NetBSD/sys/dev/pci/if_ale.c

2038 lines
56 KiB
C
Raw Normal View History

/* $NetBSD: if_ale.c,v 1.9 2009/10/08 08:57:19 cegger Exp $ */
2009-04-25 21:04:40 +04:00
/*-
* Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $
*/
/* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
2009-04-25 21:04:40 +04:00
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_ale.c,v 1.9 2009/10/08 08:57:19 cegger Exp $");
2009-04-25 21:04:40 +04:00
#include "bpfilter.h"
#include "vlan.h"
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/queue.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/callout.h>
#include <sys/socket.h>
#include <sys/bus.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_llc.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#endif
#include <net/if_types.h>
#include <net/if_vlanvar.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <sys/rnd.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/if_alereg.h>
static int ale_match(device_t, cfdata_t, void *);
static void ale_attach(device_t, device_t, void *);
static int ale_detach(device_t, int);
static int ale_miibus_readreg(device_t, int, int);
static void ale_miibus_writereg(device_t, int, int, int);
static void ale_miibus_statchg(device_t);
static int ale_init(struct ifnet *);
static void ale_start(struct ifnet *);
static int ale_ioctl(struct ifnet *, u_long, void *);
static void ale_watchdog(struct ifnet *);
static int ale_mediachange(struct ifnet *);
static void ale_mediastatus(struct ifnet *, struct ifmediareq *);
static int ale_intr(void *);
static int ale_rxeof(struct ale_softc *sc);
static void ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
uint32_t, uint32_t *);
static void ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
static void ale_txeof(struct ale_softc *);
static int ale_dma_alloc(struct ale_softc *);
static void ale_dma_free(struct ale_softc *);
static int ale_encap(struct ale_softc *, struct mbuf **);
static void ale_init_rx_pages(struct ale_softc *);
static void ale_init_tx_ring(struct ale_softc *);
static void ale_stop(struct ifnet *, int);
static void ale_tick(void *);
static void ale_get_macaddr(struct ale_softc *);
static void ale_mac_config(struct ale_softc *);
static void ale_phy_reset(struct ale_softc *);
static void ale_reset(struct ale_softc *);
static void ale_rxfilter(struct ale_softc *);
static void ale_rxvlan(struct ale_softc *);
static void ale_stats_clear(struct ale_softc *);
static void ale_stats_update(struct ale_softc *);
static void ale_stop_mac(struct ale_softc *);
CFATTACH_DECL_NEW(ale, sizeof(struct ale_softc),
ale_match, ale_attach, ale_detach, NULL);
int aledebug = 0;
#define DPRINTF(x) do { if (aledebug) printf x; } while (0)
#define ETHER_ALIGN 2
#define ALE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
static int
ale_miibus_readreg(device_t dev, int phy, int reg)
{
struct ale_softc *sc = device_private(dev);
uint32_t v;
int i;
if (phy != sc->ale_phyaddr)
return 0;
if (sc->ale_flags & ALE_FLAG_FASTETHER) {
switch (reg) {
case MII_100T2CR:
case MII_100T2SR:
case MII_EXTSR:
return 0;
default:
break;
}
}
CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
DELAY(5);
v = CSR_READ_4(sc, ALE_MDIO);
if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
break;
}
if (i == 0) {
printf("%s: phy read timeout: phy %d, reg %d\n",
device_xname(sc->sc_dev), phy, reg);
return 0;
}
return (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
}
static void
ale_miibus_writereg(device_t dev, int phy, int reg, int val)
{
struct ale_softc *sc = device_private(dev);
uint32_t v;
int i;
if (phy != sc->ale_phyaddr)
return;
if (sc->ale_flags & ALE_FLAG_FASTETHER) {
switch (reg) {
case MII_100T2CR:
case MII_100T2SR:
case MII_EXTSR:
return;
default:
break;
}
}
CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
(val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
DELAY(5);
v = CSR_READ_4(sc, ALE_MDIO);
if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
break;
}
if (i == 0)
printf("%s: phy write timeout: phy %d, reg %d\n",
device_xname(sc->sc_dev), phy, reg);
}
static void
ale_miibus_statchg(device_t dev)
{
struct ale_softc *sc = device_private(dev);
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct mii_data *mii;
uint32_t reg;
if ((ifp->if_flags & IFF_RUNNING) == 0)
return;
mii = &sc->sc_miibus;
sc->ale_flags &= ~ALE_FLAG_LINK;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
sc->ale_flags |= ALE_FLAG_LINK;
break;
case IFM_1000_T:
if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
sc->ale_flags |= ALE_FLAG_LINK;
break;
default:
break;
}
}
/* Stop Rx/Tx MACs. */
ale_stop_mac(sc);
/* Program MACs with resolved speed/duplex/flow-control. */
if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
ale_mac_config(sc);
/* Reenable Tx/Rx MACs. */
reg = CSR_READ_4(sc, ALE_MAC_CFG);
reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
}
}
void
ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct ale_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->sc_miibus;
mii_pollstat(mii);
ifmr->ifm_status = mii->mii_media_status;
ifmr->ifm_active = mii->mii_media_active;
}
int
ale_mediachange(struct ifnet *ifp)
{
struct ale_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->sc_miibus;
int error;
if (mii->mii_instance != 0) {
struct mii_softc *miisc;
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
mii_phy_reset(miisc);
}
error = mii_mediachg(mii);
return error;
}
int
ale_match(device_t dev, cfdata_t match, void *aux)
{
struct pci_attach_args *pa = aux;
return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_L1E);
}
void
ale_get_macaddr(struct ale_softc *sc)
{
uint32_t ea[2], reg;
int i, vpdc;
reg = CSR_READ_4(sc, ALE_SPI_CTRL);
if ((reg & SPI_VPD_ENB) != 0) {
reg &= ~SPI_VPD_ENB;
CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
}
if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_VPD,
&vpdc, NULL)) {
/*
* PCI VPD capability found, let TWSI reload EEPROM.
* This will set ethernet address of controller.
