NetBSD/lib/libcrypto/man/openssl_rand.3

291 lines
9.3 KiB
Groff
Raw Normal View History

.\" $NetBSD: openssl_rand.3,v 1.7 2003/06/30 14:19:28 wiz Exp $
.\"
.\" Automatically generated by Pod::Man version 1.02
2002-08-09 20:15:36 +04:00
.\" Sat Aug 10 00:57:38 2002
.\"
.\" Standard preamble:
.\" ======================================================================
.de Sh \" Subsection heading
.br
.if t .Sp
.ne 5
.PP
\fB\\$1\fR
.PP
..
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Ip \" List item
.br
.ie \\n(.$>=3 .ne \\$3
.el .ne 3
.IP "\\$1" \\$2
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" Set up some character translations and predefined strings. \*(-- will
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
.\" double quote, and \*(R" will give a right double quote. | will give a
.\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used
.\" to do unbreakable dashes and therefore won't be available. \*(C` and
.\" \*(C' expand to `' in nroff, nothing in troff, for use with C<>
.tr \(*W-|\(bv\*(Tr
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
.ie n \{\
. ds -- \(*W-
. ds PI pi
. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
. ds L" ""
. ds R" ""
. ds C` `
. ds C' '
'br\}
.el\{\
. ds -- \|\(em\|
. ds PI \(*p
. ds L" ``
. ds R" ''
'br\}
.\"
.\" If the F register is turned on, we'll generate index entries on stderr
.\" for titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and
.\" index entries marked with X<> in POD. Of course, you'll have to process
.\" the output yourself in some meaningful fashion.
.if \nF \{\
. de IX
. tm Index:\\$1\t\\n%\t"\\$2"
. .
. nr % 0
. rr F
.\}
.\"
.\" For nroff, turn off justification. Always turn off hyphenation; it
.\" makes way too many mistakes in technical documents.
.hy 0
.if n .na
.\"
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
.\" Fear. Run. Save yourself. No user-serviceable parts.
.bd B 3
. \" fudge factors for nroff and troff
.if n \{\
. ds #H 0
. ds #V .8m
. ds #F .3m
. ds #[ \f1
. ds #] \fP
.\}
.if t \{\
. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
. ds #V .6m
. ds #F 0
. ds #[ \&
. ds #] \&
.\}
. \" simple accents for nroff and troff
.if n \{\
. ds ' \&
. ds ` \&
. ds ^ \&
. ds , \&
. ds ~ ~
. ds /
.\}
.if t \{\
. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
.\}
. \" troff and (daisy-wheel) nroff accents
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
.ds ae a\h'-(\w'a'u*4/10)'e
.ds Ae A\h'-(\w'A'u*4/10)'E
. \" corrections for vroff
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
. \" for low resolution devices (crt and lpr)
.if \n(.H>23 .if \n(.V>19 \
\{\
. ds : e
. ds 8 ss
. ds o a
. ds d- d\h'-1'\(ga
. ds D- D\h'-1'\(hy
. ds th \o'bp'
. ds Th \o'LP'
. ds ae ae
. ds Ae AE
.\}
.rm #[ #] #H #V #F C
.\" ======================================================================
.\"
.IX Title "rand 3"
2002-08-09 20:15:36 +04:00
.TH rand 3 "0.9.6g" "2001-07-11" "OpenSSL"
.SH "NAME"
rand \- pseudo-random number generator
.SH "LIBRARY"
libcrypto, -lcrypto
.SH "SYNOPSIS"
.IX Header "SYNOPSIS"
.Vb 1
\& #include <openssl/rand.h>
.Ve
.Vb 2
\& int RAND_bytes(unsigned char *buf, int num);
\& int RAND_pseudo_bytes(unsigned char *buf, int num);
.Ve
.Vb 4
\& void RAND_seed(const void *buf, int num);
\& void RAND_add(const void *buf, int num, int entropy);
\& int RAND_status(void);
\& void RAND_screen(void);
.Ve
.Vb 3
\& int RAND_load_file(const char *file, long max_bytes);
\& int RAND_write_file(const char *file);
\& const char *RAND_file_name(char *file, size_t num);
.Ve
.Vb 1
\& int RAND_egd(const char *path);
.Ve
.Vb 3
\& void RAND_set_rand_method(RAND_METHOD *meth);
\& RAND_METHOD *RAND_get_rand_method(void);
\& RAND_METHOD *RAND_SSLeay(void);
.Ve
.Vb 1
\& void RAND_cleanup(void);
.Ve
.SH "DESCRIPTION"
.IX Header "DESCRIPTION"
These functions implement a cryptographically secure pseudo-random
number generator (\s-1PRNG\s0). It is used by other library functions for
example to generate random keys, and applications can use it when they
need randomness.
