NetBSD/sys/arch/amiga/dev/grf_rt.c

1393 lines
37 KiB
C
Raw Normal View History

1994-02-11 10:00:37 +03:00
/*
* $Id: grf_rt.c,v 1.17 1994/07/31 18:42:06 chopps Exp $
1994-02-11 10:00:37 +03:00
*/
#include "grfrt.h"
#if NGRFRT > 0
/* Graphics routines for the Retina board,
using the NCR 77C22E+ VGA controller. */
#include <sys/param.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/device.h>
#include <machine/cpu.h>
#include <amiga/amiga/device.h>
#include <amiga/dev/ztwobusvar.h>
#include <amiga/dev/grfioctl.h>
#include <amiga/dev/grfvar.h>
#include <amiga/dev/grf_rtreg.h>
/*
* marked true early so that retina_cnprobe() can tell if we are alive.
*/
int retina_inited;
/* NOTE: this driver for the MacroSystem Retina board was only possible,
because MacroSystem provided information about the pecularities
of the board. THANKS! Competition in Europe among gfx board
manufacturers is rather tough, so Lutz Vieweg, who wrote the
initial driver, has made an agreement with MS not to document
the driver source (see also his Copyright disclaimer below).
-> ALL comments after
-> "/* -------------- START OF CODE -------------- * /"
-> have been added by myself (mw) from studying the publically
-> available "NCR 77C22E+" Data Manual
Lutz' original driver source (without any of my comments) is
available on request. */
/* This code offers low-level routines to access the Retina graphics-board
manufactured by MS MacroSystem GmbH from within NetBSD for the Amiga.
No warranties for any kind of function at all - this code may crash
your hardware and scratch your harddisk.
Use at your own risk.
Freely distributable.
Written by Lutz Vieweg 07/93
Thanks to MacroSystem for providing me with the neccessary information
to create theese routines. The sparse documentation of this code
results from the agreements between MS and me.
*/
extern unsigned char kernel_font_8x8_width, kernel_font_8x8_height;
extern unsigned char kernel_font_8x8_lo, kernel_font_8x8_hi;
extern unsigned char kernel_font_8x8[];
#define MDF_DBL 1
#define MDF_LACE 2
#define MDF_CLKDIV2 4
/* standard-palette definition */
unsigned char NCRStdPalette[16*3] = {
/* R G B */
0, 0, 0,
192,192,192,
128, 0, 0,
0,128, 0,
0, 0,128,
128,128, 0,
0,128,128,
128, 0,128,
64, 64, 64, /* the higher 8 colors have more intensity for */
255,255,255, /* compatibility with standard attributes */
255, 0, 0,
0,255, 0,
0, 0,255,
255,255, 0,
0,255,255,
255, 0,255
};
/* The following structures are examples for monitor-definitions. To make one
of your own, first use "DefineMonitor" and create the 8-bit monitor-mode of
your dreams. Then save it, and make a structure from the values provided in
the file DefineMonitor stored - the labels in the comment above the
structure definition show where to put what value.
Then you'll need to adapt your monitor-definition to the font you want to
use. Be FX the width of the font, then the following modifications have to
be applied to your values:
HBS = (HBS * 4) / FX
HSS = (HSS * 4) / FX
HSE = (HSE * 4) / FX
HBE = (HBE * 4) / FX
HT = (HT * 4) / FX
Make sure your maximum width (MW) and height (MH) are even multiples of
the fonts' width and height.
*/
#if 0
/* horizontal 31.5 kHz */
/* FQ FLG MW MH HBS HSS HSE HBE HT VBS VSS VSE VBE VT */
struct MonDef MON_640_512_60 = { 50000000, 28, 640, 512, 81, 86, 93, 98, 95, 513, 513, 521, 535, 535,
/* Depth, PAL, TX, TY, XY,FontX, FontY, FontData, FLo, Fhi */
4, NCRStdPalette, 80, 64, 5120, 8, 8, kernel_font_8x8, 32, 255};
struct MonDef MON_640_480_62_G = { 50000000, 4, 640, 480, 161,171,184,196,195, 481, 484, 492, 502, 502,
8, NCRStdPalette,640,480, 5120, 8, 8, kernel_font_8x8, 32, 255};
/* Enter higher values here ^ ^ for panning! */
/* horizontal 38kHz */
struct MonDef MON_768_600_60 = { 75000000, 28, 768, 600, 97, 99,107,120,117, 601, 615, 625, 638, 638,
4, NCRStdPalette, 96, 75, 7200, 8, 8, kernel_font_8x8, 32, 255};
/* horizontal 64kHz */
struct MonDef MON_768_600_80 = { 50000000, 24, 768, 600, 97,104,112,122,119, 601, 606, 616, 628, 628,
