nonmemory_operand" "")))]
""
"
{
if (GET_CODE (operands[2]) != CONST_INT
|| ! CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'J'))
{
operands[2] = copy_to_mode_reg (QImode, operands[2]);
emit_insn (gen_ashldi3_non_const_int (operands[0], operands[1],
operands[2]));
}
else
emit_insn (gen_ashldi3_const_int (operands[0], operands[1], operands[2]));
DONE;
}")
(define_insn "ashldi3_const_int"
[(set (match_operand:DI 0 "register_operand" "=&r")
(ashift:DI (match_operand:DI 1 "register_operand" "0")
(match_operand:QI 2 "const_int_operand" "J")))]
""
"*
{
rtx xops[4], low[1], high[1];
CC_STATUS_INIT;
split_di (operands, 1, low, high);
xops[0] = operands[2];
xops[1] = const1_rtx;
xops[2] = low[0];
xops[3] = high[0];
if (INTVAL (xops[0]) > 31)
{
output_asm_insn (AS2 (mov%L3,%2,%3), xops); /* Fast shift by 32 */
output_asm_insn (AS2 (xor%L2,%2,%2), xops);
if (INTVAL (xops[0]) > 32)
{
xops[0] = GEN_INT (INTVAL (xops[0]) - 32);
output_asm_insn (AS2 (sal%L3,%0,%3), xops); /* Remaining shift */
}
}
else
{
output_asm_insn (AS3 (shld%L3,%0,%2,%3), xops);
output_asm_insn (AS2 (sal%L2,%0,%2), xops);
}
RET;
}")
(define_insn "ashldi3_non_const_int"
[(set (match_operand:DI 0 "register_operand" "=&r")
(ashift:DI (match_operand:DI 1 "register_operand" "0")
(match_operand:QI 2 "register_operand" "c")))
(clobber (match_dup 2))]
""
"*
{
rtx xops[4], low[1], high[1];
CC_STATUS_INIT;
split_di (operands, 1, low, high);
xops[0] = operands[2];
xops[1] = const1_rtx;
xops[2] = low[0];
xops[3] = high[0];
output_asm_insn (AS2 (ror%B0,%1,%0), xops); /* shift count / 2 */
output_asm_insn (AS3_SHIFT_DOUBLE (shld%L3,%0,%2,%3), xops);
output_asm_insn (AS2 (sal%L2,%0,%2), xops);
output_asm_insn (AS3_SHIFT_DOUBLE (shld%L3,%0,%2,%3), xops);
output_asm_insn (AS2 (sal%L2,%0,%2), xops);
xops[1] = GEN_INT (7); /* shift count & 1 */
output_asm_insn (AS2 (shr%B0,%1,%0), xops);
output_asm_insn (AS3_SHIFT_DOUBLE (shld%L3,%0,%2,%3), xops);
output_asm_insn (AS2 (sal%L2,%0,%2), xops);
RET;
}")
;; On i386 and i486, "addl reg,reg" is faster than "sall $1,reg"
;; On i486, movl/sall appears slightly faster than leal, but the leal
;; is smaller - use leal for now unless the shift count is 1.
(define_insn "ashlsi3"
[(set (match_operand:SI 0 "general_operand" "=r,rm")
(ashift:SI (match_operand:SI 1 "general_operand" "r,0")
(match_operand:SI 2 "nonmemory_operand" "M,cI")))]
""
"*
{
if (REG_P (operands[0]) && REGNO (operands[0]) != REGNO (operands[1]))
{
if (TARGET_486 && INTVAL (operands[2]) == 1)
{
output_asm_insn (AS2 (mov%L0,%1,%0), operands);
return AS2 (add%L0,%1,%0);
}
else
{
CC_STATUS_INIT;
if (operands[1] == stack_pointer_rtx)
{
output_asm_insn (AS2 (mov%L0,%1,%0), operands);
operands[1] = operands[0];
}
operands[1] = gen_rtx (MULT, SImode, operands[1],
GEN_INT (1 << INTVAL (operands[2])));
return AS2 (lea%L0,%a1,%0);
}
}
if (REG_P (operands[2]))
return AS2 (sal%L0,%b2,%0);
if (REG_P (operands[0]) && operands[2] == const1_rtx)
return AS2 (add%L0,%0,%0);
return AS2 (sal%L0,%2,%0);
}")
(define_insn "ashlhi3"
[(set (match_operand:HI 0 "general_operand" "=rm")
(ashift:HI (match_operand:HI 1 "general_operand" "0")
(match_operand:HI 2 "nonmemory_operand" "cI")))]
""
"*
{
if (REG_P (operands[2]))
return AS2 (sal%W0,%b2,%0);
if (REG_P (operands[0]) && operands[2] == const1_rtx)
return AS2 (add%W0,%0,%0);
return AS2 (sal%W0,%2,%0);
}")
(define_insn "ashlqi3"
[(set (match_operand:QI 0 "general_operand" "=qm")
(ashift:QI (match_operand:QI 1 "general_operand" "0")
(match_operand:QI 2 "nonmemory_operand" "cI")))]
""
"*
{
if (REG_P (operands[2]))
return AS2 (sal%B0,%b2,%0);
if (REG_P (operands[0]) && operands[2] == const1_rtx)
return AS2 (add%B0,%0,%0);
return AS2 (sal%B0,%2,%0);
}")
;; See comment above `ashldi3' about how this works.
(define_expand "ashrdi3"
[(set (match_operand:DI 0 "register_operand" "")
(ashiftrt:DI (match_operand:DI 1 "register_operand" "")
(match_operand:QI 2 "nonmemory_operand" "")))]
""
"
{
if (GET_CODE (operands[2]) != CONST_INT
|| ! CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'J'))
{
operands[2] = copy_to_mode_reg (QImode, operands[2]);
emit_insn (gen_ashrdi3_non_const_int (operands[0], operands[1],
operands[2]));
}
else
emit_insn (gen_ashrdi3_const_int (operands[0], operands[1], operands[2]));
DONE;
}")
(define_insn "ashrdi3_const_int"
[(set (match_operand:DI 0 "register_operand" "=&r")
(ashiftrt:DI (match_operand:DI 1 "register_operand" "0")
(match_operand:QI 2 "const_int_operand" "J")))]
""
"*
{
rtx xops[4], low[1], high[1];
CC_STATUS_INIT;
split_di (operands, 1, low, high);
xops[0] = operands[2];
xops[1] = const1_rtx;
xops[2] = low[0];
xops[3] = high[0];
if (INTVAL (xops[0]) > 31)
{
xops[1] = GEN_INT (31);
output_asm_insn (AS2 (mov%L2,%3,%2), xops);
output_asm_insn (AS2 (sar%L3,%1,%3), xops); /* shift by 32 */
if (INTVAL (xops[0]) > 32)
{
xops[0] = GEN_INT (INTVAL (xops[0]) - 32);
output_asm_insn (AS2 (sar%L2,%0,%2), xops); /* Remaining shift */
}
}
else
{
output_asm_insn (AS3 (shrd%L2,%0,%3,%2), xops);
output_asm_insn (AS2 (sar%L3,%0,%3), xops);
}
RET;
}")
(define_insn "ashrdi3_non_const_int"
[(set (match_operand:DI 0 "register_operand" "=&r")
(ashiftrt:DI (match_operand:DI 1 "register_operand" "0")
(match_operand:QI 2 "register_operand" "c")))
(clobber (match_dup 2))]
""
"*
{
rtx xops[4], low[1], high[1];
CC_STATUS_INIT;
split_di (operands, 1, low, high);
xops[0] = operands[2];
xops[1] = const1_rtx;
xops[2] = low[0];
xops[3] = high[0];
output_asm_insn (AS2 (ror%B0,%1,%0), xops); /* shift count / 2 */
output_asm_insn (AS3_SHIFT_DOUBLE (shrd%L2,%0,%3,%2), xops);
output_asm_insn (AS2 (sar%L3,%0,%3), xops);
output_asm_insn (AS3_SHIFT_DOUBLE (shrd%L2,%0,%3,%2), xops);
output_asm_insn (AS2 (sar%L3,%0,%3), xops);
xops[1] = GEN_INT (7); /* shift count & 1 */
output_asm_insn (AS2 (shr%B0,%1,%0), xops);
output_asm_insn (AS3_SHIFT_DOUBLE (shrd%L2,%0,%3,%2), xops);
output_asm_insn (AS2 (sar%L3,%0,%3), xops);
RET;
}")
(define_insn "ashrsi3"
[(set (match_operand:SI 0 "general_operand" "=rm")
(ashiftrt:SI (match_operand:SI 1 "general_operand" "0")
(match_operand:SI 2 "nonmemory_operand" "cI")))]
""
"*
{
if (REG_P (operands[2]))
return AS2 (sar%L0,%b2,%0);
else
return AS2 (sar%L0,%2,%0);
}")
(define_insn "ashrhi3"
[(set (match_operand:HI 0 "general_operand" "=rm")
(ashiftrt:HI (match_operand:HI 1 "general_operand" "0")
(match_operand:HI 2 "nonmemory_operand" "cI")))]
""
"*
{
if (REG_P (operands[2]))
return AS2 (sar%W0,%b2,%0);
else
return AS2 (sar%W0,%2,%0);
}")
(define_insn "ashrqi3"
[(set (match_operand:QI 0 "general_operand" "=qm")
(ashiftrt:QI (match_operand:QI 1 "general_operand" "0")
(match_operand:QI 2 "nonmemory_operand" "cI")))]
""
"*
{
if (REG_P (operands[2]))
return AS2 (sar%B0,%b2,%0);
else
return AS2 (sar%B0,%2,%0);
}")
;;- logical shift instructions
;; See comment above `ashldi3' about how this works.