*/
CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
TWSI_CTRL_SW_LD_START);
for (i = 100; i > 0; i--) {
DELAY(1000);
reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
if ((reg & TWSI_CTRL_SW_LD_START) == 0)
break;
}
if (i == 0)
printf("%s: reloading EEPROM timeout!\n",
device_xname(sc->sc_dev));
} else {
if (aledebug)
printf("%s: PCI VPD capability not found!\n",
device_xname(sc->sc_dev));
}
ea[0] = CSR_READ_4(sc, ALE_PAR0);
ea[1] = CSR_READ_4(sc, ALE_PAR1);
sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
}
void
ale_phy_reset(struct ale_softc *sc)
{
/* Reset magic from Linux. */
CSR_WRITE_2(sc, ALE_GPHY_CTRL,
GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
GPHY_CTRL_PHY_PLL_ON);
DELAY(1000);
CSR_WRITE_2(sc, ALE_GPHY_CTRL,
GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
DELAY(1000);
#define ATPHY_DBG_ADDR 0x1D
#define ATPHY_DBG_DATA 0x1E
/* Enable hibernation mode. */
ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
ATPHY_DBG_ADDR, 0x0B);
ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
ATPHY_DBG_DATA, 0xBC00);
/* Set Class A/B for all modes. */
ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
ATPHY_DBG_ADDR, 0x00);
ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
ATPHY_DBG_DATA, 0x02EF);
/* Enable 10BT power saving. */
ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
ATPHY_DBG_ADDR, 0x12);
ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
ATPHY_DBG_DATA, 0x4C04);
/* Adjust 1000T power. */
ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
ATPHY_DBG_ADDR, 0x04);
ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
ATPHY_DBG_ADDR, 0x8BBB);
/* 10BT center tap voltage. */
ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
ATPHY_DBG_ADDR, 0x05);
ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
ATPHY_DBG_ADDR, 0x2C46);
#undef ATPHY_DBG_ADDR
#undef ATPHY_DBG_DATA
DELAY(1000);
}
void
ale_attach(device_t parent, device_t self, void *aux)
{
struct ale_softc *sc = device_private(self);
struct pci_attach_args *pa = aux;
pci_chipset_tag_t pc = pa->pa_pc;
pci_intr_handle_t ih;
const char *intrstr;
struct ifnet *ifp;
pcireg_t memtype;
int mii_flags, error = 0;
uint32_t rxf_len, txf_len;
2009-07-28 10:02:34 +04:00
const char *chipname;
aprint_naive("\n");
aprint_normal(": Attansic/Atheros L1E Ethernet\n");
sc->sc_dev = self;
sc->sc_dmat = pa->pa_dmat;
sc->sc_pct = pa->pa_pc;
sc->sc_pcitag = pa->pa_tag;
/*
* Allocate IO memory
*/
memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, ALE_PCIR_BAR);
switch (memtype) {
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
break;
default:
aprint_error_dev(self, "invalid base address register\n");
break;
}
if (pci_mapreg_map(pa, ALE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
&sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
aprint_error_dev(self, "could not map mem space\n");
return;
}
if (pci_intr_map(pa, &ih) != 0) {
aprint_error_dev(self, "could not map interrupt\n");
goto fail;
}
/*
* Allocate IRQ
*/
intrstr = pci_intr_string(sc->sc_pct, ih);
sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, ale_intr, sc);
if (sc->sc_irq_handle == NULL) {
aprint_error_dev(self, "could not establish interrupt");
if (intrstr != NULL)
aprint_error(" at %s", intrstr);
aprint_error("\n");
goto fail;
}
/* Set PHY address. */
sc->ale_phyaddr = ALE_PHY_ADDR;
/* Reset PHY. */
ale_phy_reset(sc);
/* Reset the ethernet controller. */
ale_reset(sc);
/* Get PCI and chip id/revision. */
sc->ale_rev = PCI_REVISION(pa->pa_class);
if (sc->ale_rev >= 0xF0) {
/* L2E Rev. B. AR8114 */
sc->ale_flags |= ALE_FLAG_FASTETHER;
2009-07-28 10:02:34 +04:00
chipname = "AR8114 (L2E RevB)";
} else {
if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
/* L1E AR8121 */
sc->ale_flags |= ALE_FLAG_JUMBO;
2009-07-28 10:02:34 +04:00
chipname = "AR8121 (L1E)";
} else {
/* L2E Rev. A. AR8113 */
sc->ale_flags |= ALE_FLAG_FASTETHER;
2009-07-28 10:02:34 +04:00
chipname = "AR8113 (L2E RevA)";
}
}
2009-07-28 10:02:34 +04:00
aprint_normal_dev(self, "%s, %s\n", chipname, intrstr);
/*
* All known controllers seems to require 4 bytes alignment
* of Tx buffers to make Tx checksum offload with custom
* checksum generation method work.
*/
sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
/*
* All known controllers seems to have issues on Rx checksum
* offload for fragmented IP datagrams.
*/
sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
/*
* Don't use Tx CMB. It is known to cause RRS update failure
* under certain circumstances. Typical phenomenon of the
* issue would be unexpected sequence number encountered in
* Rx handler.
*/
sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
MASTER_CHIP_REV_SHIFT;
aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->ale_rev);
aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->ale_chip_rev);
/*
* Uninitialized hardware returns an invalid chip id/revision
* as well as 0xFFFFFFFF for Tx/Rx fifo length.
