NetBSD/sys/dev/raidframe/rf_cvscan.c

442 lines
12 KiB
C
Raw Normal View History

2001-11-13 10:11:12 +03:00
/* $NetBSD: rf_cvscan.c,v 1.8 2001/11/13 07:11:12 lukem Exp $ */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
*
* Author: Mark Holland
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*******************************************************************************
*
* cvscan.c -- prioritized cvscan disk queueing code.
*
* Nov 9, 1994, adapted from raidSim version (MCH)
*
******************************************************************************/
2001-11-13 10:11:12 +03:00
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rf_cvscan.c,v 1.8 2001/11/13 07:11:12 lukem Exp $");
#include <dev/raidframe/raidframevar.h>
#include "rf_alloclist.h"
#include "rf_stripelocks.h"
#include "rf_layout.h"
#include "rf_diskqueue.h"
#include "rf_cvscan.h"
#include "rf_debugMem.h"
#include "rf_general.h"
#define DO_CHECK_STATE(_hdr_) CheckCvscanState((_hdr_), __FILE__, __LINE__)
#define pri_ok(p) ( ((p) == RF_IO_NORMAL_PRIORITY) || ((p) == RF_IO_LOW_PRIORITY))
static void
CheckCvscanState(RF_CvscanHeader_t * hdr, char *file, int line)
{
long i, key;
RF_DiskQueueData_t *tmp;
if (hdr->left != (RF_DiskQueueData_t *) NULL)
RF_ASSERT(hdr->left->sectorOffset < hdr->cur_block);
for (key = hdr->cur_block, i = 0, tmp = hdr->left;
tmp != (RF_DiskQueueData_t *) NULL;
key = tmp->sectorOffset, i++, tmp = tmp->next)
RF_ASSERT(tmp->sectorOffset <= key
&& tmp->priority == hdr->nxt_priority && pri_ok(tmp->priority));
RF_ASSERT(i == hdr->left_cnt);
for (key = hdr->cur_block, i = 0, tmp = hdr->right;
tmp != (RF_DiskQueueData_t *) NULL;
key = tmp->sectorOffset, i++, tmp = tmp->next) {
RF_ASSERT(key <= tmp->sectorOffset);
RF_ASSERT(tmp->priority == hdr->nxt_priority);
RF_ASSERT(pri_ok(tmp->priority));
}
RF_ASSERT(i == hdr->right_cnt);
for (key = hdr->nxt_priority - 1, tmp = hdr->burner;
tmp != (RF_DiskQueueData_t *) NULL;
key = tmp->priority, tmp = tmp->next) {
RF_ASSERT(tmp);
RF_ASSERT(hdr);
RF_ASSERT(pri_ok(tmp->priority));
RF_ASSERT(key >= tmp->priority);
RF_ASSERT(tmp->priority < hdr->nxt_priority);
}
}
static void
PriorityInsert(RF_DiskQueueData_t ** list_ptr, RF_DiskQueueData_t * req)
{
/* * insert block pointed to by req in to list whose first * entry is
* pointed to by the pointer that list_ptr points to * ie., list_ptr
* is a grandparent of the first entry */
for (; (*list_ptr) != (RF_DiskQueueData_t *) NULL &&
(*list_ptr)->priority > req->priority;
list_ptr = &((*list_ptr)->next)) {
}
req->next = (*list_ptr);
(*list_ptr) = req;
}
static void
ReqInsert(RF_DiskQueueData_t ** list_ptr, RF_DiskQueueData_t * req, RF_CvscanArmDir_t order)
{
/* * insert block pointed to by req in to list whose first * entry is
* pointed to by the pointer that list_ptr points to * ie., list_ptr