(define_expand "lshrdi3"
[(set (match_operand:DI 0 "register_operand" "")
(lshiftrt:DI (match_operand:DI 1 "register_operand" "")
(match_operand:QI 2 "nonmemory_operand" "")))]
""
"
{
if (GET_CODE (operands[2]) != CONST_INT
|| ! CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), 'J'))
{
operands[2] = copy_to_mode_reg (QImode, operands[2]);
emit_insn (gen_lshrdi3_non_const_int (operands[0], operands[1],
operands[2]));
}
else
emit_insn (gen_lshrdi3_const_int (operands[0], operands[1], operands[2]));
DONE;
}")
(define_insn "lshrdi3_const_int"
[(set (match_operand:DI 0 "register_operand" "=&r")
(lshiftrt:DI (match_operand:DI 1 "register_operand" "0")
(match_operand:QI 2 "const_int_operand" "J")))]
""
"*
{
rtx xops[4], low[1], high[1];
CC_STATUS_INIT;
split_di (operands, 1, low, high);
xops[0] = operands[2];
xops[1] = const1_rtx;
xops[2] = low[0];
xops[3] = high[0];
if (INTVAL (xops[0]) > 31)
{
output_asm_insn (AS2 (mov%L2,%3,%2), xops); /* Fast shift by 32 */
output_asm_insn (AS2 (xor%L3,%3,%3), xops);
if (INTVAL (xops[0]) > 32)
{
xops[0] = GEN_INT (INTVAL (xops[0]) - 32);
output_asm_insn (AS2 (shr%L2,%0,%2), xops); /* Remaining shift */
}
}
else
{
output_asm_insn (AS3 (shrd%L2,%0,%3,%2), xops);
output_asm_insn (AS2 (shr%L3,%0,%3), xops);
}
RET;
}")
(define_insn "lshrdi3_non_const_int"
[(set (match_operand:DI 0 "register_operand" "=&r")
(lshiftrt:DI (match_operand:DI 1 "register_operand" "0")
(match_operand:QI 2 "register_operand" "c")))
(clobber (match_dup 2))]
""
"*
{
rtx xops[4], low[1], high[1];
CC_STATUS_INIT;
split_di (operands, 1, low, high);
xops[0] = operands[2];
xops[1] = const1_rtx;
xops[2] = low[0];
xops[3] = high[0];
output_asm_insn (AS2 (ror%B0,%1,%0), xops); /* shift count / 2 */
output_asm_insn (AS3_SHIFT_DOUBLE (shrd%L2,%0,%3,%2), xops);
output_asm_insn (AS2 (shr%L3,%0,%3), xops);
output_asm_insn (AS3_SHIFT_DOUBLE (shrd%L2,%0,%3,%2), xops);
output_asm_insn (AS2 (shr%L3,%0,%3), xops);
xops[1] = GEN_INT (7); /* shift count & 1 */
output_asm_insn (AS2 (shr%B0,%1,%0), xops);
output_asm_insn (AS3_SHIFT_DOUBLE (shrd%L2,%0,%3,%2), xops);
output_asm_insn (AS2 (shr%L3,%0,%3), xops);
RET;
}")
(define_insn "lshrsi3"
[(set (match_operand:SI 0 "general_operand" "=rm")
(lshiftrt:SI (match_operand:SI 1 "general_operand" "0")
(match_operand:SI 2 "nonmemory_operand" "cI")))]
""
"*
{
if (REG_P (operands[2]))
return AS2 (shr%L0,%b2,%0);
else
return AS2 (shr%L0,%2,%1);
}")
(define_insn "lshrhi3"
[(set (match_operand:HI 0 "general_operand" "=rm")
(lshiftrt:HI (match_operand:HI 1 "general_operand" "0")
(match_operand:HI 2 "nonmemory_operand" "cI")))]
""
"*
{
if (REG_P (operands[2]))
return AS2 (shr%W0,%b2,%0);
else
return AS2 (shr%W0,%2,%0);
}")
(define_insn "lshrqi3"
[(set (match_operand:QI 0 "general_operand" "=qm")
(lshiftrt:QI (match_operand:QI 1 "general_operand" "0")
(match_operand:QI 2 "nonmemory_operand" "cI")))]
""
"*
{
if (REG_P (operands[2]))
return AS2 (shr%B0,%b2,%0);
else
return AS2 (shr%B0,%2,%0);
}")
;;- rotate instructions
(define_insn "rotlsi3"
[(set (match_operand:SI 0 "general_operand" "=rm")
(rotate:SI (match_operand:SI 1 "general_operand" "0")
(match_operand:SI 2 "nonmemory_operand" "cI")))]
""
"*
{
if (REG_P (operands[2]))
return AS2 (rol%L0,%b2,%0);
else
return AS2 (rol%L0,%2,%0);
}")
(define_insn "rotlhi3"
[(set (match_operand:HI 0 "general_operand" "=rm")
(rotate:HI (match_operand:HI 1 "general_operand" "0")
(match_operand:HI 2 "nonmemory_operand" "cI")))]
""
"*
{
if (REG_P (operands[2]))
return AS2 (rol%W0,%b2,%0);
else
return AS2 (rol%W0,%2,%0);
}")
(define_insn "rotlqi3"
[(set (match_operand:QI 0 "general_operand" "=qm")
(rotate:QI (match_operand:QI 1 "general_operand" "0")
(match_operand:QI 2 "nonmemory_operand" "cI")))]
""
"*
{
if (REG_P (operands[2]))
return AS2 (rol%B0,%b2,%0);
else
return AS2 (rol%B0,%2,%0);
}")
(define_insn "rotrsi3"
[(set (match_operand:SI 0 "general_operand" "=rm")
(rotatert:SI (match_operand:SI 1 "general_operand" "0")
(match_operand:SI 2 "nonmemory_operand" "cI")))]
""
"*
{
if (REG_P (operands[2]))
return AS2 (ror%L0,%b2,%0);
else
return AS2 (ror%L0,%2,%0);
}")
(define_insn "rotrhi3"
[(set (match_operand:HI 0 "general_operand" "=rm")
(rotatert:HI (match_operand:HI 1 "general_operand" "0")
(match_operand:HI 2 "nonmemory_operand" "cI")))]
""
"*
{
if (REG_P (operands[2]))
return AS2 (ror%W0,%b2,%0);
else
return AS2 (ror%W0,%2,%0);
}")
(define_insn "rotrqi3"
[(set (match_operand:QI 0 "general_operand" "=qm")
(rotatert:QI (match_operand:QI 1 "general_operand" "0")
(match_operand:QI 2 "nonmemory_operand" "cI")))]
""
"*
{
if (REG_P (operands[2]))
return AS2 (ror%B0,%b2,%0);
else
return AS2 (ror%B0,%2,%0);
}")
/*
;; This usually looses. But try a define_expand to recognize a few case
;; we can do efficiently, such as accessing the "high" QImode registers,
;; %ah, %bh, %ch, %dh.
