340 lines
7.3 KiB
Plaintext
340 lines
7.3 KiB
Plaintext
|
// This may look like C code, but it is really -*- C++ -*-
|
||
|
/*
|
||
|
Copyright (C) 1988 Free Software Foundation
|
||
|
written by Dirk Grunwald (grunwald@cs.uiuc.edu)
|
||
|
adapted for libg++ by Doug Lea (dl@rocky.oswego.edu)
|
||
|
|
||
|
This file is part of the GNU C++ Library. This library is free
|
||
|
software; you can redistribute it and/or modify it under the terms of
|
||
|
the GNU Library General Public License as published by the Free
|
||
|
Software Foundation; either version 2 of the License, or (at your
|
||
|
option) any later version. This library is distributed in the hope
|
||
|
that it will be useful, but WITHOUT ANY WARRANTY; without even the
|
||
|
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
||
|
PURPOSE. See the GNU Library General Public License for more details.
|
||
|
You should have received a copy of the GNU Library General Public
|
||
|
License along with this library; if not, write to the Free Software
|
||
|
Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||
|
*/
|
||
|
|
||
|
|
||
|
#ifdef __GNUG__
|
||
|
#pragma implementation
|
||
|
#endif
|
||
|
#include <limits.h>
|
||
|
#include "<T>.PHPQ.h"
|
||
|
|
||
|
//
|
||
|
// This defines a Pairing Heap structure
|
||
|
//
|
||
|
// See ``The Pairing Heap: A New Form of Self-Adjusting Heap''
|
||
|
// Fredman, Segdewick et al,
|
||
|
// Algorithmica (1986) 1:111-129
|
||
|
//
|
||
|
// In particular, this implements the pairing heap using the circular
|
||
|
// list.
|
||
|
//
|
||
|
//
|
||
|
|
||
|
<T>PHPQ::<T>PHPQ(int sz)
|
||
|
{
|
||
|
storage = 0;
|
||
|
root = 0;
|
||
|
count = 0;
|
||
|
size = 0;
|
||
|
prealloc(sz);
|
||
|
}
|
||
|
|
||
|
<T>PHPQ::<T>PHPQ(<T>PHPQ& a)
|
||
|
{
|
||
|
storage = 0;
|
||
|
root = 0;
|
||
|
count = 0;
|
||
|
size = 0;
|
||
|
prealloc(a.size);
|
||
|
for (Pix i = a.first(); i != 0; a.next(i)) enq(a(i));
|
||
|
}
|
||
|
|
||
|
|
||
|
void <T>PHPQ::prealloc(int newsize)
|
||
|
{
|
||
|
++newsize; // leave a spot for freelist
|
||
|
if (size != 0)
|
||
|
{
|
||
|
int news = size;
|
||
|
while (news <= newsize) news = (news * 3) / 2;
|
||
|
newsize = news;
|
||
|
}
|
||
|
// see if indices are OK
|
||
|
<T>PHPQNode test;
|
||
|
test.sibling = 0;
|
||
|
test.sibling = ~test.sibling;
|
||
|
if ((unsigned long)newsize > (unsigned long)(test.sibling))
|
||
|
error("storage size exceeds index range");
|
||
|
|
||
|
if (storage == 0)
|
||
|
{
|
||
|
storage = new <T>PHPQNode[size = newsize];
|
||
|
for (int i = 0; i < size; ++i)
|
||
|
{
|
||
|
storage[i].sibling = i + 1;
|
||
|
storage[i].valid = 0;
|
||
|
}
|
||
|
storage[size-1].sibling = 0;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
<T>PHPQNode* newstor = new <T>PHPQNode[newsize];
|
||
|
for (int i = 1; i < size; ++i)
|
||
|
newstor[i] = storage[i];
|
||
|
delete [] storage;
|
||
|
storage = newstor;
|
||
|
for (int i = size; i < newsize; ++i)
|
||
|
{
|
||
|
storage[i].sibling = i + 1;
|
||
|
storage[i].valid = 0;
|
||
|
}
|
||
|
storage[newsize-1].sibling = 0;
|
||
|
storage[0].sibling = size;
|
||
|
size = newsize;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void <T>PHPQ::clear()
|
||
|
{
|
||
|
for (int i = 0; i < size; ++i)
|
||
|
{
|
||
|
storage[i].sibling = i + 1;
|
||
|
storage[i].valid = 0;
|
||
|
}
|
||
|
storage[size-1].sibling = 0;
|
||
|
root = 0;
|
||
|
count = 0;
|
||
|
}
|
||
|
|
||
|
Pix <T>PHPQ::enq(<T&> item)
|
||
|
{
|
||
|
++count;
|
||
|
if (storage[0].sibling == 0)
|
||
|
prealloc(count);
|
||
|
|
||
|
int cell = storage[0].sibling;
|
||
|
storage[0].sibling = storage[cell].sibling;
|
||
|
storage[cell].sibling = 0;
|
||
|
storage[cell].children = 0;
|
||
|
storage[cell].item = item;
|
||
|
storage[cell].valid = 1;
|
||
|
|
||
|
if (root == 0)
|
||
|
{
|
||
|
root = cell;
|
||
|
return Pix(root);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
int parent;
|
||
|
int child;
|
||
|
|
||
|
if (<T>LE(storage[root].item, storage[cell].item))
|
||
|
{
|
||
|
parent = root; child = cell;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
parent = cell; child = root;
|
||
|
}
|
||
|
int popsKid = storage[parent].children;
|
||
|
|
||
|
if (popsKid == 0)
|
||
|
{
|
||
|
storage[parent].children = child;
|
||
|
storage[child].sibling = child;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
int temp = storage[popsKid].sibling;
|
||
|
storage[popsKid].sibling = child;
|
||
|
storage[child].sibling = temp;
|
||
|
storage[parent].children = child;
|
||
|
}
|
||
|
root = parent;
|
||
|
return Pix(cell);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Item removal is the most complicated routine.