*/
txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
rxf_len == 0xFFFFFFF) {
aprint_error_dev(self, "chip revision : 0x%04x, %u Tx FIFO "
"%u Rx FIFO -- not initialized?\n",
sc->ale_chip_rev, txf_len, rxf_len);
goto fail;
}
if (aledebug) {
printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
txf_len, rxf_len);
}
/* Set max allowable DMA size. */
sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
callout_init(&sc->sc_tick_ch, 0);
callout_setfunc(&sc->sc_tick_ch, ale_tick, sc);
error = ale_dma_alloc(sc);
if (error)
goto fail;
/* Load station address. */
ale_get_macaddr(sc);
aprint_normal_dev(self, "Ethernet address %s\n",
ether_sprintf(sc->ale_eaddr));
ifp = &sc->sc_ec.ec_if;
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = ale_init;
ifp->if_ioctl = ale_ioctl;
ifp->if_start = ale_start;
ifp->if_stop = ale_stop;
ifp->if_watchdog = ale_watchdog;
IFQ_SET_MAXLEN(&ifp->if_snd, ALE_TX_RING_CNT - 1);
IFQ_SET_READY(&ifp->if_snd);
strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
#ifdef ALE_CHECKSUM
ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
#endif
#if NVLAN > 0
sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
#endif
/* Set up MII bus. */
sc->sc_miibus.mii_ifp = ifp;
sc->sc_miibus.mii_readreg = ale_miibus_readreg;
sc->sc_miibus.mii_writereg = ale_miibus_writereg;
sc->sc_miibus.mii_statchg = ale_miibus_statchg;
sc->sc_ec.ec_mii = &sc->sc_miibus;
ifmedia_init(&sc->sc_miibus.mii_media, 0, ale_mediachange,
ale_mediastatus);
mii_flags = 0;
if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
mii_flags |= MIIF_DOPAUSE;
mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, mii_flags);
if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
aprint_error_dev(self, "no PHY found!\n");
ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
0, NULL);
ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
} else
ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
if_attach(ifp);
ether_ifattach(ifp, sc->ale_eaddr);
if (pmf_device_register(self, NULL, NULL))
pmf_class_network_register(self, ifp);
else
aprint_error_dev(self, "couldn't establish power handler\n");
return;
fail:
ale_dma_free(sc);
if (sc->sc_irq_handle != NULL) {
pci_intr_disestablish(pc, sc->sc_irq_handle);
sc->sc_irq_handle = NULL;
}
if (sc->sc_mem_size) {
bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
sc->sc_mem_size = 0;
}
}
static int
ale_detach(device_t self, int flags)
{
struct ale_softc *sc = device_private(self);
struct ifnet *ifp = &sc->sc_ec.ec_if;
int s;
2009-04-28 15:49:15 +04:00
pmf_device_deregister(self);
s = splnet();
ale_stop(ifp, 0);
splx(s);
mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
/* Delete all remaining media. */
ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
ether_ifdetach(ifp);
if_detach(ifp);
ale_dma_free(sc);
if (sc->sc_irq_handle != NULL) {
pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
sc->sc_irq_handle = NULL;
}
if (sc->sc_mem_size) {
bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
sc->sc_mem_size = 0;
}
return 0;
}
static int
ale_dma_alloc(struct ale_softc *sc)
{
struct ale_txdesc *txd;
int nsegs, error, guard_size, i;
if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
guard_size = ALE_JUMBO_FRAMELEN;
else
guard_size = ALE_MAX_FRAMELEN;
sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
ALE_RX_PAGE_ALIGN);
/*
* Create DMA stuffs for TX ring
*/
error = bus_dmamap_create(sc->sc_dmat, ALE_TX_RING_SZ, 1,
ALE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_ring_map);
if (error) {
sc->ale_cdata.ale_tx_ring_map = NULL;
return ENOBUFS;
}
/* Allocate DMA'able memory for TX ring */
error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_RING_SZ,
0, 0, &sc->ale_cdata.ale_tx_ring_seg, 1,
&nsegs, BUS_DMA_WAITOK);
if (error) {
printf("%s: could not allocate DMA'able memory for Tx ring, "
"error = %i\n", device_xname(sc->sc_dev), error);
return error;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_ring_seg,
nsegs, ALE_TX_RING_SZ, (void **)&sc->ale_cdata.ale_tx_ring,
BUS_DMA_NOWAIT);
if (error)
return ENOBUFS;
memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
/* Load the DMA map for Tx ring. */
error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map,
sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
if (error) {
printf("%s: could not load DMA'able memory for Tx ring.\n",
device_xname(sc->sc_dev));
bus_dmamem_free(sc->sc_dmat,
&sc->ale_cdata.ale_tx_ring_seg, 1);
return error;
}
sc->ale_cdata.ale_tx_ring_paddr =
sc->ale_cdata.ale_tx_ring_map->dm_segs[0].ds_addr;
for (i = 0; i < ALE_RX_PAGES; i++) {
/*
* Create DMA stuffs for RX pages
*/
error = bus_dmamap_create(sc->sc_dmat, sc->ale_pagesize, 1,
sc->ale_pagesize, 0, BUS_DMA_NOWAIT,
&sc->ale_cdata.ale_rx_page[i].page_map);
if (error) {
sc->ale_cdata.ale_rx_page[i].page_map = NULL;
return ENOBUFS;
}
/* Allocate DMA'able memory for RX pages */
error = bus_dmamem_alloc(sc->sc_dmat, sc->ale_pagesize,
ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].page_seg,
1, &nsegs, BUS_DMA_WAITOK);
if (error) {
printf("%s: could not allocate DMA'able memory for "
"Rx ring.\n", device_xname(sc->sc_dev));
return error;
}
error = bus_dmamem_map(sc->sc_dmat,
&sc->ale_cdata.ale_rx_page[i].page_seg, nsegs,
sc->ale_pagesize,
(void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
BUS_DMA_NOWAIT);
if (error)
return ENOBUFS;
memset(sc->ale_cdata.ale_rx_page[i].page_addr, 0,
sc->ale_pagesize);
/* Load the DMA map for Rx pages. */
error = bus_dmamap_load(sc->sc_dmat,
sc->ale_cdata.ale_rx_page[i].page_map,
sc->ale_cdata.ale_rx_page[i].page_addr,
sc->ale_pagesize, NULL, BUS_DMA_WAITOK);
if (error) {
printf("%s: could not load DMA'able memory for "
"Rx pages.\n", device_xname(sc->sc_dev));
bus_dmamem_free(sc->sc_dmat,
&sc->ale_cdata.ale_rx_page[i].page_seg, 1);
return error;
}
sc->ale_cdata.ale_rx_page[i].page_paddr =
sc->ale_cdata.ale_rx_page[i].page_map->dm_segs[0].ds_addr;
}
/*
* Create DMA stuffs for Tx CMB.
*/
error = bus_dmamap_create(sc->sc_dmat, ALE_TX_CMB_SZ, 1,
ALE_TX_CMB_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_cmb_map);
if (error) {
sc->ale_cdata.ale_tx_cmb_map = NULL;
return ENOBUFS;
}
/* Allocate DMA'able memory for Tx CMB. */
error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_CMB_SZ, ETHER_ALIGN, 0,
&sc->ale_cdata.ale_tx_cmb_seg, 1, &nsegs, BUS_DMA_WAITOK);
if (error) {
printf("%s: could not allocate DMA'able memory for Tx CMB.\n",
device_xname(sc->sc_dev));
return error;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_cmb_seg,
nsegs, ALE_TX_CMB_SZ, (void **)&sc->ale_cdata.ale_tx_cmb,
BUS_DMA_NOWAIT);
if (error)
return ENOBUFS;
memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
/* Load the DMA map for Tx CMB. */
error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map,
sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ, NULL, BUS_DMA_WAITOK);
if (error) {
printf("%s: could not load DMA'able memory for Tx CMB.\n",
device_xname(sc->sc_dev));
bus_dmamem_free(sc->sc_dmat,
&sc->ale_cdata.ale_tx_cmb_seg, 1);
return error;
}
sc->ale_cdata.ale_tx_cmb_paddr =
sc->ale_cdata.ale_tx_cmb_map->dm_segs[0].ds_addr;
for (i = 0; i < ALE_RX_PAGES; i++) {
/*
* Create DMA stuffs for Rx CMB.