(define_insn "insv"
[(set (zero_extract:SI (match_operand:SI 0 "register_operand" "+&r")
(match_operand:SI 1 "general_operand" "i")
(match_operand:SI 2 "general_operand" "i"))
(match_operand:SI 3 "general_operand" "ri"))]
""
"*
{
if (INTVAL (operands[1]) + INTVAL (operands[2]) > GET_MODE_BITSIZE (SImode))
abort ();
if (GET_CODE (operands[3]) == CONST_INT)
{
unsigned int mask = (1 << INTVAL (operands[1])) - 1;
operands[1] = GEN_INT (~(mask << INTVAL (operands[2])));
output_asm_insn (AS2 (and%L0,%1,%0), operands);
operands[3] = GEN_INT (INTVAL (operands[3]) << INTVAL (operands[2]));
output_asm_insn (AS2 (or%L0,%3,%0), operands);
}
else
{
operands[0] = gen_rtx (REG, SImode, REGNO (operands[0]));
if (INTVAL (operands[2]))
output_asm_insn (AS2 (ror%L0,%2,%0), operands);
output_asm_insn (AS3 (shrd%L0,%1,%3,%0), operands);
operands[2] = GEN_INT (BITS_PER_WORD
- INTVAL (operands[1]) - INTVAL (operands[2]));
if (INTVAL (operands[2]))
output_asm_insn (AS2 (ror%L0,%2,%0), operands);
}
RET;
}")
*/
/*
;; ??? There are problems with the mode of operand[3]. The point of this
;; is to represent an HImode move to a "high byte" register.
(define_expand "insv"
[(set (zero_extract:SI (match_operand:SI 0 "general_operand" "")
(match_operand:SI 1 "immediate_operand" "")
(match_operand:SI 2 "immediate_operand" ""))
(match_operand:QI 3 "general_operand" "ri"))]
""
"
{
if (GET_CODE (operands[1]) != CONST_INT
|| GET_CODE (operands[2]) != CONST_INT)
FAIL;
if (! (INTVAL (operands[1]) == 8
&& (INTVAL (operands[2]) == 8 || INTVAL (operands[2]) == 0))
&& ! INTVAL (operands[1]) == 1)
FAIL;
}")
;; ??? Are these constraints right?
(define_insn ""
[(set (zero_extract:SI (match_operand:SI 0 "general_operand" "+&qo")
(const_int 8)
(const_int 8))
(match_operand:QI 1 "general_operand" "qn"))]
""
"*
{
if (REG_P (operands[0]))
return AS2 (mov%B0,%1,%h0);
operands[0] = adj_offsettable_operand (operands[0], 1);
return AS2 (mov%B0,%1,%0);
}")
*/
;; On i386, the register count for a bit operation is *not* truncated,
;; so SHIFT_COUNT_TRUNCATED must not be defined.
;; On i486, the shift & or/and code is faster than bts or btr. If
;; operands[0] is a MEM, the bt[sr] is half as fast as the normal code.
;; On i386, bts is a little faster if operands[0] is a reg, and a
;; little slower if operands[0] is a MEM, than the shift & or/and code.
;; Use bts & btr, since they reload better.
;; General bit set and clear.
(define_insn ""
[(set (zero_extract:SI (match_operand:SI 0 "general_operand" "+rm")
(const_int 1)
(match_operand:SI 2 "general_operand" "r"))
(match_operand:SI 3 "const_int_operand" "n"))]
"! TARGET_486 && GET_CODE (operands[2]) != CONST_INT"
"*
{
CC_STATUS_INIT;
if (INTVAL (operands[3]) == 1)
return AS2 (bts%L0,%2,%0);
else
return AS2 (btr%L0,%2,%0);
}")
;; Bit complement. See comments on previous pattern.
;; ??? Is this really worthwhile?
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=rm")
(xor:SI (ashift:SI (const_int 1)
(match_operand:SI 1 "general_operand" "r"))
(match_operand:SI 2 "general_operand" "0")))]
"! TARGET_486 && GET_CODE (operands[1]) != CONST_INT"
"*
{
CC_STATUS_INIT;
return AS2 (btc%L0,%1,%0);
}")
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=rm")
(xor:SI (match_operand:SI 1 "general_operand" "0")
(ashift:SI (const_int 1)
(match_operand:SI 2 "general_operand" "r"))))]
"! TARGET_486 && GET_CODE (operands[2]) != CONST_INT"
"*
{
CC_STATUS_INIT;
return AS2 (btc%L0,%2,%0);
}")
;; Recognizers for bit-test instructions.
;; The bt opcode allows a MEM in operands[0]. But on both i386 and
;; i486, it is faster to copy a MEM to REG and then use bt, than to use
;; bt on the MEM directly.
;; ??? The first argument of a zero_extract must not be reloaded, so
;; don't allow a MEM in the operand predicate without allowing it in the
;; constraint.
(define_insn ""
[(set (cc0) (zero_extract (match_operand:SI 0 "register_operand" "r")
(const_int 1)
(match_operand:SI 1 "general_operand" "r")))]
"GET_CODE (operands[1]) != CONST_INT"
"*
{
cc_status.flags |= CC_Z_IN_NOT_C;
return AS2 (bt%L0,%1,%0);
}")
(define_insn ""
[(set (cc0) (zero_extract (match_operand:SI 0 "register_operand" "r")
(match_operand:SI 1 "const_int_operand" "n")
(match_operand:SI 2 "const_int_operand" "n")))]
""
"*
{
unsigned int mask;
mask = ((1 << INTVAL (operands[1])) - 1) << INTVAL (operands[2]);
operands[1] = GEN_INT (mask);
if (QI_REG_P (operands[0]))
{
if ((mask & ~0xff) == 0)
{
cc_status.flags |= CC_NOT_NEGATIVE;
return AS2 (test%B0,%1,%b0);
}
if ((mask & ~0xff00) == 0)
{
cc_status.flags |= CC_NOT_NEGATIVE;
operands[1] = GEN_INT (mask >> 8);
return AS2 (test%B0,%1,%h0);
}
}
return AS2 (test%L0,%1,%0);
}")
;; ??? All bets are off if operand 0 is a volatile MEM reference.
;; The CPU may access unspecified bytes around the actual target byte.
(define_insn ""
[(set (cc0) (zero_extract (match_operand:QI 0 "general_operand" "rm")
(match_operand:SI 1 "const_int_operand" "n")
(match_operand:SI 2 "const_int_operand" "n")))]
"GET_CODE (operands[0]) != MEM || ! MEM_VOLATILE_P (operands[0])"
"*
{
unsigned int mask;
mask = ((1 << INTVAL (operands[1])) - 1) << INTVAL (operands[2]);
operands[1] = GEN_INT (mask);
if (! REG_P (operands[0]) || QI_REG_P (operands[0]))
{
if ((mask & ~0xff) == 0)
{
cc_status.flags |= CC_NOT_NEGATIVE;
return AS2 (test%B0,%1,%b0);
}
if ((mask & ~0xff00) == 0)
{
cc_status.flags |= CC_NOT_NEGATIVE;
operands[1] = GEN_INT (mask >> 8);
if (QI_REG_P (operands[0]))
return AS2 (test%B0,%1,%h0);
else
{
operands[0] = adj_offsettable_operand (operands[0], 1);
return AS2 (test%B0,%1,%b0);
}
}
if (GET_CODE (operands[0]) == MEM && (mask & ~0xff0000) == 0)
{
cc_status.flags |= CC_NOT_NEGATIVE;
operands[1] = GEN_INT (mask >> 16);
operands[0] = adj_offsettable_operand (operands[0], 2);
return AS2 (test%B0,%1,%b0);
}
if (GET_CODE (operands[0]) == MEM && (mask & ~0xff000000) == 0)
{
cc_status.flags |= CC_NOT_NEGATIVE;
operands[1] = GEN_INT (mask >> 24);
operands[0] = adj_offsettable_operand (operands[0], 3);
return AS2 (test%B0,%1,%b0);
}
}
if (CONSTANT_P (operands[1]) || GET_CODE (operands[0]) == MEM)
return AS2 (test%L0,%1,%0);
return AS2 (test%L1,%0,%1);
}")
;; Store-flag instructions.