4, NCRStdPalette, 96, 75, 7200, 8, 8, kernel_font_8x8, 32, 255};
struct MonDef MON_1024_768_80 = { 90000000, 24, 1024, 768, 129,130,141,172,169, 769, 770, 783, 804, 804,
4, NCRStdPalette,128, 96, 12288, 8, 8, kernel_font_8x8, 32, 255};
/* FQ FLG MW MH HBS HSS HSE HBE HT VBS VSS VSE VBE VT */
struct MonDef MON_1024_768_80_G = { 90000000, 0, 1024, 768, 257,258,280,344,343, 769, 770, 783, 804, 804,
8, NCRStdPalette, 1024, 768, 12288, 8, 8, kernel_font_8x8, 32, 255};
struct MonDef MON_1024_1024_59= { 90000000, 24, 1024,1024, 129,130,141,173,170,1025,1059,1076,1087,1087,
4, NCRStdPalette,128, 128, 16384, 8, 8, kernel_font_8x8, 32, 255};
/* WARNING: THE FOLLOWING MONITOR MODES EXCEED THE 90-MHz LIMIT THE PROCESSOR
HAS BEEN SPECIFIED FOR. USE AT YOUR OWN RISK (AND THINK ABOUT
MOUNTING SOME COOLING DEVICE AT THE PROCESSOR AND RAMDAC)! */
struct MonDef MON_1280_1024_60= {110000000, 24, 1280,1024, 161,162,176,211,208,1025,1026,1043,1073,1073,
4, NCRStdPalette,160, 128, 20480, 8, 8, kernel_font_8x8, 32, 255};
struct MonDef MON_1280_1024_60_G= {110000000, 0, 1280,1024, 321,322,349,422,421,1025,1026,1043,1073,1073,
8, NCRStdPalette,1280,1024, 20480, 8, 8, kernel_font_8x8, 32, 255};
/* horizontal 75kHz */
struct MonDef MON_1280_1024_69= {120000000, 24, 1280,1024, 161,162,175,200,197,1025,1026,1043,1073,1073,
4, NCRStdPalette,160, 128, 20480, 8, 8, kernel_font_8x8, 32, 255};
#else
struct MonDef monitor_defs[] = {
/* horizontal 31.5 kHz */
{ 50000000, 28, 640, 512, 81, 86, 93, 98, 95, 513, 513, 521, 535, 535,
4, NCRStdPalette, 80, 64, 5120, 8, 8, kernel_font_8x8, 32, 255},
/* horizontal 38kHz */
{ 75000000, 28, 768, 600, 97, 99,107,120,117, 601, 615, 625, 638, 638,
4, NCRStdPalette, 96, 75, 7200, 8, 8, kernel_font_8x8, 32, 255},
/* horizontal 64kHz */
{ 50000000, 24, 768, 600, 97,104,112,122,119, 601, 606, 616, 628, 628,
4, NCRStdPalette, 96, 75, 7200, 8, 8, kernel_font_8x8, 32, 255},
{ 90000000, 24, 1024, 768, 129,130,141,172,169, 769, 770, 783, 804, 804,
4, NCRStdPalette,128, 96, 12288, 8, 8, kernel_font_8x8, 32, 255},
/* GFX modes */
/* horizontal 31.5 kHz */
{ 50000000, 4, 640, 480, 161,171,184,196,195, 481, 484, 492, 502, 502,
8, NCRStdPalette,640, 480, 5120, 8, 8, kernel_font_8x8, 32, 255},
/* horizontal 64kHz */
{ 90000000, 0, 1024, 768, 257,258,280,344,343, 769, 770, 783, 804, 804,
8, NCRStdPalette, 1024, 768, 12288, 8, 8, kernel_font_8x8, 32, 255},
/* WARNING: THE FOLLOWING MONITOR MODES EXCEED THE 90-MHz LIMIT THE PROCESSOR
HAS BEEN SPECIFIED FOR. USE AT YOUR OWN RISK (AND THINK ABOUT
MOUNTING SOME COOLING DEVICE AT THE PROCESSOR AND RAMDAC)! */
{110000000, 0, 1280,1024, 321,322,349,422,421,1025,1026,1043,1073,1073,
8, NCRStdPalette,1280,1024, 20480, 8, 8, kernel_font_8x8, 32, 255},
};
static const char *monitor_descr[] = {
"80x64 (640x512) 31.5kHz",
"96x75 (768x600) 38kHz",
"96x75 (768x600) 64kHz",
"128x96 (1024x768) 64kHz",
"GFX (640x480) 31.5kHz",
"GFX (1024x768) 64kHz",
"GFX (1280x1024) 64kHz ***EXCEEDS CHIP LIMIT!!!***",
};
int retina_mon_max = sizeof (monitor_defs)/sizeof (monitor_defs[0]);
/* patchable */
int retina_default_mon = 0;
int retina_default_gfx = 4;
#endif
static struct MonDef *current_mon;
/* -------------- START OF CODE -------------- */
static const long FQTab[16] =
{ 25175000, 28322000, 36000000, 65000000,
44900000, 50000000, 80000000, 75000000,
56644000, 63000000, 72000000, 130000000,
90000000, 100000000, 110000000, 120000000 };
/*--------------------------------------------------*/
/*--------------------------------------------------*/
#if 0
static struct MonDef *default_monitor = &DEFAULT_MONDEF;
#endif
/*
* used to query the retina to see if its alive (?)
*/
int
retina_alive(mdp)
struct MonDef *mdp;
{
short clksel;
for (clksel = 15; clksel; clksel--) {
if (FQTab[clksel] == mdp->FQ)
break;
}
if (clksel < 0)
return(0);
if (mdp->DEP != 4)
return(1);
if (mdp->FX == 4 || (mdp->FX >= 7 && mdp->FX <= 16))
return(1);
return(0);
}
static int
rt_load_mon(gp, md)
struct grf_softc *gp;
struct MonDef *md;
{
struct grfinfo *gi = &gp->g_display;