*/
error = bus_dmamap_create(sc->sc_dmat, ALE_RX_CMB_SZ, 1,
ALE_RX_CMB_SZ, 0, BUS_DMA_NOWAIT,
&sc->ale_cdata.ale_rx_page[i].cmb_map);
if (error) {
sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
return ENOBUFS;
}
/* Allocate DMA'able memory for Rx CMB */
error = bus_dmamem_alloc(sc->sc_dmat, ALE_RX_CMB_SZ,
ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1,
&nsegs, BUS_DMA_WAITOK);
if (error) {
printf("%s: could not allocate DMA'able memory for "
"Rx CMB\n", device_xname(sc->sc_dev));
return error;
}
error = bus_dmamem_map(sc->sc_dmat,
&sc->ale_cdata.ale_rx_page[i].cmb_seg, nsegs,
ALE_RX_CMB_SZ,
(void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
BUS_DMA_NOWAIT);
if (error)
return ENOBUFS;
memset(sc->ale_cdata.ale_rx_page[i].cmb_addr, 0, ALE_RX_CMB_SZ);
/* Load the DMA map for Rx CMB */
error = bus_dmamap_load(sc->sc_dmat,
sc->ale_cdata.ale_rx_page[i].cmb_map,
sc->ale_cdata.ale_rx_page[i].cmb_addr,
ALE_RX_CMB_SZ, NULL, BUS_DMA_WAITOK);
if (error) {
printf("%s: could not load DMA'able memory for Rx CMB"
"\n", device_xname(sc->sc_dev));
bus_dmamem_free(sc->sc_dmat,
&sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
return error;
}
sc->ale_cdata.ale_rx_page[i].cmb_paddr =
sc->ale_cdata.ale_rx_page[i].cmb_map->dm_segs[0].ds_addr;
}
/* Create DMA maps for Tx buffers. */
for (i = 0; i < ALE_TX_RING_CNT; i++) {
txd = &sc->ale_cdata.ale_txdesc[i];
txd->tx_m = NULL;
txd->tx_dmamap = NULL;
error = bus_dmamap_create(sc->sc_dmat, ALE_TSO_MAXSIZE,
ALE_MAXTXSEGS, ALE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
&txd->tx_dmamap);
if (error) {
txd->tx_dmamap = NULL;
printf("%s: could not create Tx dmamap.\n",
device_xname(sc->sc_dev));
return error;
}
}
return 0;
}
static void
ale_dma_free(struct ale_softc *sc)
{
struct ale_txdesc *txd;
int i;
/* Tx buffers. */
for (i = 0; i < ALE_TX_RING_CNT; i++) {
txd = &sc->ale_cdata.ale_txdesc[i];
if (txd->tx_dmamap != NULL) {
bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
txd->tx_dmamap = NULL;
}
}
/* Tx descriptor ring. */
if (sc->ale_cdata.ale_tx_ring_map != NULL)
bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map);
if (sc->ale_cdata.ale_tx_ring_map != NULL &&
sc->ale_cdata.ale_tx_ring != NULL)
bus_dmamem_free(sc->sc_dmat,
&sc->ale_cdata.ale_tx_ring_seg, 1);
sc->ale_cdata.ale_tx_ring = NULL;
sc->ale_cdata.ale_tx_ring_map = NULL;
/* Rx page block. */
for (i = 0; i < ALE_RX_PAGES; i++) {
if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
bus_dmamap_unload(sc->sc_dmat,
sc->ale_cdata.ale_rx_page[i].page_map);
if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
bus_dmamem_free(sc->sc_dmat,
&sc->ale_cdata.ale_rx_page[i].page_seg, 1);
sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
sc->ale_cdata.ale_rx_page[i].page_map = NULL;
}
/* Rx CMB. */
for (i = 0; i < ALE_RX_PAGES; i++) {
if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
bus_dmamap_unload(sc->sc_dmat,
sc->ale_cdata.ale_rx_page[i].cmb_map);
if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
bus_dmamem_free(sc->sc_dmat,
&sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
}
/* Tx CMB. */
if (sc->ale_cdata.ale_tx_cmb_map != NULL)
bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map);
if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
sc->ale_cdata.ale_tx_cmb != NULL)
bus_dmamem_free(sc->sc_dmat,
&sc->ale_cdata.ale_tx_cmb_seg, 1);
sc->ale_cdata.ale_tx_cmb = NULL;
sc->ale_cdata.ale_tx_cmb_map = NULL;
}
static int
ale_encap(struct ale_softc *sc, struct mbuf **m_head)
{
struct ale_txdesc *txd, *txd_last;
struct tx_desc *desc;
struct mbuf *m;
bus_dmamap_t map;
uint32_t cflags, poff, vtag;
int error, i, nsegs, prod;
#if NVLAN > 0
struct m_tag *mtag;
#endif
m = *m_head;
cflags = vtag = 0;
poff = 0;
prod = sc->ale_cdata.ale_tx_prod;
txd = &sc->ale_cdata.ale_txdesc[prod];
txd_last = txd;
map = txd->tx_dmamap;
error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
if (error == EFBIG) {
error = 0;
*m_head = m_pullup(*m_head, MHLEN);
if (*m_head == NULL) {
printf("%s: can't defrag TX mbuf\n",
device_xname(sc->sc_dev));
return ENOBUFS;
}
error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not load defragged TX mbuf\n",
device_xname(sc->sc_dev));
m_freem(*m_head);
*m_head = NULL;
return error;
}
} else if (error) {
printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
return error;
}
nsegs = map->dm_nsegs;
if (nsegs == 0) {
m_freem(*m_head);
*m_head = NULL;
return EIO;
}
/* Check descriptor overrun. */
if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
bus_dmamap_unload(sc->sc_dmat, map);
return ENOBUFS;
}
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
m = *m_head;
/* Configure Tx checksum offload. */
if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
/*
* AR81xx supports Tx custom checksum offload feature
* that offloads single 16bit checksum computation.
* So you can choose one among IP, TCP and UDP.