;; For all sCOND expanders, also expand the compare or test insn that
;; generates cc0. Generate an equality comparison if `seq' or `sne'.
;; The 386 sCOND opcodes can write to memory. But a gcc sCOND insn may
;; not have any input reloads. A MEM write might need an input reload
;; for the address of the MEM. So don't allow MEM as the SET_DEST.
(define_expand "seq"
[(match_dup 1)
(set (match_operand:QI 0 "register_operand" "")
(eq:QI (cc0) (const_int 0)))]
""
"
{
if (TARGET_IEEE_FP
&& GET_MODE_CLASS (GET_MODE (i386_compare_op0)) == MODE_FLOAT)
operands[1] = (*i386_compare_gen_eq)(i386_compare_op0, i386_compare_op1);
else
operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);
}")
(define_insn ""
[(set (match_operand:QI 0 "register_operand" "=q")
(eq:QI (cc0) (const_int 0)))]
""
"*
{
if (cc_prev_status.flags & CC_Z_IN_NOT_C)
return AS1 (setnb,%0);
else
return AS1 (sete,%0);
}")
(define_expand "sne"
[(match_dup 1)
(set (match_operand:QI 0 "register_operand" "")
(ne:QI (cc0) (const_int 0)))]
""
"
{
if (TARGET_IEEE_FP
&& GET_MODE_CLASS (GET_MODE (i386_compare_op0)) == MODE_FLOAT)
operands[1] = (*i386_compare_gen_eq)(i386_compare_op0, i386_compare_op1);
else
operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);
}")
(define_insn ""
[(set (match_operand:QI 0 "register_operand" "=q")
(ne:QI (cc0) (const_int 0)))]
""
"*
{
if (cc_prev_status.flags & CC_Z_IN_NOT_C)
return AS1 (setb,%0);
else
return AS1 (setne,%0);
}
")
(define_expand "sgt"
[(match_dup 1)
(set (match_operand:QI 0 "register_operand" "")
(gt:QI (cc0) (const_int 0)))]
""
"operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);")
(define_insn ""
[(set (match_operand:QI 0 "register_operand" "=q")
(gt:QI (cc0) (const_int 0)))]
""
"*
{
if (TARGET_IEEE_FP && (cc_prev_status.flags & CC_IN_80387))
return AS1 (sete,%0);
OUTPUT_JUMP (\"setg %0\", \"seta %0\", NULL_PTR);
}")
(define_expand "sgtu"
[(match_dup 1)
(set (match_operand:QI 0 "register_operand" "")
(gtu:QI (cc0) (const_int 0)))]
""
"operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);")
(define_insn ""
[(set (match_operand:QI 0 "register_operand" "=q")
(gtu:QI (cc0) (const_int 0)))]
""
"* return \"seta %0\"; ")
(define_expand "slt"
[(match_dup 1)
(set (match_operand:QI 0 "register_operand" "")
(lt:QI (cc0) (const_int 0)))]
""
"operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);")
(define_insn ""
[(set (match_operand:QI 0 "register_operand" "=q")
(lt:QI (cc0) (const_int 0)))]
""
"*
{
if (TARGET_IEEE_FP && (cc_prev_status.flags & CC_IN_80387))
return AS1 (sete,%0);
OUTPUT_JUMP (\"setl %0\", \"setb %0\", \"sets %0\");
}")
(define_expand "sltu"
[(match_dup 1)
(set (match_operand:QI 0 "register_operand" "")
(ltu:QI (cc0) (const_int 0)))]
""
"operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);")
(define_insn ""
[(set (match_operand:QI 0 "register_operand" "=q")
(ltu:QI (cc0) (const_int 0)))]
""
"* return \"setb %0\"; ")
(define_expand "sge"
[(match_dup 1)
(set (match_operand:QI 0 "register_operand" "")
(ge:QI (cc0) (const_int 0)))]
""
"operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);")
(define_insn ""
[(set (match_operand:QI 0 "register_operand" "=q")
(ge:QI (cc0) (const_int 0)))]
""
"*
{
if (TARGET_IEEE_FP && (cc_prev_status.flags & CC_IN_80387))
return AS1 (sete,%0);
OUTPUT_JUMP (\"setge %0\", \"setae %0\", \"setns %0\");
}")
(define_expand "sgeu"
[(match_dup 1)
(set (match_operand:QI 0 "register_operand" "")
(geu:QI (cc0) (const_int 0)))]
""
"operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);")
(define_insn ""
[(set (match_operand:QI 0 "register_operand" "=q")
(geu:QI (cc0) (const_int 0)))]
""
"* return \"setae %0\"; ")
(define_expand "sle"
[(match_dup 1)
(set (match_operand:QI 0 "register_operand" "")
(le:QI (cc0) (const_int 0)))]
""
"operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);")
(define_insn ""
[(set (match_operand:QI 0 "register_operand" "=q")
(le:QI (cc0) (const_int 0)))]
""
"*
{
if (TARGET_IEEE_FP && (cc_prev_status.flags & CC_IN_80387))
return AS1 (setb,%0);
OUTPUT_JUMP (\"setle %0\", \"setbe %0\", NULL_PTR);
}")
(define_expand "sleu"
[(match_dup 1)
(set (match_operand:QI 0 "register_operand" "")
(leu:QI (cc0) (const_int 0)))]
""
"operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);")
(define_insn ""
[(set (match_operand:QI 0 "register_operand" "=q")
(leu:QI (cc0) (const_int 0)))]
""
"* return \"setbe %0\"; ")
;; Basic conditional jump instructions.
;; We ignore the overflow flag for signed branch instructions.
;; For all bCOND expanders, also expand the compare or test insn that
;; generates cc0. Generate an equality comparison if `beq' or `bne'.