volatile unsigned char *ba;
volatile unsigned char *fb;
short FW, clksel, HDE, VDE;
for (clksel = 15; clksel; clksel--) {
if (FQTab[clksel] == md->FQ) break;
}
if (clksel < 0)
return(0);
ba = gp->g_regkva;;
fb = gp->g_fbkva;
FW = 0;
if (md->DEP == 4) {
switch (md->FX) {
case 4:
FW = 0;
break;
case 7:
FW = 1;
break;
case 8:
FW = 2;
break;
case 9:
FW = 3;
break;
case 10:
FW = 4;
break;
case 11:
FW = 5;
break;
case 12:
FW = 6;
break;
case 13:
FW = 7;
break;
case 14:
FW = 8;
break;
case 15:
FW = 9;
break;
case 16:
FW = 11;
break;
default:
return(0);
break;
};
}
if (md->DEP == 4) HDE = (md->MW+md->FX-1)/md->FX;
else HDE = (md->MW+3)/4;
VDE = md->MH-1;
/* hmm... */
fb[0x8000] = 0;
/* enable extension registers */
WSeq (ba, SEQ_ID_EXTENDED_ENABLE, 0x05);
#if 0
/* program the clock oscillator */
vgaw (ba, GREG_MISC_OUTPUT_W, 0xe3 | ((clksel & 3) * 0x04));
vgaw (ba, GREG_FEATURE_CONTROL_W, 0x00);
/* XXXX according to the NCR specs, this register should be set to 1
XXXX before doing the MISC_OUTPUT setting and CLOCKING_MODE
XXXX setting. */
WSeq (ba, SEQ_ID_RESET, 0x03);
WSeq (ba, SEQ_ID_CLOCKING_MODE, 0x01 | ((md->FLG & MDF_CLKDIV2)/ MDF_CLKDIV2 * 8));
WSeq (ba, SEQ_ID_MAP_MASK, 0x0f);
WSeq (ba, SEQ_ID_CHAR_MAP_SELECT, 0x00);
/* odd/even write select + extended memory */
WSeq (ba, SEQ_ID_MEMORY_MODE, 0x06);
/* XXXX I think this order of setting RESET is wrong... */
WSeq (ba, SEQ_ID_RESET, 0x01);
WSeq (ba, SEQ_ID_RESET, 0x03);
#else
WSeq (ba, SEQ_ID_RESET, 0x01);
/* set font width + rest of clocks */
WSeq (ba, SEQ_ID_EXT_CLOCK_MODE, 0x30 | (FW & 0x0f) | ((clksel & 4) / 4 * 0x40) );
/* another clock bit, plus hw stuff */
WSeq (ba, SEQ_ID_MISC_FEATURE_SEL, 0xf4 | (clksel & 8) );
/* program the clock oscillator */
vgaw (ba, GREG_MISC_OUTPUT_W, 0xe3 | ((clksel & 3) * 0x04));
vgaw (ba, GREG_FEATURE_CONTROL_W, 0x00);
WSeq (ba, SEQ_ID_CLOCKING_MODE, 0x01 | ((md->FLG & MDF_CLKDIV2)/ MDF_CLKDIV2 * 8));
WSeq (ba, SEQ_ID_MAP_MASK, 0x0f);
WSeq (ba, SEQ_ID_CHAR_MAP_SELECT, 0x00);
/* odd/even write select + extended memory */
WSeq (ba, SEQ_ID_MEMORY_MODE, 0x06);
WSeq (ba, SEQ_ID_RESET, 0x03);
#endif
/* monochrome cursor */
WSeq (ba, SEQ_ID_CURSOR_CONTROL, 0x00);
/* bank0 */
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, 0x00);
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, 0x00);
WSeq (ba, SEQ_ID_DISP_OFF_HI , 0x00);
WSeq (ba, SEQ_ID_DISP_OFF_LO , 0x00);
/* bank0 */
WSeq (ba, SEQ_ID_SEC_HOST_OFF_HI, 0x00);
WSeq (ba, SEQ_ID_SEC_HOST_OFF_LO, 0x00);
/* 1M-chips + ena SEC + ena EMem + rw PrimA0/rw Sec/B0 */
WSeq (ba, SEQ_ID_EXTENDED_MEM_ENA, 0x3 | 0x4 | 0x10 | 0x40);
#if 0
/* set font width + rest of clocks */
WSeq (ba, SEQ_ID_EXT_CLOCK_MODE, 0x30 | (FW & 0x0f) | ((clksel & 4) / 4 * 0x40) );
#endif
if (md->DEP == 4) {
/* no ext-chain4 + no host-addr-bit-16 */
WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR, 0x00);
/* no packed/nibble + no 256bit gfx format */
WSeq (ba, SEQ_ID_EXT_PIXEL_CNTL, 0x00);
}
else {
WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR, 0x02);
/* 256bit gfx format */
WSeq (ba, SEQ_ID_EXT_PIXEL_CNTL, 0x01);
}
/* AT-interface */
WSeq (ba, SEQ_ID_BUS_WIDTH_FEEDB, 0x06);
/* see fg/bg color expansion */
WSeq (ba, SEQ_ID_COLOR_EXP_WFG, 0x01);
WSeq (ba, SEQ_ID_COLOR_EXP_WBG, 0x00);
WSeq (ba, SEQ_ID_EXT_RW_CONTROL, 0x00);
#if 0
/* another clock bit, plus hw stuff */
WSeq (ba, SEQ_ID_MISC_FEATURE_SEL, 0xf4 | (clksel & 8) );
#endif
/* don't tristate PCLK and PIX */
WSeq (ba, SEQ_ID_COLOR_KEY_CNTL, 0x40 );
/* reset CRC circuit */
WSeq (ba, SEQ_ID_CRC_CONTROL, 0x00 );
/* set RAS/CAS swap */
WSeq (ba, SEQ_ID_PERF_SELECT, 0x20);
WCrt (ba, CRT_ID_END_VER_RETR, (md->VSE & 0xf ) | 0x20);
WCrt (ba, CRT_ID_HOR_TOTAL, md->HT & 0xff);
WCrt (ba, CRT_ID_HOR_DISP_ENA_END, (HDE-1) & 0xff);
WCrt (ba, CRT_ID_START_HOR_BLANK, md->HBS & 0xff);
WCrt (ba, CRT_ID_END_HOR_BLANK, (md->HBE & 0x1f) | 0x80);
WCrt (ba, CRT_ID_START_HOR_RETR, md->HSS & 0xff);
WCrt (ba, CRT_ID_END_HOR_RETR, (md->HSE & 0x1f) | ((md->HBE & 0x20)/ 0x20 * 0x80));