* Normally driver sets checksum start/insertion
* position from the information of TCP/UDP frame as
* TCP/UDP checksum takes more time than that of IP.
* However it seems that custom checksum offload
* requires 4 bytes aligned Tx buffers due to hardware
* bug.
* AR81xx also supports explicit Tx checksum computation
* if it is told that the size of IP header and TCP
* header(for UDP, the header size does not matter
* because it's fixed length). However with this scheme
* TSO does not work so you have to choose one either
* TSO or explicit Tx checksum offload. I chosen TSO
* plus custom checksum offload with work-around which
* will cover most common usage for this consumer
* ethernet controller. The work-around takes a lot of
* CPU cycles if Tx buffer is not aligned on 4 bytes
* boundary, though.
*/
cflags |= ALE_TD_CXSUM;
/* Set checksum start offset. */
cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
}
#if NVLAN > 0
/* Configure VLAN hardware tag insertion. */
if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
vtag = ALE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
cflags |= ALE_TD_INSERT_VLAN_TAG;
}
#endif
desc = NULL;
for (i = 0; i < nsegs; i++) {
desc = &sc->ale_cdata.ale_tx_ring[prod];
desc->addr = htole64(map->dm_segs[i].ds_addr);
desc->len =
htole32(ALE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
desc->flags = htole32(cflags);
sc->ale_cdata.ale_tx_cnt++;
ALE_DESC_INC(prod, ALE_TX_RING_CNT);
}
/* Update producer index. */
sc->ale_cdata.ale_tx_prod = prod;
/* Finally set EOP on the last descriptor. */
prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
desc = &sc->ale_cdata.ale_tx_ring[prod];
desc->flags |= htole32(ALE_TD_EOP);
/* Swap dmamap of the first and the last. */
txd = &sc->ale_cdata.ale_txdesc[prod];
map = txd_last->tx_dmamap;
txd_last->tx_dmamap = txd->tx_dmamap;
txd->tx_dmamap = map;
txd->tx_m = m;
/* Sync descriptors. */
bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
return 0;
}
static void
ale_start(struct ifnet *ifp)
{
struct ale_softc *sc = ifp->if_softc;
struct mbuf *m_head;
int enq;
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
/* Reclaim transmitted frames. */
if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
ale_txeof(sc);
enq = 0;
for (;;) {
IFQ_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (ale_encap(sc, &m_head)) {
if (m_head == NULL)
break;
IF_PREPEND(&ifp->if_snd, m_head);
ifp->if_flags |= IFF_OACTIVE;
break;
}
enq = 1;
#if NBPFILTER > 0
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
if (ifp->if_bpf != NULL)
bpf_mtap(ifp->if_bpf, m_head);
#endif
}
if (enq) {
/* Kick. */
CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
sc->ale_cdata.ale_tx_prod);
/* Set a timeout in case the chip goes out to lunch. */
ifp->if_timer = ALE_TX_TIMEOUT;
}
}
static void
ale_watchdog(struct ifnet *ifp)
{
struct ale_softc *sc = ifp->if_softc;
if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
printf("%s: watchdog timeout (missed link)\n",
device_xname(sc->sc_dev));
ifp->if_oerrors++;
ale_init(ifp);
return;
}
printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
ifp->if_oerrors++;
ale_init(ifp);
if (!IFQ_IS_EMPTY(&ifp->if_snd))
ale_start(ifp);
}
static int
ale_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct ale_softc *sc = ifp->if_softc;
int s, error;
s = splnet();
error = ether_ioctl(ifp, cmd, data);
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING)
ale_rxfilter(sc);
error = 0;
}
splx(s);
return error;
}
static void
ale_mac_config(struct ale_softc *sc)
{
struct mii_data *mii;
uint32_t reg;
mii = &sc->sc_miibus;
reg = CSR_READ_4(sc, ALE_MAC_CFG);
reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
MAC_CFG_SPEED_MASK);
/* Reprogram MAC with resolved speed/duplex. */
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
reg |= MAC_CFG_SPEED_10_100;
break;
case IFM_1000_T:
reg |= MAC_CFG_SPEED_1000;
break;
}
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
reg |= MAC_CFG_FULL_DUPLEX;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
reg |= MAC_CFG_TX_FC;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
reg |= MAC_CFG_RX_FC;
}
CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
}
static void
ale_stats_clear(struct ale_softc *sc)
{
struct smb sb;
uint32_t *reg;
int i;
for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
i += sizeof(uint32_t);
}
/* Read Tx statistics. */
for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
i += sizeof(uint32_t);
}
}
static void
ale_stats_update(struct ale_softc *sc)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct ale_hw_stats *stat;
struct smb sb, *smb;
uint32_t *reg;
int i;
stat = &sc->ale_stats;
smb = &sb;
/* Read Rx statistics. */
for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
i += sizeof(uint32_t);
}
/* Read Tx statistics. */
for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
i += sizeof(uint32_t);
}
/* Rx stats. */
stat->rx_frames += smb->rx_frames;
stat->rx_bcast_frames += smb->rx_bcast_frames;
stat->rx_mcast_frames += smb->rx_mcast_frames;
stat->rx_pause_frames += smb->rx_pause_frames;
stat->rx_control_frames += smb->rx_control_frames;
stat->rx_crcerrs += smb->rx_crcerrs;
stat->rx_lenerrs += smb->rx_lenerrs;
stat->rx_bytes += smb->rx_bytes;
stat->rx_runts += smb->rx_runts;
stat->rx_fragments += smb->rx_fragments;
stat->rx_pkts_64 += smb->rx_pkts_64;
stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
stat->rx_pkts_truncated += smb->rx_pkts_truncated;
stat->rx_fifo_oflows += smb->rx_fifo_oflows;
stat->rx_rrs_errs += smb->rx_rrs_errs;
stat->rx_alignerrs += smb->rx_alignerrs;
stat->rx_bcast_bytes += smb->rx_bcast_bytes;
stat->rx_mcast_bytes += smb->rx_mcast_bytes;
stat->rx_pkts_filtered += smb->rx_pkts_filtered;
/* Tx stats. */
stat->tx_frames += smb->tx_frames;
stat->tx_bcast_frames += smb->tx_bcast_frames;
stat->tx_mcast_frames += smb->tx_mcast_frames;
stat->tx_pause_frames += smb->tx_pause_frames;
stat->tx_excess_defer += smb->tx_excess_defer;
stat->tx_control_frames += smb->tx_control_frames;
stat->tx_deferred += smb->tx_deferred;
stat->tx_bytes += smb->tx_bytes;
stat->tx_pkts_64 += smb->tx_pkts_64;
stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
stat->tx_single_colls += smb->tx_single_colls;
stat->tx_multi_colls += smb->tx_multi_colls;
stat->tx_late_colls += smb->tx_late_colls;
stat->tx_excess_colls += smb->tx_excess_colls;
stat->tx_abort += smb->tx_abort;
stat->tx_underrun += smb->tx_underrun;
stat->tx_desc_underrun += smb->tx_desc_underrun;
stat->tx_lenerrs += smb->tx_lenerrs;
stat->tx_pkts_truncated += smb->tx_pkts_truncated;
stat->tx_bcast_bytes += smb->tx_bcast_bytes;
stat->tx_mcast_bytes += smb->tx_mcast_bytes;
/* Update counters in ifnet. */
ifp->if_opackets += smb->tx_frames;
ifp->if_collisions += smb->tx_single_colls +
smb->tx_multi_colls * 2 + smb->tx_late_colls +
smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
/*
* XXX
* tx_pkts_truncated counter looks suspicious. It constantly
* increments with no sign of Tx errors. This may indicate
* the counter name is not correct one so I've removed the
* counter in output errors.