(define_expand "beq"
[(match_dup 1)
(set (pc)
(if_then_else (eq (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
if (TARGET_IEEE_FP
&& GET_MODE_CLASS (GET_MODE (i386_compare_op0)) == MODE_FLOAT)
operands[1] = (*i386_compare_gen_eq)(i386_compare_op0, i386_compare_op1);
else
operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);
}")
(define_insn ""
[(set (pc)
(if_then_else (eq (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"*
{
if (cc_prev_status.flags & CC_Z_IN_NOT_C)
return \"jnc %l0\";
else
return \"je %l0\";
}")
(define_expand "bne"
[(match_dup 1)
(set (pc)
(if_then_else (ne (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"
{
if (TARGET_IEEE_FP
&& GET_MODE_CLASS (GET_MODE (i386_compare_op0)) == MODE_FLOAT)
operands[1] = (*i386_compare_gen_eq)(i386_compare_op0, i386_compare_op1);
else
operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);
}")
(define_insn ""
[(set (pc)
(if_then_else (ne (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"*
{
if (cc_prev_status.flags & CC_Z_IN_NOT_C)
return \"jc %l0\";
else
return \"jne %l0\";
}")
(define_expand "bgt"
[(match_dup 1)
(set (pc)
(if_then_else (gt (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);")
(define_insn ""
[(set (pc)
(if_then_else (gt (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"*
{
if (TARGET_IEEE_FP && (cc_prev_status.flags & CC_IN_80387))
return AS1 (je,%l0);
OUTPUT_JUMP (\"jg %l0\", \"ja %l0\", NULL_PTR);
}")
(define_expand "bgtu"
[(match_dup 1)
(set (pc)
(if_then_else (gtu (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);")
(define_insn ""
[(set (pc)
(if_then_else (gtu (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"ja %l0")
(define_expand "blt"
[(match_dup 1)
(set (pc)
(if_then_else (lt (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);")
(define_insn ""
[(set (pc)
(if_then_else (lt (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"*
{
if (TARGET_IEEE_FP && (cc_prev_status.flags & CC_IN_80387))
return AS1 (je,%l0);
OUTPUT_JUMP (\"jl %l0\", \"jb %l0\", \"js %l0\");
}")
(define_expand "bltu"
[(match_dup 1)
(set (pc)
(if_then_else (ltu (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);")
(define_insn ""
[(set (pc)
(if_then_else (ltu (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"jb %l0")
(define_expand "bge"
[(match_dup 1)
(set (pc)
(if_then_else (ge (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);")
(define_insn ""
[(set (pc)
(if_then_else (ge (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"*
{
if (TARGET_IEEE_FP && (cc_prev_status.flags & CC_IN_80387))
return AS1 (je,%l0);
OUTPUT_JUMP (\"jge %l0\", \"jae %l0\", \"jns %l0\");
}")
(define_expand "bgeu"
[(match_dup 1)
(set (pc)
(if_then_else (geu (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);")
(define_insn ""
[(set (pc)
(if_then_else (geu (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"jae %l0")
(define_expand "ble"
[(match_dup 1)
(set (pc)
(if_then_else (le (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);")
(define_insn ""
[(set (pc)
(if_then_else (le (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"*
{
if (TARGET_IEEE_FP && (cc_prev_status.flags & CC_IN_80387))
return AS1 (jb,%l0);
OUTPUT_JUMP (\"jle %l0\", \"jbe %l0\", NULL_PTR);
}")
(define_expand "bleu"
[(match_dup 1)
(set (pc)
(if_then_else (leu (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"operands[1] = (*i386_compare_gen)(i386_compare_op0, i386_compare_op1);")
(define_insn ""
[(set (pc)
(if_then_else (leu (cc0)
(const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"jbe %l0")
;; Negated conditional jump instructions.
(define_insn ""
[(set (pc)
(if_then_else (eq (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
""
"*
{
if (cc_prev_status.flags & CC_Z_IN_NOT_C)
return \"jc %l0\";
else
return \"jne %l0\";
}")
(define_insn ""
[(set (pc)
(if_then_else (ne (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
""
"*
{
if (cc_prev_status.flags & CC_Z_IN_NOT_C)
return \"jnc %l0\";
else
return \"je %l0\";
}")
(define_insn ""
[(set (pc)
(if_then_else (gt (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
""
"*
{
if (TARGET_IEEE_FP && (cc_prev_status.flags & CC_IN_80387))
return AS1 (jne,%l0);
OUTPUT_JUMP (\"jle %l0\", \"jbe %l0\", NULL_PTR);
}")
(define_insn ""
[(set (pc)
(if_then_else (gtu (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
""
"jbe %l0")
(define_insn ""
[(set (pc)
(if_then_else (lt (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
""
"*
{
if (TARGET_IEEE_FP && (cc_prev_status.flags & CC_IN_80387))
return AS1 (jne,%l0);
OUTPUT_JUMP (\"jge %l0\", \"jae %l0\", \"jns %l0\");
}")
(define_insn ""
[(set (pc)
(if_then_else (ltu (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
""
"jae %l0")
(define_insn ""
[(set (pc)
(if_then_else (ge (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
""
"*
{
if (TARGET_IEEE_FP && (cc_prev_status.flags & CC_IN_80387))
return AS1 (jne,%l0);
OUTPUT_JUMP (\"jl %l0\", \"jb %l0\", \"js %l0\");
}")
(define_insn ""
[(set (pc)
(if_then_else (geu (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
""
"jb %l0")
(define_insn ""
[(set (pc)
(if_then_else (le (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
""
"*
{
if (TARGET_IEEE_FP && (cc_prev_status.flags & CC_IN_80387))
return AS1 (jae,%l0);
OUTPUT_JUMP (\"jg %l0\", \"ja %l0\", NULL_PTR);
}")
(define_insn ""
[(set (pc)
(if_then_else (leu (cc0)
(const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
""
"ja %l0")
;; Unconditional and other jump instructions
(define_insn "jump"
[(set (pc)
(label_ref (match_operand 0 "" "")))]
""
"jmp %l0")
(define_insn "indirect_jump"
[(set (pc) (match_operand:SI 0 "general_operand" "rm"))]
""
"*
{
CC_STATUS_INIT;
return AS1 (jmp,%*%0);
}")
;; Implement switch statements when generating PIC code. Switches are
;; implemented by `tablejump' when not using -fpic.
;; Emit code here to do the range checking and make the index zero based.
(define_expand "casesi"
[(set (match_dup 5)
(minus:SI (match_operand:SI 0 "general_operand" "")
(match_operand:SI 1 "general_operand" "")))
(set (cc0)
(compare:CC (match_dup 5)
(match_operand:SI 2 "general_operand" "")))
(set (pc)
(if_then_else (gtu (cc0)
(const_int 0))
(label_ref (match_operand 4 "" ""))
(pc)))
(parallel
[(set (pc)
(minus:SI (reg:SI 3)
(mem:SI (plus:SI (mult:SI (match_dup 5)
(const_int 4))
(label_ref (match_operand 3 "" ""))))))
(clobber (match_scratch:SI 6 ""))])]
"flag_pic"
"
{
operands[5] = gen_reg_rtx (SImode);
current_function_uses_pic_offset_table = 1;
}")
;; Implement a casesi insn.
;; Each entry in the "addr_diff_vec" looks like this as the result of the
;; two rules below:
;;
;; .long _GLOBAL_OFFSET_TABLE_+[.-.L2]
;;
;; 1. An expression involving an external reference may only use the
;; addition operator, and only with an assembly-time constant.
;; The example above satisfies this because ".-.L2" is a constant.
;;
;; 2. The symbol _GLOBAL_OFFSET_TABLE_ is magic, and at link time is
;; given the value of "GOT - .", where GOT is the actual address of
;; the Global Offset Table. Therefore, the .long above actually
;; stores the value "( GOT - . ) + [ . - .L2 ]", or "GOT - .L2". The
;; expression "GOT - .L2" by itself would generate an error from as(1).
;;
;; The pattern below emits code that looks like this:
;;
;; movl %ebx,reg
;; subl TABLE@GOTOFF(%ebx,index,4),reg
;; jmp reg
;;
;; The addr_diff_vec contents may be directly referenced with @GOTOFF, since
;; the addr_diff_vec is known to be part of this module.
;;
;; The subl above calculates "GOT - (( GOT - . ) + [ . - .L2 ])", which
;; evaluates to just ".L2".
(define_insn ""
[(set (pc)
(minus:SI (reg:SI 3)
(mem:SI (plus:SI
(mult:SI (match_operand:SI 0 "register_operand" "r")
(const_int 4))
(label_ref (match_operand 1 "" ""))))))
(clobber (match_scratch:SI 2 "=&r"))]
""
"*
{
rtx xops[4];
xops[0] = operands[0];
xops[1] = operands[1];
xops[2] = operands[2];
xops[3] = pic_offset_table_rtx;
output_asm_insn (AS2 (mov%L2,%3,%2), xops);
output_asm_insn (\"sub%L2 %l1@GOTOFF(%3,%0,4),%2\", xops);
output_asm_insn (AS1 (jmp,%*%2), xops);
ASM_OUTPUT_ALIGN_CODE (asm_out_file);
RET;
}")
(define_insn "tablejump"
[(set (pc) (match_operand:SI 0 "general_operand" "rm"))
(use (label_ref (match_operand 1 "" "")))]
""
"*
{
CC_STATUS_INIT;
return AS1 (jmp,%*%0);
}")
;; Call insns.