* is a grandparent of the first entry */
for (; (*list_ptr) != (RF_DiskQueueData_t *) NULL &&
((order == rf_cvscan_RIGHT && (*list_ptr)->sectorOffset <= req->sectorOffset)
|| (order == rf_cvscan_LEFT && (*list_ptr)->sectorOffset > req->sectorOffset));
list_ptr = &((*list_ptr)->next)) {
}
req->next = (*list_ptr);
(*list_ptr) = req;
}
static RF_DiskQueueData_t *
ReqDequeue(RF_DiskQueueData_t ** list_ptr)
{
RF_DiskQueueData_t *ret = (*list_ptr);
if ((*list_ptr) != (RF_DiskQueueData_t *) NULL) {
(*list_ptr) = (*list_ptr)->next;
}
return (ret);
}
static void
ReBalance(RF_CvscanHeader_t * hdr)
{
/* DO_CHECK_STATE(hdr); */
while (hdr->right != (RF_DiskQueueData_t *) NULL
&& hdr->right->sectorOffset < hdr->cur_block) {
hdr->right_cnt--;
hdr->left_cnt++;
ReqInsert(&hdr->left, ReqDequeue(&hdr->right), rf_cvscan_LEFT);
}
/* DO_CHECK_STATE(hdr); */
}
static void
Transfer(RF_DiskQueueData_t ** to_list_ptr, RF_DiskQueueData_t ** from_list_ptr)
{
RF_DiskQueueData_t *gp;
for (gp = (*from_list_ptr); gp != (RF_DiskQueueData_t *) NULL;) {
RF_DiskQueueData_t *p = gp->next;
PriorityInsert(to_list_ptr, gp);
gp = p;
}
(*from_list_ptr) = (RF_DiskQueueData_t *) NULL;
}
static void
RealEnqueue(RF_CvscanHeader_t * hdr, RF_DiskQueueData_t * req)
{
RF_ASSERT(req->priority == RF_IO_NORMAL_PRIORITY || req->priority == RF_IO_LOW_PRIORITY);
DO_CHECK_STATE(hdr);
if (hdr->left_cnt == 0 && hdr->right_cnt == 0) {
hdr->nxt_priority = req->priority;
}
if (req->priority > hdr->nxt_priority) {
/*
** dump all other outstanding requests on the back burner
*/
Transfer(&hdr->burner, &hdr->left);
Transfer(&hdr->burner, &hdr->right);
hdr->left_cnt = 0;
hdr->right_cnt = 0;
hdr->nxt_priority = req->priority;
}
if (req->priority < hdr->nxt_priority) {
/*
** yet another low priority task!
*/
PriorityInsert(&hdr->burner, req);
} else {
if (req->sectorOffset < hdr->cur_block) {
/* this request is to the left of the current arms */
ReqInsert(&hdr->left, req, rf_cvscan_LEFT);
hdr->left_cnt++;
} else {
/* this request is to the right of the current arms */
ReqInsert(&hdr->right, req, rf_cvscan_RIGHT);
hdr->right_cnt++;
}
}
DO_CHECK_STATE(hdr);
}
void
rf_CvscanEnqueue(void *q_in, RF_DiskQueueData_t * elem, int priority)
{
RF_CvscanHeader_t *hdr = (RF_CvscanHeader_t *) q_in;
RealEnqueue(hdr, elem /* req */ );
}
RF_DiskQueueData_t *
rf_CvscanDequeue(void *q_in)
{
RF_CvscanHeader_t *hdr = (RF_CvscanHeader_t *) q_in;
long range, i, sum_dist_left, sum_dist_right;
RF_DiskQueueData_t *ret;
RF_DiskQueueData_t *tmp;
DO_CHECK_STATE(hdr);
if (hdr->left_cnt == 0 && hdr->right_cnt == 0)
return ((RF_DiskQueueData_t *) NULL);
range = RF_MIN(hdr->range_for_avg, RF_MIN(hdr->left_cnt, hdr->right_cnt));
for (i = 0, tmp = hdr->left, sum_dist_left =
((hdr->direction == rf_cvscan_RIGHT) ? range * hdr->change_penalty : 0);