*/
ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
smb->tx_underrun;
ifp->if_ipackets += smb->rx_frames;
ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
smb->rx_runts + smb->rx_pkts_truncated +
smb->rx_fifo_oflows + smb->rx_rrs_errs +
smb->rx_alignerrs;
}
static int
ale_intr(void *xsc)
{
struct ale_softc *sc = xsc;
struct ifnet *ifp = &sc->sc_ec.ec_if;
uint32_t status;
status = CSR_READ_4(sc, ALE_INTR_STATUS);
if ((status & ALE_INTRS) == 0)
return 0;
/* Acknowledge and disable interrupts. */
CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
if (ifp->if_flags & IFF_RUNNING) {
int error;
error = ale_rxeof(sc);
if (error) {
sc->ale_stats.reset_brk_seq++;
ale_init(ifp);
return 0;
}
if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
if (status & INTR_DMA_RD_TO_RST)
printf("%s: DMA read error! -- resetting\n",
device_xname(sc->sc_dev));
if (status & INTR_DMA_WR_TO_RST)
printf("%s: DMA write error! -- resetting\n",
device_xname(sc->sc_dev));
ale_init(ifp);
return 0;
}
ale_txeof(sc);
if (!IFQ_IS_EMPTY(&ifp->if_snd))
ale_start(ifp);
}
/* Re-enable interrupts. */
CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
return 1;
}
static void
ale_txeof(struct ale_softc *sc)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct ale_txdesc *txd;
uint32_t cons, prod;
int prog;
if (sc->ale_cdata.ale_tx_cnt == 0)
return;
bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
sc->ale_cdata.ale_tx_cmb_map->dm_mapsize,
BUS_DMASYNC_POSTREAD);
prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
} else
prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
cons = sc->ale_cdata.ale_tx_cons;
/*
* Go through our Tx list and free mbufs for those
* frames which have been transmitted.
*/
for (prog = 0; cons != prod; prog++,
ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
if (sc->ale_cdata.ale_tx_cnt <= 0)
break;
prog++;
ifp->if_flags &= ~IFF_OACTIVE;
sc->ale_cdata.ale_tx_cnt--;
txd = &sc->ale_cdata.ale_txdesc[cons];
if (txd->tx_m != NULL) {
/* Reclaim transmitted mbufs. */
bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
}
if (prog > 0) {
sc->ale_cdata.ale_tx_cons = cons;
/*
* Unarm watchdog timer only when there is no pending
* Tx descriptors in queue.
*/
if (sc->ale_cdata.ale_tx_cnt == 0)
ifp->if_timer = 0;
}
}
static void
ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
uint32_t length, uint32_t *prod)
{
struct ale_rx_page *rx_page;
rx_page = *page;
/* Update consumer position. */
rx_page->cons += roundup(length + sizeof(struct rx_rs),
ALE_RX_PAGE_ALIGN);
if (rx_page->cons >= ALE_RX_PAGE_SZ) {
/*
* End of Rx page reached, let hardware reuse
* this page.
*/
rx_page->cons = 0;
*rx_page->cmb_addr = 0;
bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
RXF_VALID);
/* Switch to alternate Rx page. */
sc->ale_cdata.ale_rx_curp ^= 1;
rx_page = *page =
&sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
/* Page flipped, sync CMB and Rx page. */
bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
/* Sync completed, cache updated producer index. */
*prod = *rx_page->cmb_addr;
}
}
/*
* It seems that AR81xx controller can compute partial checksum.
* The partial checksum value can be used to accelerate checksum
* computation for fragmented TCP/UDP packets. Upper network stack
* already takes advantage of the partial checksum value in IP
* reassembly stage. But I'm not sure the correctness of the
* partial hardware checksum assistance due to lack of data sheet.
* In addition, the Rx feature of controller that requires copying
* for every frames effectively nullifies one of most nice offload
* capability of controller.
*/
static void
ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
{
if (status & ALE_RD_IPCSUM_NOK)
m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
if (((status & ALE_RD_IPV4_FRAG) == 0) &&
((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
(status & ALE_RD_TCP_UDPCSUM_NOK))
{
m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
}
} else {
if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) {
if (status & ALE_RD_TCP_UDPCSUM_NOK) {
m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
}
}
}
/*
* Don't mark bad checksum for TCP/UDP frames
* as fragmented frames may always have set
* bad checksummed bit of frame status.
*/
}
/* Process received frames. */
static int
ale_rxeof(struct ale_softc *sc)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct ale_rx_page *rx_page;
struct rx_rs *rs;
struct mbuf *m;
uint32_t length, prod, seqno, status;
int prog;
rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
/*
* Don't directly access producer index as hardware may
* update it while Rx handler is in progress. It would
* be even better if there is a way to let hardware
* know how far driver processed its received frames.
* Alternatively, hardware could provide a way to disable
* CMB updates until driver acknowledges the end of CMB
* access.