;; If generating PIC code, the predicate indirect_operand will fail
;; for operands[0] containing symbolic references on all of the named
;; call* patterns. Each named pattern is followed by an unnamed pattern
;; that matches any call to a symbolic CONST (ie, a symbol_ref). The
;; unnamed patterns are only used while generating PIC code, because
;; otherwise the named patterns match.
;; Call subroutine returning no value.
(define_expand "call_pop"
[(parallel [(call (match_operand:QI 0 "indirect_operand" "")
(match_operand:SI 1 "general_operand" ""))
(set (reg:SI 7)
(plus:SI (reg:SI 7)
(match_operand:SI 3 "immediate_operand" "")))])]
""
"
{
rtx addr;
if (flag_pic)
current_function_uses_pic_offset_table = 1;
/* With half-pic, force the address into a register. */
addr = XEXP (operands[0], 0);
if (GET_CODE (addr) != REG && HALF_PIC_P () && !CONSTANT_ADDRESS_P (addr))
XEXP (operands[0], 0) = force_reg (Pmode, addr);
if (! expander_call_insn_operand (operands[0], QImode))
operands[0]
= change_address (operands[0], VOIDmode,
copy_to_mode_reg (Pmode, XEXP (operands[0], 0)));
}")
(define_insn ""
[(call (match_operand:QI 0 "call_insn_operand" "m")
(match_operand:SI 1 "general_operand" "g"))
(set (reg:SI 7) (plus:SI (reg:SI 7)
(match_operand:SI 3 "immediate_operand" "i")))]
""
"*
{
if (GET_CODE (operands[0]) == MEM
&& ! CONSTANT_ADDRESS_P (XEXP (operands[0], 0)))
{
operands[0] = XEXP (operands[0], 0);
return AS1 (call,%*%0);
}
else
return AS1 (call,%P0);
}")
(define_insn ""
[(call (mem:QI (match_operand:SI 0 "symbolic_operand" ""))
(match_operand:SI 1 "general_operand" "g"))
(set (reg:SI 7) (plus:SI (reg:SI 7)
(match_operand:SI 3 "immediate_operand" "i")))]
"!HALF_PIC_P ()"
"call %P0")
(define_expand "call"
[(call (match_operand:QI 0 "indirect_operand" "")
(match_operand:SI 1 "general_operand" ""))]
;; Operand 1 not used on the i386.
""
"
{
rtx addr;
if (flag_pic)
current_function_uses_pic_offset_table = 1;
/* With half-pic, force the address into a register. */
addr = XEXP (operands[0], 0);
if (GET_CODE (addr) != REG && HALF_PIC_P () && !CONSTANT_ADDRESS_P (addr))
XEXP (operands[0], 0) = force_reg (Pmode, addr);
if (! expander_call_insn_operand (operands[0], QImode))
operands[0]
= change_address (operands[0], VOIDmode,
copy_to_mode_reg (Pmode, XEXP (operands[0], 0)));
}")
(define_insn ""
[(call (match_operand:QI 0 "call_insn_operand" "m")
(match_operand:SI 1 "general_operand" "g"))]
;; Operand 1 not used on the i386.
""
"*
{
if (GET_CODE (operands[0]) == MEM
&& ! CONSTANT_ADDRESS_P (XEXP (operands[0], 0)))
{
operands[0] = XEXP (operands[0], 0);
return AS1 (call,%*%0);
}
else
return AS1 (call,%P0);
}")
(define_insn ""
[(call (mem:QI (match_operand:SI 0 "symbolic_operand" ""))
(match_operand:SI 1 "general_operand" "g"))]
;; Operand 1 not used on the i386.
"!HALF_PIC_P ()"
"call %P0")
;; Call subroutine, returning value in operand 0
;; (which must be a hard register).
(define_expand "call_value_pop"
[(parallel [(set (match_operand 0 "" "")
(call (match_operand:QI 1 "indirect_operand" "")
(match_operand:SI 2 "general_operand" "")))
(set (reg:SI 7)
(plus:SI (reg:SI 7)
(match_operand:SI 4 "immediate_operand" "")))])]
""
"
{
rtx addr;
if (flag_pic)
current_function_uses_pic_offset_table = 1;
/* With half-pic, force the address into a register. */
addr = XEXP (operands[1], 0);
if (GET_CODE (addr) != REG && HALF_PIC_P () && !CONSTANT_ADDRESS_P (addr))
XEXP (operands[1], 0) = force_reg (Pmode, addr);
if (! expander_call_insn_operand (operands[1], QImode))
operands[1]
= change_address (operands[1], VOIDmode,
copy_to_mode_reg (Pmode, XEXP (operands[1], 0)));
}")
(define_insn ""
[(set (match_operand 0 "" "=rf")
(call (match_operand:QI 1 "call_insn_operand" "m")
(match_operand:SI 2 "general_operand" "g")))
(set (reg:SI 7) (plus:SI (reg:SI 7)
(match_operand:SI 4 "immediate_operand" "i")))]
""
"*
{
if (GET_CODE (operands[1]) == MEM
&& ! CONSTANT_ADDRESS_P (XEXP (operands[1], 0)))
{
operands[1] = XEXP (operands[1], 0);
output_asm_insn (AS1 (call,%*%1), operands);
}
else
output_asm_insn (AS1 (call,%P1), operands);
RET;
}")
(define_insn ""
[(set (match_operand 0 "" "=rf")
(call (mem:QI (match_operand:SI 1 "symbolic_operand" ""))
(match_operand:SI 2 "general_operand" "g")))
(set (reg:SI 7) (plus:SI (reg:SI 7)
(match_operand:SI 4 "immediate_operand" "i")))]
"!HALF_PIC_P ()"
"call %P1")
(define_expand "call_value"
[(set (match_operand 0 "" "")
(call (match_operand:QI 1 "indirect_operand" "")
(match_operand:SI 2 "general_operand" "")))]
;; Operand 2 not used on the i386.
""
"
{
rtx addr;
if (flag_pic)
current_function_uses_pic_offset_table = 1;
/* With half-pic, force the address into a register. */
addr = XEXP (operands[1], 0);
if (GET_CODE (addr) != REG && HALF_PIC_P () && !CONSTANT_ADDRESS_P (addr))
XEXP (operands[1], 0) = force_reg (Pmode, addr);
if (! expander_call_insn_operand (operands[1], QImode))
operands[1]
= change_address (operands[1], VOIDmode,
copy_to_mode_reg (Pmode, XEXP (operands[1], 0)));
}")
(define_insn ""
[(set (match_operand 0 "" "=rf")
(call (match_operand:QI 1 "call_insn_operand" "m")
(match_operand:SI 2 "general_operand" "g")))]
;; Operand 2 not used on the i386.
""
"*
{
if (GET_CODE (operands[1]) == MEM
&& ! CONSTANT_ADDRESS_P (XEXP (operands[1], 0)))
{
operands[1] = XEXP (operands[1], 0);
output_asm_insn (AS1 (call,%*%1), operands);
}
else
output_asm_insn (AS1 (call,%P1), operands);
RET;
}")
(define_insn ""
[(set (match_operand 0 "" "=rf")
(call (mem:QI (match_operand:SI 1 "symbolic_operand" ""))
(match_operand:SI 2 "general_operand" "g")))]
;; Operand 2 not used on the i386.