tmp != (RF_DiskQueueData_t *) NULL && i < range;
tmp = tmp->next, i++) {
sum_dist_left += hdr->cur_block - tmp->sectorOffset;
}
for (i = 0, tmp = hdr->right, sum_dist_right =
((hdr->direction == rf_cvscan_LEFT) ? range * hdr->change_penalty : 0);
tmp != (RF_DiskQueueData_t *) NULL && i < range;
tmp = tmp->next, i++) {
sum_dist_right += tmp->sectorOffset - hdr->cur_block;
}
if (hdr->right_cnt == 0 || sum_dist_left < sum_dist_right) {
hdr->direction = rf_cvscan_LEFT;
hdr->cur_block = hdr->left->sectorOffset + hdr->left->numSector;
hdr->left_cnt = RF_MAX(hdr->left_cnt - 1, 0);
tmp = hdr->left;
ret = (ReqDequeue(&hdr->left)) /*->parent*/ ;
} else {
hdr->direction = rf_cvscan_RIGHT;
hdr->cur_block = hdr->right->sectorOffset + hdr->right->numSector;
hdr->right_cnt = RF_MAX(hdr->right_cnt - 1, 0);
tmp = hdr->right;
ret = (ReqDequeue(&hdr->right)) /*->parent*/ ;
}
ReBalance(hdr);
if (hdr->left_cnt == 0 && hdr->right_cnt == 0
&& hdr->burner != (RF_DiskQueueData_t *) NULL) {
/*
** restore low priority requests for next dequeue
*/
RF_DiskQueueData_t *burner = hdr->burner;
hdr->nxt_priority = burner->priority;
while (burner != (RF_DiskQueueData_t *) NULL
&& burner->priority == hdr->nxt_priority) {
RF_DiskQueueData_t *next = burner->next;
RealEnqueue(hdr, burner);
burner = next;
}
hdr->burner = burner;
}
DO_CHECK_STATE(hdr);
return (ret);
}
RF_DiskQueueData_t *
rf_CvscanPeek(void *q_in)
{
RF_CvscanHeader_t *hdr = (RF_CvscanHeader_t *) q_in;
long range, i, sum_dist_left, sum_dist_right;
RF_DiskQueueData_t *tmp, *headElement;
DO_CHECK_STATE(hdr);
if (hdr->left_cnt == 0 && hdr->right_cnt == 0)
headElement = NULL;
else {
range = RF_MIN(hdr->range_for_avg, RF_MIN(hdr->left_cnt, hdr->right_cnt));
for (i = 0, tmp = hdr->left, sum_dist_left =
((hdr->direction == rf_cvscan_RIGHT) ? range * hdr->change_penalty : 0);
tmp != (RF_DiskQueueData_t *) NULL && i < range;
tmp = tmp->next, i++) {
sum_dist_left += hdr->cur_block - tmp->sectorOffset;
}
for (i = 0, tmp = hdr->right, sum_dist_right =
((hdr->direction == rf_cvscan_LEFT) ? range * hdr->change_penalty : 0);
tmp != (RF_DiskQueueData_t *) NULL && i < range;
tmp = tmp->next, i++) {
sum_dist_right += tmp->sectorOffset - hdr->cur_block;
}
if (hdr->right_cnt == 0 || sum_dist_left < sum_dist_right)
headElement = hdr->left;
else
headElement = hdr->right;
}
return (headElement);
}
/*
** CVSCAN( 1, 0 ) is Shortest Seek Time First (SSTF)
** lowest average response time
** CVSCAN( 1, infinity ) is SCAN
** lowest response time standard deviation
*/
int
rf_CvscanConfigure()
{
return (0);
}
void *
rf_CvscanCreate(RF_SectorCount_t sectPerDisk,
RF_AllocListElem_t * clList,
RF_ShutdownList_t ** listp)
{
RF_CvscanHeader_t *hdr;
long range = 2; /* Currently no mechanism to change these */
long penalty = sectPerDisk / 5;
RF_MallocAndAdd(hdr, sizeof(RF_CvscanHeader_t), (RF_CvscanHeader_t *), clList);
