NetBSD/sys/kern/subr_autoconf.c

1346 lines
33 KiB
C
Raw Normal View History

/* $NetBSD: subr_autoconf.c,v 1.82 2003/01/02 00:12:16 mrg Exp $ */
/*
* Copyright (c) 1996, 2000 Christopher G. Demetriou
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the
* NetBSD Project. See http://www.netbsd.org/ for
* information about NetBSD.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
*/
/*
1994-05-20 08:15:04 +04:00
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Lawrence Berkeley Laboratories.
*
1994-05-20 08:15:04 +04:00
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
1994-05-20 08:15:04 +04:00
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
1994-05-20 08:15:04 +04:00
* from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
*
1998-03-01 05:20:01 +03:00
* @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.82 2003/01/02 00:12:16 mrg Exp $");
#include "opt_ddb.h"
1993-12-18 06:59:02 +03:00
#include <sys/param.h>
#include <sys/device.h>
#include <sys/malloc.h>
1996-02-04 05:15:01 +03:00
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/errno.h>
#include <sys/proc.h>
#include <sys/reboot.h>
#include <machine/limits.h>
#include "opt_userconf.h"
#ifdef USERCONF
#include <sys/userconf.h>
#endif
/*
* Autoconfiguration subroutines.
*/
/*
* ioconf.c exports exactly two names: cfdata and cfroots. All system
* devices and drivers are found via these tables.
*/
extern struct cfdata cfdata[];
extern short cfroots[];
/*
* List of all cfdriver structures. We use this to detect duplicates
* when other cfdrivers are loaded.
*/
struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
extern struct cfdriver * const cfdriver_list_initial[];
/*
* Initial list of cfattach's.
*/
extern const struct cfattachinit cfattachinit[];
/*
* List of cfdata tables. We always have one such list -- the one
* built statically when the kernel was configured.
*/
struct cftablelist allcftables;
static struct cftable initcftable;
#define ROOT ((struct device *)NULL)
struct matchinfo {
cfmatch_t fn;
struct device *parent;
void *aux;
struct cfdata *match;
int pri;
};
static char *number(char *, int);
static void mapply(struct matchinfo *, struct cfdata *);
1996-02-04 05:15:01 +03:00
struct deferred_config {
TAILQ_ENTRY(deferred_config) dc_queue;
struct device *dc_dev;
void (*dc_func)(struct device *);
};
TAILQ_HEAD(deferred_config_head, deferred_config);
struct deferred_config_head deferred_config_queue;
struct deferred_config_head interrupt_config_queue;
static void config_process_deferred(struct deferred_config_head *,
struct device *);
/* Hooks to finalize configuration once all real devices have been found. */
struct finalize_hook {
TAILQ_ENTRY(finalize_hook) f_list;
int (*f_func)(struct device *);
struct device *f_dev;
};
static TAILQ_HEAD(, finalize_hook) config_finalize_list;
static int config_finalize_done;
/* list of all devices */
struct devicelist alldevs;
/* list of all events */
struct evcntlist allevents = TAILQ_HEAD_INITIALIZER(allevents);
__volatile int config_pending; /* semaphore for mountroot */
#define STREQ(s1, s2) \
(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
static int config_initialized; /* config_init() has been called. */
static int config_do_twiddle;
/*
* Initialize the autoconfiguration data structures. Normally this
* is done by configure(), but some platforms need to do this very
* early (to e.g. initialize the console).
*/
void
config_init(void)
{
const struct cfattachinit *cfai;
int i, j;
if (config_initialized)
return;
/* allcfdrivers is statically initialized. */
for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
panic("configure: duplicate `%s' drivers",
cfdriver_list_initial[i]->cd_name);
}
for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
for (j = 0; cfai->cfai_list[j] != NULL; j++) {
if (config_cfattach_attach(cfai->cfai_name,
cfai->cfai_list[j]) != 0)
panic("configure: duplicate `%s' attachment "
"of `%s' driver",
cfai->cfai_list[j]->ca_name,
cfai->cfai_name);
}
}
TAILQ_INIT(&allcftables);
initcftable.ct_cfdata = cfdata;
TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
TAILQ_INIT(&deferred_config_queue);
TAILQ_INIT(&interrupt_config_queue);
TAILQ_INIT(&config_finalize_list);
TAILQ_INIT(&alldevs);
config_initialized = 1;
}
/*
* Configure the system's hardware.