*/
prod = *rx_page->cmb_addr;
for (prog = 0; ; prog++) {
if (rx_page->cons >= prod)
break;
rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
if (sc->ale_cdata.ale_rx_seqno != seqno) {
/*
* Normally I believe this should not happen unless
* severe driver bug or corrupted memory. However
* it seems to happen under certain conditions which
* is triggered by abrupt Rx events such as initiation
* of bulk transfer of remote host. It's not easy to
* reproduce this and I doubt it could be related
* with FIFO overflow of hardware or activity of Tx
* CMB updates. I also remember similar behaviour
* seen on RealTek 8139 which uses resembling Rx
* scheme.
*/
if (aledebug)
printf("%s: garbled seq: %u, expected: %u -- "
"resetting!\n", device_xname(sc->sc_dev),
seqno, sc->ale_cdata.ale_rx_seqno);
return EIO;
}
/* Frame received. */
sc->ale_cdata.ale_rx_seqno++;
length = ALE_RX_BYTES(le32toh(rs->length));
status = le32toh(rs->flags);
if (status & ALE_RD_ERROR) {
/*
* We want to pass the following frames to upper
* layer regardless of error status of Rx return
* status.
*
* o IP/TCP/UDP checksum is bad.
* o frame length and protocol specific length
* does not match.
*/
if (status & (ALE_RD_CRC | ALE_RD_CODE |
ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
ALE_RD_TRUNC)) {
ale_rx_update_page(sc, &rx_page, length, &prod);
continue;
}
}
/*
* m_devget(9) is major bottle-neck of ale(4)(It comes
* from hardware limitation). For jumbo frames we could
* get a slightly better performance if driver use
* m_getjcl(9) with proper buffer size argument. However
* that would make code more complicated and I don't
* think users would expect good Rx performance numbers
* on these low-end consumer ethernet controller.
*/
m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
0, ifp, NULL);
if (m == NULL) {
ifp->if_iqdrops++;
ale_rx_update_page(sc, &rx_page, length, &prod);
continue;
}
if (status & ALE_RD_IPV4)
ale_rxcsum(sc, m, status);
#if NVLAN > 0
if (status & ALE_RD_VLAN) {
uint32_t vtags = ALE_RX_VLAN(le32toh(rs->vtags));
VLAN_INPUT_TAG(ifp, m, ALE_RX_VLAN_TAG(vtags), );
}
#endif
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif
/* Pass it to upper layer. */
ether_input(ifp, m);
ale_rx_update_page(sc, &rx_page, length, &prod);
}
return 0;
}
static void
ale_tick(void *xsc)
{
struct ale_softc *sc = xsc;
struct mii_data *mii = &sc->sc_miibus;
int s;
s = splnet();
mii_tick(mii);
ale_stats_update(sc);
splx(s);
callout_schedule(&sc->sc_tick_ch, hz);
}
static void
ale_reset(struct ale_softc *sc)
{
uint32_t reg;
int i;
/* Initialize PCIe module. From Linux. */
CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
DELAY(10);
if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
break;
}
if (i == 0)
printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
break;
DELAY(10);
}
if (i == 0)
printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
reg);
}
static int
ale_init(struct ifnet *ifp)
{
struct ale_softc *sc = ifp->if_softc;
struct mii_data *mii;
uint8_t eaddr[ETHER_ADDR_LEN];
bus_addr_t paddr;
uint32_t reg, rxf_hi, rxf_lo;
/*
* Cancel any pending I/O.
*/
ale_stop(ifp, 0);
/*
* Reset the chip to a known state.
*/
ale_reset(sc);
/* Initialize Tx descriptors, DMA memory blocks. */
ale_init_rx_pages(sc);
ale_init_tx_ring(sc);
/* Reprogram the station address. */
memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
CSR_WRITE_4(sc, ALE_PAR0,
eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
/*
* Clear WOL status and disable all WOL feature as WOL
* would interfere Rx operation under normal environments.
*/
CSR_READ_4(sc, ALE_WOL_CFG);
CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
/*
* Set Tx descriptor/RXF0/CMB base addresses. They share
* the same high address part of DMAable region.
*/
paddr = sc->ale_cdata.ale_tx_ring_paddr;
CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
CSR_WRITE_4(sc, ALE_TPD_CNT,
(ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
/* Set Rx page base address, note we use single queue. */
paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
/* Set Tx/Rx CMB addresses. */
paddr = sc->ale_cdata.ale_tx_cmb_paddr;
CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
/* Mark RXF0 is valid. */
CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
/*
* No need to initialize RFX1/RXF2/RXF3. We don't use
* multi-queue yet.
*/
/* Set Rx page size, excluding guard frame size. */
CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
/* Tell hardware that we're ready to load DMA blocks. */
CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
/* Set Rx/Tx interrupt trigger threshold. */
CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
(4 << INT_TRIG_TX_THRESH_SHIFT));
/*
* XXX
* Set interrupt trigger timer, its purpose and relation
* with interrupt moderation mechanism is not clear yet.
*/
CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
(ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
/* Configure interrupt moderation timer. */
sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
reg = CSR_READ_4(sc, ALE_MASTER_CFG);
reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
if (ALE_USECS(sc->ale_int_rx_mod) != 0)
reg |= MASTER_IM_RX_TIMER_ENB;
if (ALE_USECS(sc->ale_int_tx_mod) != 0)
reg |= MASTER_IM_TX_TIMER_ENB;
CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
/* Set Maximum frame size of controller. */
if (ifp->if_mtu < ETHERMTU)
sc->ale_max_frame_size = ETHERMTU;
else
sc->ale_max_frame_size = ifp->if_mtu;
sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
/* Configure IPG/IFG parameters. */
CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
/* Set parameters for half-duplex media. */
CSR_WRITE_4(sc, ALE_HDPX_CFG,
((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
HDPX_CFG_LCOL_MASK) |
((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
HDPX_CFG_ABEBT_MASK) |
((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
HDPX_CFG_JAMIPG_MASK));
/* Configure Tx jumbo frame parameters. */
if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
if (ifp->if_mtu < ETHERMTU)
reg = sc->ale_max_frame_size;
else if (ifp->if_mtu < 6 * 1024)
reg = (sc->ale_max_frame_size * 2) / 3;
else
reg = sc->ale_max_frame_size / 2;
CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
roundup(reg, TX_JUMBO_THRESH_UNIT) >>
TX_JUMBO_THRESH_UNIT_SHIFT);
}
/* Configure TxQ. */
reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
<< TXQ_CFG_TX_FIFO_BURST_SHIFT;
reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
TXQ_CFG_TPD_BURST_MASK;
CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
/* Configure Rx jumbo frame & flow control parameters. */
if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
(((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
RX_JUMBO_LKAH_MASK));
reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
rxf_hi = (reg * 7) / 10;
rxf_lo = (reg * 3)/ 10;
CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
RX_FIFO_PAUSE_THRESH_LO_MASK) |
((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
RX_FIFO_PAUSE_THRESH_HI_MASK));
}
/* Disable RSS. */
CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
/* Configure RxQ. */
CSR_WRITE_4(sc, ALE_RXQ_CFG,
RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
/* Configure DMA parameters. */
reg = 0;
if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
reg |= DMA_CFG_TXCMB_ENB;
CSR_WRITE_4(sc, ALE_DMA_CFG,
DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
sc->ale_dma_rd_burst | reg |
sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
DMA_CFG_RD_DELAY_CNT_MASK) |
((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
DMA_CFG_WR_DELAY_CNT_MASK));
/*
* Hardware can be configured to issue SMB interrupt based
* on programmed interval. Since there is a callout that is
* invoked for every hz in driver we use that instead of
* relying on periodic SMB interrupt.