WCrt (ba, CRT_ID_VER_TOTAL, (md->VT & 0xff));
WCrt (ba, CRT_ID_OVERFLOW, (( (md->VSS & 0x200) / 0x200 * 0x80)
| ((VDE & 0x200) / 0x200 * 0x40)
| ((md->VT & 0x200) / 0x200 * 0x20)
| 0x10
| ((md->VBS & 0x100) / 0x100 * 8 )
| ((md->VSS & 0x100) / 0x100 * 4 )
| ((VDE & 0x100) / 0x100 * 2 )
| ((md->VT & 0x100) / 0x100 )));
WCrt (ba, CRT_ID_PRESET_ROW_SCAN, 0x00);
if (md->DEP == 4) {
WCrt (ba, CRT_ID_MAX_SCAN_LINE, (( (md->FLG & MDF_DBL)/ MDF_DBL * 0x80)
| 0x40
| ((md->VBS & 0x200)/0x200 * 0x20)
| ((md->FY-1) & 0x1f)));
}
else {
WCrt (ba, CRT_ID_MAX_SCAN_LINE, (( (md->FLG & MDF_DBL)/ MDF_DBL * 0x80)
| 0x40
| ((md->VBS & 0x200)/0x200 * 0x20)
| (0 & 0x1f)));
}
WCrt (ba, CRT_ID_CURSOR_START, (md->FY & 0x1f) - 2);
WCrt (ba, CRT_ID_CURSOR_END, (md->FY & 0x1f) - 1);
WCrt (ba, CRT_ID_START_ADDR_HIGH, 0x00);
WCrt (ba, CRT_ID_START_ADDR_LOW, 0x00);
WCrt (ba, CRT_ID_CURSOR_LOC_HIGH, 0x00);
WCrt (ba, CRT_ID_CURSOR_LOC_LOW, 0x00);
WCrt (ba, CRT_ID_START_VER_RETR, md->VSS & 0xff);
WCrt (ba, CRT_ID_END_VER_RETR, (md->VSE & 0x0f) | 0x80 | 0x20);
WCrt (ba, CRT_ID_VER_DISP_ENA_END, VDE & 0xff);
if (md->DEP == 4)
WCrt (ba, CRT_ID_OFFSET, (HDE / 2) & 0xff);
else
WCrt (ba, CRT_ID_OFFSET, (md->TX / 8) & 0xff);
WCrt (ba, CRT_ID_UNDERLINE_LOC, (md->FY-1) & 0x1f);
WCrt (ba, CRT_ID_START_VER_BLANK, md->VBS & 0xff);
WCrt (ba, CRT_ID_END_VER_BLANK, md->VBE & 0xff);
/* byte mode + wrap + select row scan counter + cms */
WCrt (ba, CRT_ID_MODE_CONTROL, 0xe3);
WCrt (ba, CRT_ID_LINE_COMPARE, 0xff);
/* enable extended end bits + those bits */
WCrt (ba, CRT_ID_EXT_HOR_TIMING1, ( 0x20
| ((md->FLG & MDF_LACE) / MDF_LACE * 0x10)
| ((md->HT & 0x100) / 0x100 * 0x01)
| (((HDE-1) & 0x100) / 0x100 * 0x02)
| ((md->HBS & 0x100) / 0x100 * 0x04)
| ((md->HSS & 0x100) / 0x100 * 0x08)));
if (md->DEP == 4)
WCrt (ba, CRT_ID_EXT_START_ADDR, (((HDE / 2) & 0x100)/0x100 * 16));
else
WCrt (ba, CRT_ID_EXT_START_ADDR, (((md->TX / 8) & 0x100)/0x100 * 16));
WCrt (ba, CRT_ID_EXT_HOR_TIMING2, ( ((md->HT & 0x200)/ 0x200 * 0x01)
| (((HDE-1) & 0x200)/ 0x200 * 0x02)
| ((md->HBS & 0x200)/ 0x200 * 0x04)
| ((md->HSS & 0x200)/ 0x200 * 0x08)
| ((md->HBE & 0xc0) / 0x40 * 0x10)
| ((md->HSE & 0x60) / 0x20 * 0x40)));
WCrt (ba, CRT_ID_EXT_VER_TIMING, ( ((md->VSE & 0x10) / 0x10 * 0x80)
| ((md->VBE & 0x300)/ 0x100 * 0x20)
| 0x10
| ((md->VSS & 0x400)/ 0x400 * 0x08)
| ((md->VBS & 0x400)/ 0x400 * 0x04)
| ((VDE & 0x400)/ 0x400 * 0x02)
| ((md->VT & 0x400)/ 0x400 * 0x01)));
WGfx (ba, GCT_ID_SET_RESET, 0x00);
WGfx (ba, GCT_ID_ENABLE_SET_RESET, 0x00);
WGfx (ba, GCT_ID_COLOR_COMPARE, 0x00);
WGfx (ba, GCT_ID_DATA_ROTATE, 0x00);
WGfx (ba, GCT_ID_READ_MAP_SELECT, 0x00);
WGfx (ba, GCT_ID_GRAPHICS_MODE, 0x00);
if (md->DEP == 4)
WGfx (ba, GCT_ID_MISC, 0x04);
else
WGfx (ba, GCT_ID_MISC, 0x05);
WGfx (ba, GCT_ID_COLOR_XCARE, 0xff);
WGfx (ba, GCT_ID_BITMASK, 0xff);
/* reset the Attribute Controller flipflop */
vgar (ba, GREG_STATUS1_R);
WAttr (ba, ACT_ID_PALETTE0, 0x00);
WAttr (ba, ACT_ID_PALETTE1, 0x01);
WAttr (ba, ACT_ID_PALETTE2, 0x02);
WAttr (ba, ACT_ID_PALETTE3, 0x03);
WAttr (ba, ACT_ID_PALETTE4, 0x04);
WAttr (ba, ACT_ID_PALETTE5, 0x05);
WAttr (ba, ACT_ID_PALETTE6, 0x06);
WAttr (ba, ACT_ID_PALETTE7, 0x07);
WAttr (ba, ACT_ID_PALETTE8, 0x08);
WAttr (ba, ACT_ID_PALETTE9, 0x09);
WAttr (ba, ACT_ID_PALETTE10, 0x0a);
WAttr (ba, ACT_ID_PALETTE11, 0x0b);
WAttr (ba, ACT_ID_PALETTE12, 0x0c);
WAttr (ba, ACT_ID_PALETTE13, 0x0d);
WAttr (ba, ACT_ID_PALETTE14, 0x0e);
WAttr (ba, ACT_ID_PALETTE15, 0x0f);
vgar (ba, GREG_STATUS1_R);
if (md->DEP == 4)
WAttr (ba, ACT_ID_ATTR_MODE_CNTL, 0x08);
else
WAttr (ba, ACT_ID_ATTR_MODE_CNTL, 0x09);
WAttr (ba, ACT_ID_OVERSCAN_COLOR, 0x00);
WAttr (ba, ACT_ID_COLOR_PLANE_ENA, 0x0f);
WAttr (ba, ACT_ID_HOR_PEL_PANNING, 0x00);
WAttr (ba, ACT_ID_COLOR_SELECT, 0x00);
vgar (ba, GREG_STATUS1_R);
/* I have *NO* idea what strobing reg-0x20 might do... */
vgaw (ba, ACT_ADDRESS_W, 0x20);
if (md->DEP == 4)
WCrt (ba, CRT_ID_MAX_SCAN_LINE, ( ((md->FLG & MDF_DBL)/ MDF_DBL * 0x80)
| 0x40
| ((md->VBS & 0x200)/0x200 * 0x20)