*/
void
configure(void)
{
int errcnt;
/* Initialize data structures. */
config_init();
#ifdef USERCONF
if (boothowto & RB_USERCONF)
user_config();
#endif
if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
config_do_twiddle = 1;
printf_nolog("Detecting hardware...");
}
/*
* Do the machine-dependent portion of autoconfiguration. This
* sets the configuration machinery here in motion by "finding"
* the root bus. When this function returns, we expect interrupts
* to be enabled.
*/
cpu_configure();
/*
* Now that we've found all the hardware, start the real time
* and statistics clocks.
*/
initclocks();
cold = 0; /* clocks are running, we're warm now! */
/*
* Now callback to finish configuration for devices which want
* to do this once interrupts are enabled.
*/
config_process_deferred(&interrupt_config_queue, NULL);
errcnt = aprint_get_error_count();
if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
(boothowto & AB_VERBOSE) == 0) {
if (config_do_twiddle) {
config_do_twiddle = 0;
printf_nolog("done.\n");
}
if (errcnt != 0) {
printf("WARNING: %d error%s while detecting hardware; "
"check system log.\n", errcnt,
errcnt == 1 ? "" : "s");
}
}
}
/*
* Add a cfdriver to the system.
*/
int
config_cfdriver_attach(struct cfdriver *cd)
{
struct cfdriver *lcd;
/* Make sure this driver isn't already in the system. */
LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
if (STREQ(lcd->cd_name, cd->cd_name))
return (EEXIST);
}
LIST_INIT(&cd->cd_attach);
LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
return (0);
}
/*
* Remove a cfdriver from the system.
*/
int
config_cfdriver_detach(struct cfdriver *cd)
{
int i;
/* Make sure there are no active instances. */
for (i = 0; i < cd->cd_ndevs; i++) {
if (cd->cd_devs[i] != NULL)
return (EBUSY);
}
/* ...and no attachments loaded. */
if (LIST_EMPTY(&cd->cd_attach) == 0)
return (EBUSY);
LIST_REMOVE(cd, cd_list);
KASSERT(cd->cd_devs == NULL);
return (0);
}
/*
* Look up a cfdriver by name.
*/
struct cfdriver *
config_cfdriver_lookup(const char *name)
{
struct cfdriver *cd;
LIST_FOREACH(cd, &allcfdrivers, cd_list) {
if (STREQ(cd->cd_name, name))
return (cd);
}
return (NULL);
}
/*
* Add a cfattach to the specified driver.
*/
int
config_cfattach_attach(const char *driver, struct cfattach *ca)
{
struct cfattach *lca;
struct cfdriver *cd;
cd = config_cfdriver_lookup(driver);
if (cd == NULL)
return (ESRCH);
/* Make sure this attachment isn't already on this driver. */
LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
if (STREQ(lca->ca_name, ca->ca_name))
return (EEXIST);
}
LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
return (0);
}
/*
* Remove a cfattach from the specified driver.
*/
int
config_cfattach_detach(const char *driver, struct cfattach *ca)
{
struct cfdriver *cd;
struct device *dev;
int i;
cd = config_cfdriver_lookup(driver);
if (cd == NULL)
return (ESRCH);
/* Make sure there are no active instances. */
for (i = 0; i < cd->cd_ndevs; i++) {
if ((dev = cd->cd_devs[i]) == NULL)
continue;
if (dev->dv_cfattach == ca)
return (EBUSY);
}
LIST_REMOVE(ca, ca_list);
return (0);
}
/*
* Look up a cfattach by name.
*/
static struct cfattach *
config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
{
struct cfattach *ca;
LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
if (STREQ(ca->ca_name, atname))
return (ca);
}
return (NULL);
}
/*
* Look up a cfattach by driver/attachment name.
*/
struct cfattach *
config_cfattach_lookup(const char *name, const char *atname)
{
struct cfdriver *cd;
cd = config_cfdriver_lookup(name);
if (cd == NULL)
return (NULL);
return (config_cfattach_lookup_cd(cd, atname));
}
/*
* Apply the matching function and choose the best. This is used
* a few times and we want to keep the code small.