*/
CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
/* Clear MAC statistics. */
ale_stats_clear(sc);
/*
* Configure Tx/Rx MACs.
* - Auto-padding for short frames.
* - Enable CRC generation.
* Actual reconfiguration of MAC for resolved speed/duplex
* is followed after detection of link establishment.
* AR81xx always does checksum computation regardless of
* MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
* cause Rx handling issue for fragmented IP datagrams due
* to silicon bug.
*/
reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
MAC_CFG_PREAMBLE_MASK);
if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
reg |= MAC_CFG_SPEED_10_100;
else
reg |= MAC_CFG_SPEED_1000;
CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
/* Set up the receive filter. */
ale_rxfilter(sc);
ale_rxvlan(sc);
/* Acknowledge all pending interrupts and clear it. */
CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
sc->ale_flags &= ~ALE_FLAG_LINK;
/* Switch to the current media. */
mii = &sc->sc_miibus;
mii_mediachg(mii);
callout_schedule(&sc->sc_tick_ch, hz);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
return 0;
}
static void
ale_stop(struct ifnet *ifp, int disable)
{
struct ale_softc *sc = ifp->if_softc;
struct ale_txdesc *txd;
uint32_t reg;
int i;
callout_stop(&sc->sc_tick_ch);
/*
* Mark the interface down and cancel the watchdog timer.
*/
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
sc->ale_flags &= ~ALE_FLAG_LINK;
ale_stats_update(sc);
mii_down(&sc->sc_miibus);
/* Disable interrupts. */
CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
/* Disable queue processing and DMA. */
reg = CSR_READ_4(sc, ALE_TXQ_CFG);
reg &= ~TXQ_CFG_ENB;
CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
reg = CSR_READ_4(sc, ALE_RXQ_CFG);
reg &= ~RXQ_CFG_ENB;
CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
reg = CSR_READ_4(sc, ALE_DMA_CFG);
reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
DELAY(1000);
/* Stop Rx/Tx MACs. */
ale_stop_mac(sc);
/* Disable interrupts again? XXX */
CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
/*
* Free TX mbufs still in the queues.
*/
for (i = 0; i < ALE_TX_RING_CNT; i++) {
txd = &sc->ale_cdata.ale_txdesc[i];
if (txd->tx_m != NULL) {
bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
}
}
static void
ale_stop_mac(struct ale_softc *sc)
{
uint32_t reg;
int i;
reg = CSR_READ_4(sc, ALE_MAC_CFG);
if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
}
for (i = ALE_TIMEOUT; i > 0; i--) {
reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
if (reg == 0)
break;
DELAY(10);
}
if (i == 0)
printf("%s: could not disable Tx/Rx MAC(0x%08x)!\n",
device_xname(sc->sc_dev), reg);
}
static void
ale_init_tx_ring(struct ale_softc *sc)
{
struct ale_txdesc *txd;
int i;
sc->ale_cdata.ale_tx_prod = 0;
sc->ale_cdata.ale_tx_cons = 0;
sc->ale_cdata.ale_tx_cnt = 0;
memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
for (i = 0; i < ALE_TX_RING_CNT; i++) {
txd = &sc->ale_cdata.ale_txdesc[i];
txd->tx_m = NULL;
}
*sc->ale_cdata.ale_tx_cmb = 0;
bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
sc->ale_cdata.ale_tx_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
}
static void
ale_init_rx_pages(struct ale_softc *sc)
{
struct ale_rx_page *rx_page;
int i;
sc->ale_cdata.ale_rx_seqno = 0;
sc->ale_cdata.ale_rx_curp = 0;
for (i = 0; i < ALE_RX_PAGES; i++) {
rx_page = &sc->ale_cdata.ale_rx_page[i];
memset(rx_page->page_addr, 0, sc->ale_pagesize);
memset(rx_page->cmb_addr, 0, ALE_RX_CMB_SZ);
rx_page->cons = 0;
*rx_page->cmb_addr = 0;
bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
rx_page->page_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
}
}
static void
ale_rxvlan(struct ale_softc *sc)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
uint32_t reg;
reg = CSR_READ_4(sc, ALE_MAC_CFG);
reg &= ~MAC_CFG_VLAN_TAG_STRIP;
if (ifp->if_capabilities & ETHERCAP_VLAN_HWTAGGING)
reg |= MAC_CFG_VLAN_TAG_STRIP;
CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
}
static void
ale_rxfilter(struct ale_softc *sc)
{
struct ethercom *ec = &sc->sc_ec;
struct ifnet *ifp = &ec->ec_if;
struct ether_multi *enm;
struct ether_multistep step;
uint32_t crc;
uint32_t mchash[2];
uint32_t rxcfg;
rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2009-08-18 10:02:36 +04:00
ifp->if_flags &= ~IFF_ALLMULTI;
/*
* Always accept broadcast frames.
*/
rxcfg |= MAC_CFG_BCAST;
2009-08-18 10:02:36 +04:00
if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
ifp->if_flags |= IFF_ALLMULTI;
if (ifp->if_flags & IFF_PROMISC)
rxcfg |= MAC_CFG_PROMISC;
else
rxcfg |= MAC_CFG_ALLMULTI;
mchash[0] = mchash[1] = 0xFFFFFFFF;
} else {
/* Program new filter. */
memset(mchash, 0, sizeof(mchash));
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
ETHER_NEXT_MULTI(step, enm);
}
}
CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
}