NetBSD/sys/arch/powerpc/oea/altivec.c

344 lines
8.8 KiB
C
Raw Normal View History

/* $NetBSD: altivec.c,v 1.2 2003/03/05 05:27:25 matt Exp $ */
/*
* Copyright (C) 1996 Wolfgang Solfrank.
* Copyright (C) 1996 TooLs GmbH.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by TooLs GmbH.
* 4. The name of TooLs GmbH may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/proc.h>
2003-01-18 09:23:28 +03:00
#include <sys/sa.h>
#include <sys/systm.h>
#include <sys/user.h>
#include <sys/malloc.h>
#include <sys/pool.h>
#include <powerpc/altivec.h>
#include <powerpc/spr.h>
#include <powerpc/psl.h>
void
enable_vec()
{
struct cpu_info *ci = curcpu();
2003-01-18 09:23:28 +03:00
struct lwp *l = curlwp;
struct pcb *pcb = &l->l_addr->u_pcb;
struct trapframe *tf = trapframe(l);
struct vreg *vr = &pcb->pcb_vr;
register_t msr;
KASSERT(pcb->pcb_veccpu == NULL);
pcb->pcb_flags |= PCB_ALTIVEC;
/*
* Enable AltiVec temporarily (and disable interrupts).
*/
msr = mfmsr();
mtmsr((msr & ~PSL_EE) | PSL_VEC);
__asm __volatile ("isync");
2003-01-18 09:23:28 +03:00
if (ci->ci_veclwp) {
save_vec_cpu();
}
2003-01-18 09:23:28 +03:00
KASSERT(curcpu()->ci_veclwp == NULL);
/*
* Restore VSCR by first loading it into a vector and then into VSCR.
* (this needs to done before loading the user's vector registers
* since we need to use a scratch vector register)
*/
__asm __volatile("vxor %2,%2,%2; lvewx %2,%0,%1; mtvscr %2" \
:: "b"(vr), "r"(offsetof(struct vreg, vscr)), "n"(0));
/*
* VRSAVE will be restored when trap frame returns
*/
tf->tf_xtra[TF_VRSAVE] = vr->vrsave;
#define LVX(n,vr) __asm /*__volatile*/("lvx %2,%0,%1" \
:: "b"(vr), "r"(offsetof(struct vreg, vreg[n])), "n"(n));
/*
* Load all 32 vector registers
*/
LVX( 0,vr); LVX( 1,vr); LVX( 2,vr); LVX( 3,vr);
LVX( 4,vr); LVX( 5,vr); LVX( 6,vr); LVX( 7,vr);
LVX( 8,vr); LVX( 9,vr); LVX(10,vr); LVX(11,vr);
LVX(12,vr); LVX(13,vr); LVX(14,vr); LVX(15,vr);
LVX(16,vr); LVX(17,vr); LVX(18,vr); LVX(19,vr);
LVX(20,vr); LVX(21,vr); LVX(22,vr); LVX(23,vr);
LVX(24,vr); LVX(25,vr); LVX(26,vr); LVX(27,vr);
LVX(28,vr); LVX(29,vr); LVX(30,vr); LVX(31,vr);
__asm __volatile ("isync");
/*
* Enable AltiVec when we return to user-mode.
* Record the new ownership of the AltiVec unit.
*/
tf->srr1 |= PSL_VEC;
2003-01-18 09:23:28 +03:00
curcpu()->ci_veclwp = l;
pcb->pcb_veccpu = curcpu();
__asm __volatile ("sync");
/*
* Restore MSR (turn off AltiVec)
*/
mtmsr(msr);
}
void
save_vec_cpu(void)
{
struct cpu_info *ci = curcpu();
2003-01-18 09:23:28 +03:00
struct lwp *l;
struct pcb *pcb;
struct vreg *vr;
struct trapframe *tf;
register_t msr;
/*
* Turn on AltiVEC, turn off interrupts.
*/
msr = mfmsr();
mtmsr((msr & ~PSL_EE) | PSL_VEC);
__asm __volatile ("isync");
2003-01-18 09:23:28 +03:00
l = ci->ci_veclwp;
if (l == NULL) {
goto out;
}
2003-01-18 09:23:28 +03:00
pcb = &l->l_addr->u_pcb;
vr = &pcb->pcb_vr;
2003-01-18 09:23:28 +03:00
tf = trapframe(l);
#define STVX(n,vr) __asm /*__volatile*/("stvx %2,%0,%1" \
:: "b"(vr), "r"(offsetof(struct vreg, vreg[n])), "n"(n));
/*
* Save the vector registers.
*/
STVX( 0,vr); STVX( 1,vr); STVX( 2,vr); STVX( 3,vr);
STVX( 4,vr); STVX( 5,vr); STVX( 6,vr); STVX( 7,vr);
STVX( 8,vr); STVX( 9,vr); STVX(10,vr); STVX(11,vr);
STVX(12,vr); STVX(13,vr); STVX(14,vr); STVX(15,vr);
STVX(16,vr); STVX(17,vr); STVX(18,vr); STVX(19,vr);
STVX(20,vr); STVX(21,vr); STVX(22,vr); STVX(23,vr);
STVX(24,vr); STVX(25,vr); STVX(26,vr); STVX(27,vr);
STVX(28,vr); STVX(29,vr); STVX(30,vr); STVX(31,vr);
/*
* Save VSCR (this needs to be done after save the vector registers
* since we need to use one as scratch).