| ((md->FY-1) & 0x1f)));
else
WCrt (ba, CRT_ID_MAX_SCAN_LINE, ( ((md->FLG & MDF_DBL)/ MDF_DBL * 0x80)
| 0x40
| ((md->VBS & 0x200)/0x200 * 0x20)
| (0 & 0x1f)));
/* not it's time for guessing... */
vgaw (ba, VDAC_REG_D, 0x02);
/* if this does what I think it does, it selects DAC
register 0, and writes the palette in subsequent
registers, thus it works similar to the WD33C93
select/data mechanism */
vgaw (ba, VDAC_REG_SELECT, 0x00);
{
short x = 15;
const unsigned char * col = md->PAL;
do {
vgaw (ba, VDAC_REG_DATA, *col++);
vgaw (ba, VDAC_REG_DATA, *col++);
vgaw (ba, VDAC_REG_DATA, *col++);
} while (x--);
if (md->DEP != 4) {
short x = 256-17;
unsigned char col = 16;
do {
vgaw(ba, VDAC_REG_DATA, col);
vgaw(ba, VDAC_REG_DATA, col);
vgaw(ba, VDAC_REG_DATA, col);
col++;
} while (x--);
}
}
/* now load the font into maps 2 (and 3 for fonts wider than 8 pixels) */
if (md->DEP == 4) {
/* first set the whole font memory to a test-pattern, so we
can see if something that shouldn't be drawn IS drawn.. */
{
volatile unsigned char * c = fb;
long x;
Map(2);
for (x = 0; x < 65536; x++) {
*c++ = (x & 1)? 0xaa : 0x55;
}
}
{
volatile unsigned char * c = fb;
long x;
Map(3);
for (x = 0; x < 65536; x++) {
*c++ = (x & 1)? 0xaa : 0x55;
}
}
{
/* ok, now position at first defined character, and
copy over the images */
volatile unsigned char * c = fb + md->FLo * 32;
const unsigned char * f = md->FData;
unsigned short z;
Map(2);
for (z = md->FLo; z <= md->FHi; z++) {
short y = md->FY-1;
if (md->FX > 8){
do {
*c++ = *f;
f += 2;
} while (y--);
}
else {
do {
*c++ = *f++;
} while (y--);
}
c += 32-md->FY;
}
if (md->FX > 8) {
unsigned short z;
Map(3);
c = fb + md->FLo*32;
f = md->FData+1;
for (z = md->FLo; z <= md->FHi; z++) {
short y = md->FY-1;
do {
*c++ = *f;
f += 2;
} while (y--);
c += 32-md->FY;
}
}
}
}
/* select map 0 */
WGfx (ba, GCT_ID_READ_MAP_SELECT, 0);
if (md->DEP == 4)
/* allow writes into maps 0 and 1 */
WSeq (ba, SEQ_ID_MAP_MASK, 3);
else
/* allow writes into all maps */
WSeq (ba, SEQ_ID_MAP_MASK, 0x0f);
/* select extended chain4 addressing:
!A0/!A1 map 0 character to be displayed
!A1/ A1 map 1 attribute of that character
A0/!A1 map 2 not used (masked out, ignored)
A0/ A1 map 3 not used (masked out, ignored) */
WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR, RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) | 0x02);
if (md->DEP == 4) {
/* position in display memory */
unsigned short * c = (unsigned short *) fb;
/* fill with blank, white on black */
const unsigned short fill_val = 0x2010;
short x = md->XY;
do {
*c = fill_val;
c += 2; } while (x--);
/* I won't comment this :-)) */
c = (unsigned short *) fb;
c += (md->TX-6)*2;
{
unsigned short init_msg[6] = {0x520a, 0x450b, 0x540c, 0x490d, 0x4e0e, 0x410f};
unsigned short * f = init_msg;
x = 5;
do {
*c = *f++;
c += 2;
} while (x--);
}
}
else if (md->DEP == 8) {
/* could clear the gfx screen here, but that's what the X server does anyway */
;
}
gp->g_data = (caddr_t)md;
gi->gd_regaddr = (caddr_t)ztwopa(ba);
gi->gd_regsize = 64*1024;
gi->gd_fbaddr = (caddr_t)ztwopa(fb);
#ifdef BANKEDDEVPAGER
gi->gd_fbsize = 4*1024*1024; /* XXX */
gi->gd_bank_size = 64*1024;
#else
gi->gd_fbsize = 64*1024; /* larger, but that's whats mappable */
#endif
gi->gd_colors = 1 << md->DEP;
gi->gd_planes = md->DEP;
gi->gd_fbwidth = md->MW;
gi->gd_fbheight = md->MH;
gi->gd_fbx = 0;
gi->gd_fby = 0;
gi->gd_dwidth = md->TX * md->FX;
gi->gd_dheight = md->TY * md->FY;
gi->gd_dx = 0;
gi->gd_dy = 0;
/* initialized, works, return 1 */
return(1);
}
int rt_mode __P((struct grf_softc *, int, void *, int , int));
void grfrtattach __P((struct device *, struct device *, void *));
int grfrtprint __P((void *, char *));
int grfrtmatch __P((struct device *, struct cfdata *, void *));
struct cfdriver grfrtcd = {
NULL, "grfrt", grfrtmatch, grfrtattach,
DV_DULL, sizeof(struct grf_softc), NULL, 0 };
/*
* only used in console init
*/
static struct cfdata *cfdata;
/*
* we make sure to only init things once. this is somewhat
* tricky regarding the console.