.PP
A cryptographic \s-1PRNG\s0 must be seeded with unpredictable data such as
mouse movements or keys pressed at random by the user. This is
described in RAND_add(3). Its state can be saved in a seed file
(see RAND_load_file(3)) to avoid having to go through the
seeding process whenever the application is started.
.PP
RAND_bytes(3) describes how to obtain random data from the
\&\s-1PRNG\s0.
.SH "INTERNALS"
.IX Header "INTERNALS"
The \fIRAND_SSLeay()\fR method implements a \s-1PRNG\s0 based on a cryptographic
hash function.
.PP
The following description of its design is based on the SSLeay
documentation:
.PP
First up I will state the things I believe I need for a good \s-1RNG\s0.
.Ip "1" 4
.IX Item "1"
A good hashing algorithm to mix things up and to convert the \s-1RNG\s0 'state'
to random numbers.
.Ip "2" 4
.IX Item "2"
An initial source of random 'state'.
.Ip "3" 4
.IX Item "3"
The state should be very large. If the \s-1RNG\s0 is being used to generate
4096 bit \s-1RSA\s0 keys, 2 2048 bit random strings are required (at a minimum).
If your \s-1RNG\s0 state only has 128 bits, you are obviously limiting the
search space to 128 bits, not 2048. I'm probably getting a little
carried away on this last point but it does indicate that it may not be
a bad idea to keep quite a lot of \s-1RNG\s0 state. It should be easier to
break a cipher than guess the \s-1RNG\s0 seed data.
.Ip "4" 4
.IX Item "4"
Any \s-1RNG\s0 seed data should influence all subsequent random numbers
generated. This implies that any random seed data entered will have
an influence on all subsequent random numbers generated.
.Ip "5" 4
.IX Item "5"
When using data to seed the \s-1RNG\s0 state, the data used should not be
extractable from the \s-1RNG\s0 state. I believe this should be a
requirement because one possible source of 'secret' semi random
data would be a private key or a password. This data must
not be disclosed by either subsequent random numbers or a
\&'core' dump left by a program crash.
.Ip "6" 4
.IX Item "6"
Given the same initial 'state', 2 systems should deviate in their \s-1RNG\s0 state
(and hence the random numbers generated) over time if at all possible.
.Ip "7" 4
.IX Item "7"
Given the random number output stream, it should not be possible to determine
the \s-1RNG\s0 state or the next random number.
.PP
The algorithm is as follows.
.PP
There is global state made up of a 1023 byte buffer (the 'state'), a
working hash value ('md'), and a counter ('count').
.PP
Whenever seed data is added, it is inserted into the 'state' as
follows.
.PP
The input is chopped up into units of 20 bytes (or less for
the last block). Each of these blocks is run through the hash
function as follows: The data passed to the hash function
is the current 'md', the same number of bytes from the 'state'
(the location determined by in incremented looping index) as
the current 'block', the new key data 'block', and 'count'
(which is incremented after each use).
The result of this is kept in 'md' and also xored into the
\&'state' at the same locations that were used as input into the
hash function. I
believe this system addresses points 1 (hash function; currently
\&\s-1SHA-1\s0), 3 (the 'state'), 4 (via the 'md'), 5 (by the use of a hash
function and xor).
.PP
When bytes are extracted from the \s-1RNG\s0, the following process is used.
For each group of 10 bytes (or less), we do the following:
.PP
Input into the hash function the local 'md' (which is initialized from
the global 'md' before any bytes are generated), the bytes that are to
be overwritten by the random bytes, and bytes from the 'state'
(incrementing looping index). From this digest output (which is kept
in 'md'), the top (up to) 10 bytes are returned to the caller and the
bottom 10 bytes are xored into the 'state'.
.PP
Finally, after we have finished 'num' random bytes for the caller,
\&'count' (which is incremented) and the local and global 'md' are fed
into the hash function and the results are kept in the global 'md'.
.PP
I believe the above addressed points 1 (use of \s-1SHA-1\s0), 6 (by hashing
into the 'state' the 'old' data from the caller that is about to be
overwritten) and 7 (by not using the 10 bytes given to the caller to
update the 'state', but they are used to update 'md').
.PP
So of the points raised, only 2 is not addressed (but see
RAND_add(3)).
.SH "SEE ALSO"
.IX Header "SEE ALSO"
BN_rand(3), RAND_add(3),
RAND_load_file(3), RAND_egd(3),
RAND_bytes(3),
RAND_set_rand_method(3),
RAND_cleanup(3)