*/
__asm __volatile("mfvscr %2; stvewx %2,%0,%1" \
:: "b"(vr), "r"(offsetof(struct vreg, vscr)), "n"(0));
/*
* Save VRSAVE
*/
vr->vrsave = tf->tf_xtra[TF_VRSAVE];
/*
* Note that we aren't using any CPU resources and stop any
* data streams.
*/
tf->srr1 &= ~PSL_VEC;
pcb->pcb_veccpu = NULL;
2003-01-18 09:23:28 +03:00
ci->ci_veclwp = NULL;
__asm __volatile ("dssall; sync");
out:
/*
* Restore MSR (turn off AltiVec)
*/
mtmsr(msr);
}
/*
* Save a process's AltiVEC state to its PCB. The state may be in any CPU.
* The process must either be curproc or traced by curproc (and stopped).
* (The point being that the process must not run on another CPU during
* this function).
*/
void
2003-01-18 09:23:28 +03:00
save_vec_lwp(l)
struct lwp *l;
{
2003-01-18 09:23:28 +03:00
struct pcb *pcb = &l->l_addr->u_pcb;
struct cpu_info *ci = curcpu();
/*
* If it's already in the PCB, there's nothing to do.
*/
if (pcb->pcb_veccpu == NULL) {
return;
}
/*
* If the state is in the current CPU, just flush the current CPU's
* state.
*/
2003-01-18 09:23:28 +03:00
if (l == ci->ci_veclwp) {
save_vec_cpu();
return;
}
#ifdef MULTIPROCESSOR
/*
* It must be on another CPU, flush it from there.
*/
2003-01-18 09:23:28 +03:00
mp_save_vec_lwp(l);
#endif
}
#define ZERO_VEC 19
void
vzeropage(paddr_t pa)
{
const paddr_t ea = pa + NBPG;
uint32_t vec[7], *vp = (void *) roundup((uintptr_t) vec, 16);
register_t omsr, msr;
__asm __volatile("mfmsr %0" : "=r"(omsr) :);
/*
* Turn on AltiVec, turn off interrupts.
*/
msr = (omsr & ~PSL_EE) | PSL_VEC;
__asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
/*
* Save the VEC register we are going to use before we disable
* relocation.
*/
__asm("stvx %1,0,%0" :: "r"(vp), "n"(ZERO_VEC));
__asm("vxor %0,%0,%0" :: "n"(ZERO_VEC));
/*
* Turn off data relocation (DMMU off).
*/
msr &= ~PSL_DR;
__asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
/*
* Zero the page using a single cache line.
*/
do {
__asm("stvx %2,%0,%1" :: "b"(pa), "r"( 0), "n"(ZERO_VEC));
__asm("stvxl %2,%0,%1" :: "b"(pa), "r"(16), "n"(ZERO_VEC));
__asm("stvx %2,%0,%1" :: "b"(pa), "r"(32), "n"(ZERO_VEC));
__asm("stvxl %2,%0,%1" :: "b"(pa), "r"(48), "n"(ZERO_VEC));
pa += 64;
} while (pa < ea);
/*
* Restore data relocation (DMMU on);
*/
msr |= PSL_DR;
__asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
/*
* Restore VEC register (now that we can access the stack again).
*/
__asm("lvx %1,0,%0" :: "r"(vp), "n"(ZERO_VEC));
/*
* Restore old MSR (AltiVec OFF).
*/
__asm __volatile("sync; mtmsr %0; isync" :: "r"(omsr));
}
#define LO_VEC 16
#define HI_VEC 17
void
vcopypage(paddr_t dst, paddr_t src)
{
const paddr_t edst = dst + NBPG;
uint32_t vec[11], *vp = (void *) roundup((uintptr_t) vec, 16);
register_t omsr, msr;
__asm __volatile("mfmsr %0" : "=r"(omsr) :);
/*
* Turn on AltiVec, turn off interrupts.
*/
msr = (omsr & ~PSL_EE) | PSL_VEC;
__asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
/*
* Save the VEC registers we will be using before we disable
* relocation.
*/
__asm("stvx %2,%1,%0" :: "b"(vp), "r"( 0), "n"(LO_VEC));
__asm("stvx %2,%1,%0" :: "b"(vp), "r"(16), "n"(HI_VEC));
/*
* Turn off data relocation (DMMU off).
*/
msr &= ~PSL_DR;
__asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
/*
* Copy the page using a single cache line. On most PPCs, two
* vector registers occupy one cache line.
*/
do {
__asm("lvx %2,%0,%1" :: "b"(src), "r"( 0), "n"(LO_VEC));
__asm("stvx %2,%0,%1" :: "b"(dst), "r"( 0), "n"(LO_VEC));
__asm("lvxl %2,%0,%1" :: "b"(src), "r"(16), "n"(HI_VEC));
__asm("stvxl %2,%0,%1" :: "b"(dst), "r"(16), "n"(HI_VEC));
src += 32;
dst += 32;
} while (dst < edst);
/*
* Restore data relocation (DMMU on);
*/
msr |= PSL_DR;
__asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
/*
* Restore VEC registers (now that we can access the stack again).
*/
__asm("lvx %2,%1,%0" :: "b"(vp), "r"( 0), "n"(LO_VEC));
__asm("lvx %2,%1,%0" :: "b"(vp), "r"(16), "n"(HI_VEC));
/*
* Restore old MSR (AltiVec OFF).
*/
__asm __volatile("sync; mtmsr %0; isync" :: "r"(omsr));
}