*/
int
grfrtmatch(pdp, cfp, auxp)
struct device *pdp;
struct cfdata *cfp;
void *auxp;
{
#ifdef RETINACONSOLE
static int rtconunit = -1;
#endif
struct ztwobus_args *zap;
zap = auxp;
/*
* allow only one retina console
*/
if (amiga_realconfig == 0)
#ifdef RETINACONSOLE
if (rtconunit != -1)
#endif
return(0);
/*
* check that this is a retina board.
*/
if (zap->manid != 18260 || zap->prodid != 6)
return(0);
#ifdef RETINACONSOLE
if (amiga_realconfig == 0 || rtconunit != cfp->cf_unit) {
#endif
if ((unsigned)retina_default_mon >= retina_mon_max ||
monitor_defs[retina_default_mon].DEP == 8)
retina_default_mon = 0;
current_mon = monitor_defs + retina_default_mon;
if (retina_alive(current_mon) == 0)
return(0);
#ifdef RETINACONSOLE
if (amiga_realconfig == 0) {
rtconunit = cfp->cf_unit;
cfdata = cfp;
}
}
#endif
return(1);
}
/*
* attach to the grfbus (ztwobus)
*/
void
grfrtattach(pdp, dp, auxp)
struct device *pdp, *dp;
void *auxp;
{
static struct grf_softc congrf;
static int coninited;
struct ztwobus_args *zap;
struct grf_softc *gp;
zap = auxp;
if (dp == NULL)
gp = &congrf;
else
gp = (struct grf_softc *)dp;
if (dp != NULL && congrf.g_regkva != 0) {
/*
* we inited earlier just copy the info
* take care not to copy the device struct though.
*/
bcopy(&congrf.g_display, &gp->g_display,
(char *)&gp[1] - (char *)&gp->g_display);
} else {
gp->g_regkva = (volatile caddr_t)zap->va;
gp->g_fbkva = (volatile caddr_t)zap->va + 64 * 1024;
gp->g_unit = GRF_RETINAII_UNIT;
gp->g_flags = GF_ALIVE;
gp->g_mode = rt_mode;
gp->g_conpri = grfrt_cnprobe();
grfrt_iteinit(gp);
(void)rt_load_mon(gp, current_mon);
}
if (dp != NULL)
printf("\n");
/*
* attach grf
*/
amiga_config_found(cfdata, &gp->g_device, gp, grfrtprint);
}
int
grfrtprint(auxp, pnp)
void *auxp;
char *pnp;
{
if (pnp)
printf("grf%d at %s", ((struct grf_softc *)auxp)->g_unit,
pnp);
return(UNCONF);
}
static int
rt_getvmode (gp, vm)
struct grf_softc *gp;
struct grfvideo_mode *vm;
{
struct MonDef *md;
if (vm->mode_num && vm->mode_num > retina_mon_max)
return EINVAL;
if (! vm->mode_num)
vm->mode_num = (current_mon - monitor_defs) + 1;
md = monitor_defs + (vm->mode_num - 1);
strncpy (vm->mode_descr, monitor_descr + (vm->mode_num - 1),
sizeof (vm->mode_descr));
vm->pixel_clock = md->FQ;
vm->disp_width = md->MW;
vm->disp_height = md->MH;
vm->depth = md->DEP;
vm->hblank_start = md->HBS;
vm->hblank_stop = md->HBE;
vm->hsync_start = md->HSS;
vm->hsync_stop = md->HSE;
vm->htotal = md->HT;
vm->vblank_start = md->VBS;
vm->vblank_stop = md->VBE;
vm->vsync_start = md->VSS;
vm->vsync_stop = md->VSE;
vm->vtotal = md->VT;
return 0;
}
static int
rt_setvmode (gp, mode, txtonly)
struct grf_softc *gp;
unsigned mode;
int txtonly;
{
struct MonDef *md;
int error;
if (!mode || mode > retina_mon_max)
return EINVAL;
if (txtonly && monitor_defs[mode-1].DEP == 8)
return EINVAL;
current_mon = monitor_defs + (mode - 1);
error = rt_load_mon (gp, current_mon) ? 0 : EINVAL;
return error;
}
/*
* Change the mode of the display.
* Return a UNIX error number or 0 for success.
*/
int
rt_mode(gp, cmd, arg, a2, a3)
struct grf_softc *gp;
int cmd;
void *arg;
int a2, a3;
{
/* implement these later... */
switch (cmd)
{
case GM_GRFON:
rt_setvmode (gp, retina_default_gfx + 1, 0);
return 0;
case GM_GRFOFF:
rt_setvmode (gp, retina_default_mon + 1, 0);
return 0;
case GM_GRFCONFIG:
return 0;
case GM_GRFGETVMODE:
return rt_getvmode (gp, (struct grfvideo_mode *) arg);
case GM_GRFSETVMODE:
return rt_setvmode (gp, *(unsigned *) arg, 1);
case GM_GRFGETNUMVM:
*(int *)arg = retina_mon_max;
return 0;
#ifdef BANKEDDEVPAGER
case GM_GRFGETBANK:
*(int *)arg = rt_getbank (gp, a2, a3);
return 0;
case GM_GRFGETCURBANK:
*(int *)arg = rt_getcurbank (gp);
return 0;
case GM_GRFSETBANK:
return rt_setbank (gp, arg);
#endif
case GM_GRFIOCTL:
return rt_ioctl (gp, arg, a2);
default:
break;
}
return EINVAL;
}
int
rt_ioctl (gp, cmd, data)
register struct grf_softc *gp;
int cmd;
void *data;
{
switch (cmd)
{
case GRFIOCGSPRITEPOS:
return rt_getspritepos (gp, (struct grf_position *) data);
case GRFIOCSSPRITEPOS:
return rt_setspritepos (gp, (struct grf_position *) data);
case GRFIOCSSPRITEINF:
return rt_setspriteinfo (gp, (struct grf_spriteinfo *) data);
case GRFIOCGSPRITEINF:
return rt_getspriteinfo (gp, (struct grf_spriteinfo *) data);
case GRFIOCGSPRITEMAX:
return rt_getspritemax (gp, (struct grf_position *) data);
case GRFIOCGETCMAP:
return rt_getcmap (gp, (struct grf_colormap *) data);
case GRFIOCPUTCMAP:
return rt_putcmap (gp, (struct grf_colormap *) data);
case GRFIOCBITBLT:
return rt_bitblt (gp, (struct grf_bitblt *) data);
}
return EINVAL;
}
#ifdef BANKEDDEVPAGER
/* Retina banks can overlap. Don't use this information (yet?), and
only switch 64k sized banks. */
int
rt_getbank (gp, offs, prot)
struct grf_softc *gp;
off_t offs;
int prot;
{
/* XXX */
if (offs < 0 || offs >= 4*1024*1024)
return -1;
else
return offs >> 16;
}
int
rt_getcurbank (gp)
struct grf_softc *gp;
{
struct grfinfo *gi = &gp->g_display;
volatile unsigned char *ba;
int bank;
ba = gp->g_regkva;
bank = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO) | (RSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI) << 8);
/* bank register is multiple of 64 byte, make this multiple of 64k */
bank >>= 10;
return bank;
}
int
rt_setbank (gp, bank)
struct grf_softc *gp;
int bank;
{
volatile unsigned char *ba;
ba = gp->g_regkva;
/* bank register is multiple of 64 byte, make this multiple of 64k */
bank <<= 10;
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, (unsigned char) bank);
bank >>= 8;
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, (unsigned char) bank);
return 0;
}
#endif
int
rt_getcmap (gfp, cmap)
struct grf_softc *gfp;
struct grf_colormap *cmap;
{
volatile unsigned char *ba;
u_char red[256], green[256], blue[256], *rp, *gp, *bp;
short x;
int error;
if (cmap->count == 0 || cmap->index >= 256)
return 0;
if (cmap->index + cmap->count > 256)
cmap->count = 256 - cmap->index;
ba = gfp->g_regkva;
/* first read colors out of the chip, then copyout to userspace */
vgaw (ba, VDAC_REG_SELECT, cmap->index);
x = cmap->count - 1;
rp = red + cmap->index;
gp = green + cmap->index;
bp = blue + cmap->index;
do
{
*rp++ = vgar (ba, VDAC_REG_DATA);
*gp++ = vgar (ba, VDAC_REG_DATA);
*bp++ = vgar (ba, VDAC_REG_DATA);
}
while (x--);
if (!(error = copyout (red + cmap->index, cmap->red, cmap->count))
&& !(error = copyout (green + cmap->index, cmap->green, cmap->count))
&& !(error = copyout (blue + cmap->index, cmap->blue, cmap->count)))
return 0;
return error;
}
int
rt_putcmap (gfp, cmap)
struct grf_softc *gfp;
struct grf_colormap *cmap;
{
volatile unsigned char *ba;
u_char red[256], green[256], blue[256], *rp, *gp, *bp;
short x;
int error;
if (cmap->count == 0 || cmap->index >= 256)
return 0;
if (cmap->index + cmap->count > 256)
cmap->count = 256 - cmap->index;
/* first copy the colors into kernelspace */
if (!(error = copyin (cmap->red, red + cmap->index, cmap->count))
&& !(error = copyin (cmap->green, green + cmap->index, cmap->count))
&& !(error = copyin (cmap->blue, blue + cmap->index, cmap->count)))
{
ba = gfp->g_regkva;
vgaw (ba, VDAC_REG_SELECT, cmap->index);
x = cmap->count - 1;
rp = red + cmap->index;
gp = green + cmap->index;
bp = blue + cmap->index;
do
{
vgaw (ba, VDAC_REG_DATA, *rp++);
vgaw (ba, VDAC_REG_DATA, *gp++);
vgaw (ba, VDAC_REG_DATA, *bp++);
}
while (x--);
return 0;
}
else
return error;
}
int
rt_getspritepos (gp, pos)
struct grf_softc *gp;
struct grf_position *pos;
{
volatile unsigned char *ba;
ba = gp->g_regkva;
pos->x = vgar (ba, SEQ_ID_CURSOR_X_LOC_LO) | (vgar (ba, SEQ_ID_CURSOR_X_LOC_HI) << 8);
pos->y = vgar (ba, SEQ_ID_CURSOR_Y_LOC_LO) | (vgar (ba, SEQ_ID_CURSOR_Y_LOC_HI) << 8);
return 0;
}
int
rt_setspritepos (gp, pos)
struct grf_softc *gp;
struct grf_position *pos;
{
volatile unsigned char *ba;
ba = gp->g_regkva;
vgaw (ba, SEQ_ID_CURSOR_X_LOC_LO, pos->x & 0xff);
vgaw (ba, SEQ_ID_CURSOR_X_LOC_HI, (pos->x >> 8) & 0x07);
vgaw (ba, SEQ_ID_CURSOR_Y_LOC_LO, pos->y & 0xff);
vgaw (ba, SEQ_ID_CURSOR_Y_LOC_HI, (pos->y >> 8) & 0x07);
return 0;
}
/* assume an at least 2M retina (XXX), sprite is last in memory.