"!HALF_PIC_P ()"
"call %P1")
(define_expand "untyped_call"
[(parallel [(call (match_operand:QI 0 "indirect_operand" "")
(const_int 0))
(match_operand:BLK 1 "memory_operand" "")
(match_operand 2 "" "")])]
""
"
{
rtx addr;
if (flag_pic)
current_function_uses_pic_offset_table = 1;
/* With half-pic, force the address into a register. */
addr = XEXP (operands[0], 0);
if (GET_CODE (addr) != REG && HALF_PIC_P () && !CONSTANT_ADDRESS_P (addr))
XEXP (operands[0], 0) = force_reg (Pmode, addr);
operands[1] = change_address (operands[1], DImode, XEXP (operands[1], 0));
if (! expander_call_insn_operand (operands[1], QImode))
operands[1]
= change_address (operands[1], VOIDmode,
copy_to_mode_reg (Pmode, XEXP (operands[1], 0)));
}")
(define_insn ""
[(call (match_operand:QI 0 "call_insn_operand" "m")
(const_int 0))
(match_operand:DI 1 "memory_operand" "o")
(match_operand 2 "" "")]
""
"*
{
rtx addr = operands[1];
if (GET_CODE (operands[0]) == MEM
&& ! CONSTANT_ADDRESS_P (XEXP (operands[0], 0)))
{
operands[0] = XEXP (operands[0], 0);
output_asm_insn (AS1 (call,%*%0), operands);
}
else
output_asm_insn (AS1 (call,%P0), operands);
operands[2] = gen_rtx (REG, SImode, 0);
output_asm_insn (AS2 (mov%L2,%2,%1), operands);
operands[2] = gen_rtx (REG, SImode, 1);
operands[1] = adj_offsettable_operand (addr, 4);
output_asm_insn (AS2 (mov%L2,%2,%1), operands);
operands[1] = adj_offsettable_operand (addr, 8);
return AS1 (fnsave,%1);
}")
(define_insn ""
[(call (mem:QI (match_operand:SI 0 "symbolic_operand" ""))
(const_int 0))
(match_operand:DI 1 "memory_operand" "o")
(match_operand 2 "" "")]
"!HALF_PIC_P ()"
"*
{
rtx addr = operands[1];
output_asm_insn (AS1 (call,%P0), operands);
operands[2] = gen_rtx (REG, SImode, 0);
output_asm_insn (AS2 (mov%L2,%2,%1), operands);
operands[2] = gen_rtx (REG, SImode, 1);
operands[1] = adj_offsettable_operand (addr, 4);
output_asm_insn (AS2 (mov%L2,%2,%1), operands);
operands[1] = adj_offsettable_operand (addr, 8);
return AS1 (fnsave,%1);
}")
;; We use fnsave and frstor to save and restore the floating point result.
;; These are expensive instructions and require a large space to save the
;; FPU state. An more complicated alternative is to use fnstenv to store
;; the FPU environment and test whether the stack top is valid. Store the
;; result of the test, and if it is valid, pop and save the value. The
;; untyped_return would check the test and optionally push the saved value.
(define_expand "untyped_return"
[(match_operand:BLK 0 "memory_operand" "")
(match_operand 1 "" "")]
""
"
{
rtx valreg1 = gen_rtx (REG, SImode, 0);
rtx valreg2 = gen_rtx (REG, SImode, 1);
rtx result = operands[0];
/* Restore the FPU state. */
emit_insn (gen_update_return (change_address (result, SImode,
plus_constant (XEXP (result, 0),
8))));
/* Reload the function value registers. */
emit_move_insn (valreg1, change_address (result, SImode, XEXP (result, 0)));
emit_move_insn (valreg2,
change_address (result, SImode,
plus_constant (XEXP (result, 0), 4)));
/* Put USE insns before the return. */
emit_insn (gen_rtx (USE, VOIDmode, valreg1));
emit_insn (gen_rtx (USE, VOIDmode, valreg2));
/* Construct the return. */
expand_null_return ();
DONE;
}")
(define_insn "update_return"
[(unspec:SI [(match_operand:SI 0 "memory_operand" "m")] 0)]
""
"frstor %0")
;; Insn emitted into the body of a function to return from a function.
;; This is only done if the function's epilogue is known to be simple.
;; See comments for simple_386_epilogue in i386.c.
(define_insn "return"
[(return)]
"simple_386_epilogue ()"
"*
{
function_epilogue (asm_out_file, get_frame_size ());
RET;
}")
(define_insn "nop"
[(const_int 0)]
""
"nop")
(define_expand "movstrsi"
[(parallel [(set (match_operand:BLK 0 "memory_operand" "")
(match_operand:BLK 1 "memory_operand" ""))
(use (match_operand:SI 2 "const_int_operand" ""))
(use (match_operand:SI 3 "const_int_operand" ""))
(clobber (match_scratch:SI 4 ""))
(clobber (match_dup 5))
(clobber (match_dup 6))])]
""
"
{
rtx addr0, addr1;
if (GET_CODE (operands[2]) != CONST_INT)
FAIL;
addr0 = copy_to_mode_reg (Pmode, XEXP (operands[0], 0));
addr1 = copy_to_mode_reg (Pmode, XEXP (operands[1], 0));
operands[5] = addr0;
operands[6] = addr1;
operands[0] = gen_rtx (MEM, BLKmode, addr0);
operands[1] = gen_rtx (MEM, BLKmode, addr1);
}")
;; It might seem that operands 0 & 1 could use predicate register_operand.
;; But strength reduction might offset the MEM expression. So we let
;; reload put the address into %edi & %esi.
(define_insn ""
[(set (mem:BLK (match_operand:SI 0 "address_operand" "D"))
(mem:BLK (match_operand:SI 1 "address_operand" "S")))
(use (match_operand:SI 2 "const_int_operand" "n"))
(use (match_operand:SI 3 "immediate_operand" "i"))
(clobber (match_scratch:SI 4 "=&c"))
(clobber (match_dup 0))
(clobber (match_dup 1))]
""
"*
{
rtx xops[2];
output_asm_insn (\"cld\", operands);
if (GET_CODE (operands[2]) == CONST_INT)
{
if (INTVAL (operands[2]) & ~0x03)
{
xops[0] = GEN_INT ((INTVAL (operands[2]) >> 2) & 0x3fffffff);
xops[1] = operands[4];
output_asm_insn (AS2 (mov%L1,%0,%1), xops);
#ifdef INTEL_SYNTAX
output_asm_insn (\"rep movsd\", xops);
#else
output_asm_insn (\"rep\;movsl\", xops);
#endif
}
if (INTVAL (operands[2]) & 0x02)
output_asm_insn (\"movsw\", operands);
if (INTVAL (operands[2]) & 0x01)
output_asm_insn (\"movsb\", operands);
}
else
abort ();
RET;
}")
(define_expand "cmpstrsi"
[(parallel [(set (match_operand:SI 0 "general_operand" "")
(compare:SI (match_operand:BLK 1 "general_operand" "")
(match_operand:BLK 2 "general_operand" "")))
(use (match_operand:SI 3 "general_operand" ""))
(use (match_operand:SI 4 "immediate_operand" ""))
(clobber (match_dup 5))
(clobber (match_dup 6))
(clobber (match_dup 3))])]
""
"
{
rtx addr1, addr2;
addr1 = copy_to_mode_reg (Pmode, XEXP (operands[1], 0));
addr2 = copy_to_mode_reg (Pmode, XEXP (operands[2], 0));
operands[3] = copy_to_mode_reg (SImode, operands[3]);
operands[5] = addr1;
operands[6] = addr2;
operands[1] = gen_rtx (MEM, BLKmode, addr1);
operands[2] = gen_rtx (MEM, BLKmode, addr2);
}")
;; memcmp recognizers. The `cmpsb' opcode does nothing if the count is
;; zero. Emit extra code to make sure that a zero-length compare is EQ.
;; It might seem that operands 0 & 1 could use predicate register_operand.
;; But strength reduction might offset the MEM expression. So we let
;; reload put the address into %edi & %esi.
;; ??? Most comparisons have a constant length, and it's therefore
;; possible to know that the length is non-zero, and to avoid the extra
;; code to handle zero-length compares.