2001-07-18 10:45:33 +04:00
memset((char *) hdr, 0, sizeof(RF_CvscanHeader_t));
hdr->range_for_avg = RF_MAX(range, 1);
hdr->change_penalty = RF_MAX(penalty, 0);
hdr->direction = rf_cvscan_RIGHT;
hdr->cur_block = 0;
hdr->left_cnt = hdr->right_cnt = 0;
hdr->left = hdr->right = (RF_DiskQueueData_t *) NULL;
hdr->burner = (RF_DiskQueueData_t *) NULL;
DO_CHECK_STATE(hdr);
return ((void *) hdr);
}
#if defined(__NetBSD__) && defined(_KERNEL)
/* PrintCvscanQueue is not used, so we ignore it... */
#else
static void
PrintCvscanQueue(RF_CvscanHeader_t * hdr)
{
RF_DiskQueueData_t *tmp;
printf("CVSCAN(%d,%d) at %d going %s\n",
(int) hdr->range_for_avg,
(int) hdr->change_penalty,
(int) hdr->cur_block,
(hdr->direction == rf_cvscan_LEFT) ? "LEFT" : "RIGHT");
printf("\tLeft(%d): ", hdr->left_cnt);
for (tmp = hdr->left; tmp != (RF_DiskQueueData_t *) NULL; tmp = tmp->next)
printf("(%d,%ld,%d) ",
(int) tmp->sectorOffset,
(long) (tmp->sectorOffset + tmp->numSector),
tmp->priority);
printf("\n");
printf("\tRight(%d): ", hdr->right_cnt);
for (tmp = hdr->right; tmp != (RF_DiskQueueData_t *) NULL; tmp = tmp->next)
printf("(%d,%ld,%d) ",
(int) tmp->sectorOffset,
(long) (tmp->sectorOffset + tmp->numSector),
tmp->priority);
printf("\n");
printf("\tBurner: ");
for (tmp = hdr->burner; tmp != (RF_DiskQueueData_t *) NULL; tmp = tmp->next)
printf("(%d,%ld,%d) ",
(int) tmp->sectorOffset,
(long) (tmp->sectorOffset + tmp->numSector),
tmp->priority);
printf("\n");
}
#endif
/* promotes reconstruction accesses for the given stripeID to normal priority.
* returns 1 if an access was found and zero otherwise. Normally, we should
* only have one or zero entries in the burner queue, so execution time should
* be short.
*/
int
rf_CvscanPromote(void *q_in, RF_StripeNum_t parityStripeID, RF_ReconUnitNum_t which_ru)
{
RF_CvscanHeader_t *hdr = (RF_CvscanHeader_t *) q_in;
RF_DiskQueueData_t *trailer = NULL, *tmp = hdr->burner, *tlist = NULL;
int retval = 0;
DO_CHECK_STATE(hdr);
while (tmp) { /* handle entries at the front of the list */
if (tmp->parityStripeID == parityStripeID && tmp->which_ru == which_ru) {
hdr->burner = tmp->next;
tmp->priority = RF_IO_NORMAL_PRIORITY;
tmp->next = tlist;
tlist = tmp;
tmp = hdr->burner;
} else
break;
}
if (tmp) {
trailer = tmp;
tmp = tmp->next;
}
while (tmp) { /* handle entries on the rest of the list */
if (tmp->parityStripeID == parityStripeID && tmp->which_ru == which_ru) {
trailer->next = tmp->next;
tmp->priority = RF_IO_NORMAL_PRIORITY;
tmp->next = tlist;
tlist = tmp; /* insert on a temp queue */
tmp = trailer->next;
} else {
trailer = tmp;
tmp = tmp->next;
}
}
while (tlist) {
retval++;
tmp = tlist->next;
RealEnqueue(hdr, tlist);
tlist = tmp;
}
RF_ASSERT(retval == 0 || retval == 1);
DO_CHECK_STATE((RF_CvscanHeader_t *) q_in);
return (retval);
}