According to the bogus docs, the cursor can be at most 128 lines
in height, and the x-hostspot can be placed at most at pos 31,
this gives width of a long */
#define SPRITE_ADDR (2*1024*1024 - 128*4)
int
rt_getspriteinfo (gp, info)
struct grf_softc *gp;
struct grf_spriteinfo *info;
{
volatile unsigned char *ba, *fb;
ba = gp->g_regkva;
fb = gp->g_fbkva;
if (info->set & GRFSPRSET_ENABLE)
info->enable = vgar (ba, SEQ_ID_CURSOR_CONTROL) & 0x01;
if (info->set & GRFSPRSET_POS)
rt_getspritepos (gp, &info->pos);
if (info->set & GRFSPRSET_HOT)
{
info->hot.x = vgar (ba, SEQ_ID_CURSOR_X_INDEX) & 0x1f;
info->hot.y = vgar (ba, SEQ_ID_CURSOR_Y_INDEX) & 0x7f;
}
if (info->set & GRFSPRSET_CMAP)
{
struct grf_colormap cmap;
int index;
cmap.index = 0;
cmap.count = 256;
rt_getcmap (gp, &cmap);
index = vgar (ba, SEQ_ID_CURSOR_COLOR0);
info->cmap.red[0] = cmap.red[index];
info->cmap.green[0] = cmap.green[index];
info->cmap.blue[0] = cmap.blue[index];
index = vgar (ba, SEQ_ID_CURSOR_COLOR1);
info->cmap.red[1] = cmap.red[index];
info->cmap.green[1] = cmap.green[index];
info->cmap.blue[1] = cmap.blue[index];
}
if (info->set & GRFSPRSET_SHAPE)
{
int saved_bank_lo = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO);
int saved_bank_hi = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI);
int last_bank = SPRITE_ADDR >> 6;
int last_bank_lo = last_bank & 0xff;
int last_bank_hi = last_bank >> 8;
u_char mask;
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, last_bank_lo);
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, last_bank_hi);
copyout (fb, info->image, 128*4);
mask = RSeq (ba, SEQ_ID_CURSOR_PIXELMASK);
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, saved_bank_lo);
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, saved_bank_hi);
copyout (&mask, info->mask, 1);
info->size.x = 32; /* ??? */
info->size.y = (RSeq (ba, SEQ_ID_CURSOR_CONTROL) & 6) << 4;
}
}
int
rt_setspriteinfo (gp, info)
struct grf_softc *gp;
struct grf_spriteinfo *info;
{
volatile unsigned char *ba, *fb;
u_char control;
ba = gp->g_regkva;
fb = gp->g_fbkva;
control = vgar (ba, SEQ_ID_CURSOR_CONTROL);
if (info->set & GRFSPRSET_ENABLE)
{
if (info->enable)
control |= 1;
else
control &= ~1;
vgaw (ba, SEQ_ID_CURSOR_CONTROL, control);
}
if (info->set & GRFSPRSET_POS)
rt_setspritepos (gp, &info->pos);
if (info->set & GRFSPRSET_HOT)
{
vgaw (ba, SEQ_ID_CURSOR_X_INDEX, info->hot.x & 0x1f);
vgaw (ba, SEQ_ID_CURSOR_Y_INDEX, info->hot.y & 0x7f);
}
if (info->set & GRFSPRSET_CMAP)
{
/* hey cheat a bit here.. XXX */
vgaw (ba, SEQ_ID_CURSOR_COLOR0, 0);
vgaw (ba, SEQ_ID_CURSOR_COLOR1, 1);
}
if (info->set & GRFSPRSET_SHAPE)
{
int saved_bank_lo = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO);
int saved_bank_hi = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI);
int last_bank = SPRITE_ADDR >> 6;
int last_bank_lo = last_bank & 0xff;
int last_bank_hi = last_bank >> 8;
u_char mask;
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, last_bank_lo);
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, last_bank_hi);
copyin (info->image, fb, 128*4);
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, saved_bank_lo);
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, saved_bank_hi);
copyin (info->mask, &mask, 1);
WSeq (ba, SEQ_ID_CURSOR_PIXELMASK, mask);
/* info->size.x = 32; *//* ??? */
info->size.y = (RSeq (ba, SEQ_ID_CURSOR_CONTROL) & 6) << 4;
control = (control & ~6) | ((info->size.y >> 4) & 6);
vgaw (ba, SEQ_ID_CURSOR_CONTROL, control);
/* sick intel bull-addressing.. */
WSeq (ba, SEQ_ID_CURSOR_STORE_LO, SPRITE_ADDR & 0x0f);
WSeq (ba, SEQ_ID_CURSOR_STORE_HI, 0);
WSeq (ba, SEQ_ID_CURSOR_ST_OFF_LO, (SPRITE_ADDR >> 4) & 0xff);
WSeq (ba, SEQ_ID_CURSOR_ST_OFF_HI, ((SPRITE_ADDR >> 4) >> 8) & 0xff);
}
return 0;
}
int
rt_getspritemax (gp, pos)
struct grf_softc *gp;
struct grf_position *pos;
{
pos->x = 32;
pos->y = 128;
return 0;
}
/*
* !!! THIS AREA UNDER CONSTRUCTION !!!
*/
int
rt_bitblt (gp, bb)
struct grf_softc *gp;
struct grf_bitblt *bb;
{
return EINVAL;
#if 0
volatile unsigned char *ba, *fb;
u_char control;
u_char saved_bank_lo;
u_char saved_bank_hi;
u_char src_bank_lo, src_bank_hi;
u_char dst_bank_lo, dst_bank_hi;
u_long src_offset, dst_offset;
u_short src_bank, dst_bank;
u_char *srcp, *dstp;
short x, y;
u_long tot;
ba = gp->g_regkva;
fb = gp->g_fbkva;
saved_bank_lo = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO);
saved_bank_hi = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI);
/* for now, only GRFBBcopy is supported, and only for depth 8. No
clipping is performed, either... */
if (bb->op != GRFBBcopy && gp->g_display.gd_planes != 8)
return EINVAL;
src_offset = op->src_x + op->src_y * gp->g_display.gd_fbwidth;
dst_offset = op->dst_x + op->dst_y * gp->g_display.gd_fbwidth;
tot = op->w * op->h;
/* set write mode 1, "[...] data in the read latches is written
to memory during CPU memory write cycles. [...]" */
WGfx (ba, GCT_ID_GRAPHICS_MODE, (RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 1);
/* write to primary, read from secondary */
WSeq (ba, SEQ_ID_EXTENDED_MEM_ENA, (RSeq(ba, SEQ_ID_EXTENDED_MEM_ENA) & 0x1f) | 0 );
if (src_offset < dst_offset)
{
/* start at end */
src_offset += tot;
dst_offset += tot;
}
src_bank_lo = (src_offset >> 6) & 0xff;
src_bank_hi = (src_offset >> 14) & 0xff;
dst_bank_lo = (dst_offset >> 6) & 0xff;
dst_bank_hi = (dst_offset >> 14) & 0xff;
while (tot)
{
WSeq (ba, SEQ_ID_SEC_HOST_OFF_LO, src_bank_lo);
WSeq (ba, SEQ_ID_SEC_HOST_OFF_HI, src_bank_hi);
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, dst_bank_lo);
WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, dst_bank_hi);
if (src_offset < dst_offset)
{
}
else
{
}
}
#endif
}
#endif /* NGRF */