(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=&r")
(compare:SI (mem:BLK (match_operand:SI 1 "address_operand" "S"))
(mem:BLK (match_operand:SI 2 "address_operand" "D"))))
(use (match_operand:SI 3 "register_operand" "c"))
(use (match_operand:SI 4 "immediate_operand" "i"))
(clobber (match_dup 1))
(clobber (match_dup 2))
(clobber (match_dup 3))]
""
"*
{
rtx xops[4], label;
label = gen_label_rtx ();
output_asm_insn (\"cld\", operands);
output_asm_insn (AS2 (xor%L0,%0,%0), operands);
output_asm_insn (\"repz\;cmps%B2\", operands);
output_asm_insn (\"je %l0\", &label);
xops[0] = operands[0];
xops[1] = gen_rtx (MEM, QImode,
gen_rtx (PLUS, SImode, operands[1], constm1_rtx));
xops[2] = gen_rtx (MEM, QImode,
gen_rtx (PLUS, SImode, operands[2], constm1_rtx));
xops[3] = operands[3];
output_asm_insn (AS2 (movz%B1%L0,%1,%0), xops);
output_asm_insn (AS2 (movz%B2%L3,%2,%3), xops);
output_asm_insn (AS2 (sub%L0,%3,%0), xops);
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, \"L\", CODE_LABEL_NUMBER (label));
RET;
}")
(define_insn ""
[(set (cc0)
(compare:SI (mem:BLK (match_operand:SI 0 "address_operand" "S"))
(mem:BLK (match_operand:SI 1 "address_operand" "D"))))
(use (match_operand:SI 2 "register_operand" "c"))
(use (match_operand:SI 3 "immediate_operand" "i"))
(clobber (match_dup 0))
(clobber (match_dup 1))
(clobber (match_dup 2))]
""
"*
{
rtx xops[2];
cc_status.flags |= CC_NOT_SIGNED;
xops[0] = gen_rtx (REG, QImode, 0);
xops[1] = CONST0_RTX (QImode);
output_asm_insn (\"cld\", operands);
output_asm_insn (AS2 (test%B0,%1,%0), xops);
return \"repz\;cmps%B2\";
}")
(define_expand "ffssi2"
[(parallel [(set (match_dup 3)
(plus:SI (ffs:SI (match_operand:SI 1 "general_operand" ""))
(const_int -1)))
(clobber (match_scratch:SI 2 ""))])
(set (match_operand:SI 0 "general_operand" "")
(plus:SI (match_dup 3) (const_int 1)))]
""
"operands[3] = gen_reg_rtx (SImode);")
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=&r")
(plus:SI (ffs:SI (match_operand:SI 1 "general_operand" "rm"))
(const_int -1)))
(clobber (match_scratch:SI 2 "=r"))]
""
"*
{
rtx xops[2];
xops[0] = const1_rtx;
xops[1] = operands[1];
output_asm_insn (AS2 (bsf%L1,%1,%0), operands);
output_asm_insn (AS2 (cmp%L1,%0,%1), xops);
output_asm_insn (AS2 (sbb%L0,%2,%2), operands);
output_asm_insn (AS2 (or%L0,%2,%0), operands);
return \"\";
}")
(define_expand "ffshi2"
[(parallel [(set (match_dup 3)
(plus:HI (ffs:HI (match_operand:HI 1 "general_operand" ""))
(const_int -1)))
(clobber (match_scratch:HI 2 ""))])
(set (match_operand:HI 0 "general_operand" "")
(plus:HI (match_dup 3) (const_int 1)))]
""
"operands[3] = gen_reg_rtx (HImode);")
(define_insn ""
[(set (match_operand:HI 0 "register_operand" "=&r")
(plus:HI (ffs:HI (match_operand:HI 1 "general_operand" "rm"))
(const_int -1)))
(clobber (match_scratch:HI 2 "=r"))]
""
"*
{
rtx xops[2];
xops[0] = const1_rtx;
xops[1] = operands[1];
output_asm_insn (AS2 (bsf%W1,%1,%0), operands);
output_asm_insn (AS2 (cmp%W1,%0,%1), xops);
output_asm_insn (AS2 (sbb%W0,%2,%2), operands);
output_asm_insn (AS2 (or%W0,%2,%0), operands);
return \"\";
}")
;; These patterns match the binary 387 instructions for addM3, subM3,
;; mulM3 and divM3. There are three patterns for each of DFmode and
;; SFmode. The first is the normal insn, the second the same insn but
;; with one operand a conversion, and the third the same insn but with
;; the other operand a conversion. The conversion may be SFmode or
;; SImode if the target mode DFmode, but only SImode if the target mode
;; is SFmode.
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=f,f")
(match_operator:DF 3 "binary_387_op"
[(match_operand:DF 1 "nonimmediate_operand" "0,fm")
(match_operand:DF 2 "nonimmediate_operand" "fm,0")]))]
"TARGET_80387"
"* return (char *) output_387_binary_op (insn, operands);")
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=f")
(match_operator:DF 3 "binary_387_op"
[(float:DF (match_operand:SI 1 "general_operand" "rm"))
(match_operand:DF 2 "general_operand" "0")]))]
"TARGET_80387"
"* return (char *) output_387_binary_op (insn, operands);")
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=f,f")
(match_operator:DF 3 "binary_387_op"
[(float_extend:DF (match_operand:SF 1 "general_operand" "fm,0"))
(match_operand:DF 2 "general_operand" "0,f")]))]
"TARGET_80387"
"* return (char *) output_387_binary_op (insn, operands);")
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=f")
(match_operator:DF 3 "binary_387_op"
[(match_operand:DF 1 "general_operand" "0")
(float:DF (match_operand:SI 2 "general_operand" "rm"))]))]
"TARGET_80387"
"* return (char *) output_387_binary_op (insn, operands);")
(define_insn ""
[(set (match_operand:DF 0 "register_operand" "=f,f")
(match_operator:DF 3 "binary_387_op"
[(match_operand:DF 1 "general_operand" "0,f")
(float_extend:DF
(match_operand:SF 2 "general_operand" "fm,0"))]))]
"TARGET_80387"
"* return (char *) output_387_binary_op (insn, operands);")
(define_insn ""
[(set (match_operand:SF 0 "register_operand" "=f,f")
(match_operator:SF 3 "binary_387_op"
[(match_operand:SF 1 "nonimmediate_operand" "0,fm")
(match_operand:SF 2 "nonimmediate_operand" "fm,0")]))]
"TARGET_80387"
"* return (char *) output_387_binary_op (insn, operands);")
(define_insn ""
[(set (match_operand:SF 0 "register_operand" "=f")
(match_operator:SF 3 "binary_387_op"
[(float:SF (match_operand:SI 1 "general_operand" "rm"))
(match_operand:SF 2 "general_operand" "0")]))]
"TARGET_80387"
"* return (char *) output_387_binary_op (insn, operands);")
(define_insn ""
[(set (match_operand:SF 0 "register_operand" "=f")
(match_operator:SF 3 "binary_387_op"
[(match_operand:SF 1 "general_operand" "0")
(float:SF (match_operand:SI 2 "general_operand" "rm"))]))]
"TARGET_80387"
"* return (char *) output_387_binary_op (insn, operands);")
(define_expand "strlensi"
[(parallel [(set (match_dup 4)
(unspec:SI [(mem:BLK (match_operand:BLK 1 "general_operand" ""))
(match_operand:QI 2 "register_operand" "")
(match_operand:SI 3 "immediate_operand" "")] 0))
(clobber (match_dup 1))])
(set (match_dup 5)
(not:SI (match_dup 4)))
(set (match_operand:SI 0 "register_operand" "")
(minus:SI (match_dup 5)
(const_int 1)))]
""
"
{
operands[1] = copy_to_mode_reg (SImode, XEXP (operands[1], 0));
operands[4] = gen_reg_rtx (SImode);
operands[5] = gen_reg_rtx (SImode);
}")
;; It might seem that operands 0 & 1 could use predicate register_operand.
;; But strength reduction might offset the MEM expression. So we let
;; reload put the address into %edi.
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=&c")
(unspec:SI [(mem:BLK (match_operand:SI 1 "address_operand" "D"))
(match_operand:QI 2 "register_operand" "a")
(match_operand:SI 3 "immediate_operand" "i")] 0))
(clobber (match_dup 1))]
""
"*
{
rtx xops[2];
xops[0] = operands[0];
xops[1] = constm1_rtx;
output_asm_insn (\"cld\", operands);
output_asm_insn (AS2 (mov%L0,%1,%0), xops);
return \"repnz\;scas%B2\";
}")