|
||
|
//
|
||
|
// We remove the root (should there be one) and then select a new
|
||
|
// root. The siblings of the root are in a circular list. We continue
|
||
|
// to pair elements in this list until there is a single element.
|
||
|
// This element will be the new root.
|
||
|
|
||
|
void <T>PHPQ::del_front()
|
||
|
{
|
||
|
int valid = 0;
|
||
|
do
|
||
|
{
|
||
|
if (root == 0) return;
|
||
|
if ((valid = storage[root].valid))
|
||
|
--count;
|
||
|
storage[root].valid = 0;
|
||
|
int child = storage[root].children;
|
||
|
storage[root].sibling = storage[0].sibling;
|
||
|
storage[0].sibling = root;
|
||
|
|
||
|
if (child == 0)
|
||
|
{
|
||
|
root = 0;
|
||
|
return;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
while(storage[child].sibling != child)
|
||
|
{
|
||
|
// We have at least two kids, but we may only have
|
||
|
// two kids. So, oneChild != child, but it is possible
|
||
|
// that twoChild == child.
|
||
|
|
||
|
int oneChild = storage[child].sibling;
|
||
|
int twoChild = storage[oneChild].sibling;
|
||
|
|
||
|
// Remove the two from the sibling list
|
||
|
|
||
|
storage[child].sibling = storage[twoChild].sibling;
|
||
|
storage[oneChild].sibling = 0;
|
||
|
storage[twoChild].sibling = 0;
|
||
|
|
||
|
int bestChild;
|
||
|
int worstChild;
|
||
|
|
||
|
if (<T>LE(storage[oneChild].item, storage[twoChild].item))
|
||
|
{
|
||
|
bestChild = oneChild; worstChild = twoChild;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
bestChild = twoChild; worstChild = oneChild;
|
||
|
}
|
||
|
int popsKid = storage[bestChild].children;
|
||
|
|
||
|
if (popsKid == 0)
|
||
|
{
|
||
|
storage[bestChild].children = worstChild;
|
||
|
storage[worstChild].sibling = worstChild;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
int temp = storage[popsKid].sibling;
|
||
|
storage[popsKid].sibling = worstChild;
|
||
|
storage[worstChild].sibling = temp;
|
||
|
storage[bestChild].children = worstChild;
|
||
|
}
|
||
|
if (twoChild == child)
|
||
|
{
|
||
|
// We have reduced the two to one, so we'll be exiting.
|
||
|
child = bestChild;
|
||
|
storage[child].sibling = child;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// We've removed two siblings, now we need to insert
|
||
|
// the better of the two
|
||
|
storage[bestChild].sibling = storage[child].sibling;
|
||
|
storage[child].sibling = bestChild;
|
||
|
child = storage[bestChild].sibling;
|
||
|
}
|
||
|
}
|
||
|
root = child;
|
||
|
}
|
||
|
} while ( !valid );
|
||
|
}
|
||
|
|
||
|
void <T>PHPQ::del(Pix p)
|
||
|
{
|
||
|
if (p == 0) error("null Pix");
|
||
|
int i = int(p);
|
||
|
if (storage[i].valid)
|
||
|
{
|
||
|
if (i == root)
|
||
|
del_front();
|
||
|
else
|
||
|
{
|
||
|
storage[i].valid = 0;
|
||
|
--count;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
Pix <T>PHPQ::seek(<T&> key)
|
||
|
{
|
||
|
for (int i = 1; i < size; ++i)
|
||
|
if (storage[i].valid && <T>EQ(storage[i].item, key))
|
||
|
return Pix(i);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
Pix <T>PHPQ::first()
|
||
|
{
|
||
|
for (int i = 1; i < size; ++i)
|
||
|
if (storage[i].valid)
|
||
|
return Pix(i);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
void <T>PHPQ::next(Pix& p)
|
||
|
{
|
||
|
if (p == 0) return;
|
||
|
for (int i = int(p)+1; i < size; ++i)
|
||
|
if (storage[i].valid)
|
||
|
{
|
||
|
p = Pix(i);
|
||
|
return;
|
||
|
}
|
||
|
p = 0;
|
||
|
}
|
||
|
|
||
|
int <T>PHPQ::OK()
|
||
|
{
|
||
|
int v = storage != 0;
|
||
|
int n = 0;
|
||
|
for (int i = 0; i < size; ++i) if (storage[i].valid) ++n;
|
||
|
v &= n == count;
|
||
|
v &= check_sibling_list(root);
|
||
|
int ct = INT_MAX;
|
||
|
n = 0;
|
||
|
int f = storage[0].sibling;
|
||
|
while (f != 0 && ct-- > 0)
|
||
|
{
|
||
|
f = storage[f].sibling;
|
||
|
++n;
|
||
|
}
|
||
|
v &= ct > 0;
|
||
|
v &= n <= size - count;
|
||
|
if (!v) error("invariant failure");
|
||
|
return v;
|
||
|
}
|
||
|
|
||
|
|
||
|
int <T>PHPQ::check_sibling_list(int t)
|
||
|
{
|
||
|
if (t != 0)
|
||
|
{
|
||
|
int s = t;
|
||
|
long ct = LONG_MAX; // Lots of chances to find self!
|
||
|
do
|
||
|
{
|
||
|
if (storage[s].valid && !check_sibling_list(storage[s].children))
|
||
|
return 0;
|
||
|
s = storage[s].sibling;
|
||
|
} while (ct-- > 0 && s != t && s != 0);
|
||
|
if (ct <= 0) return 0;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
|