*/
static void
mapply(struct matchinfo *m, struct cfdata *cf)
{
int pri;
if (m->fn != NULL)
pri = (*m->fn)(m->parent, cf, m->aux);
else {
struct cfattach *ca;
ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
if (ca == NULL) {
/* No attachment for this entry, oh well. */
return;
}
if (ca->ca_match == NULL) {
panic("mapply: no match function for '%s' attachment "
"of '%s'", cf->cf_atname, cf->cf_name);
}
pri = (*ca->ca_match)(m->parent, cf, m->aux);
}
if (pri > m->pri) {
m->match = cf;
m->pri = pri;
}
}
/*
* Determine if `parent' is a potential parent for a device spec based
* on `cfp'.
*/
static int
cfparent_match(struct device *parent, const struct cfparent *cfp)
{
struct cfdriver *pcd;
const char * const *cpp;
const char *cp;
/* We don't match root nodes here. */
if (cfp == NULL)
return (0);
pcd = parent->dv_cfdriver;
KASSERT(pcd != NULL);
/*
* First, ensure this parent has the correct interface
* attribute.
*/
if (pcd->cd_attrs == NULL)
return (0); /* no interface attributes -> no children */
for (cpp = pcd->cd_attrs; (cp = *cpp) != NULL; cpp++) {
if (STREQ(cp, cfp->cfp_iattr)) {
/* Match. */
break;
}
}
if (cp == NULL)
return (0); /* doesn't carry the req'd attribute */
/*
* If no specific parent device instance was specified (i.e.
* we're attaching to the attribute only), we're done!
*/
if (cfp->cfp_parent == NULL)
return (1);
/*
* Check the parent device's name.
*/
if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
return (0); /* not the same parent */
/*
* Make sure the unit number matches.
*/
if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
cfp->cfp_unit == parent->dv_unit)
return (1);
/* Unit numbers don't match. */
return (0);
}
/*
* Invoke the "match" routine for a cfdata entry on behalf of
* an external caller, usually a "submatch" routine.
*/
int
config_match(struct device *parent, struct cfdata *cf, void *aux)
{
struct cfattach *ca;
ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
if (ca == NULL) {
/* No attachment for this entry, oh well. */
return (0);
}
return ((*ca->ca_match)(parent, cf, aux));
}
/*
* Iterate over all potential children of some device, calling the given
* function (default being the child's match function) for each one.
* Nonzero returns are matches; the highest value returned is considered
* the best match. Return the `found child' if we got a match, or NULL
* otherwise. The `aux' pointer is simply passed on through.
*
* Note that this function is designed so that it can be used to apply
* an arbitrary function to all potential children (its return value
* can be ignored).
*/
struct cfdata *
config_search(cfmatch_t fn, struct device *parent, void *aux)
{
struct cftable *ct;
struct cfdata *cf;
struct matchinfo m;
KASSERT(config_initialized);
m.fn = fn;
m.parent = parent;
m.aux = aux;
m.match = NULL;
m.pri = 0;
TAILQ_FOREACH(ct, &allcftables, ct_list) {
for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
/*
* Skip cf if no longer eligible, otherwise scan
* through parents for one matching `parent', and
* try match function.
*/
if (cf->cf_fstate == FSTATE_FOUND)
continue;
if (cf->cf_fstate == FSTATE_DNOTFOUND ||
cf->cf_fstate == FSTATE_DSTAR)
continue;
if (cfparent_match(parent, cf->cf_pspec))
mapply(&m, cf);
}
}
return (m.match);
}
/*
* Find the given root device.
* This is much like config_search, but there is no parent.
* Don't bother with multiple cfdata tables; the root node
* must always be in the initial table.
*/
struct cfdata *
config_rootsearch(cfmatch_t fn, const char *rootname, void *aux)
{
struct cfdata *cf;
short *p;
struct matchinfo m;
m.fn = fn;
m.parent = ROOT;
m.aux = aux;
m.match = NULL;
m.pri = 0;
/*
* Look at root entries for matching name. We do not bother
* with found-state here since only one root should ever be
* searched (and it must be done first).
*/
for (p = cfroots; *p >= 0; p++) {
cf = &cfdata[*p];
if (strcmp(cf->cf_name, rootname) == 0)
mapply(&m, cf);
}
return (m.match);
}
static const char *msgs[3] = { "", " not configured\n", " unsupported\n" };
/*
* The given `aux' argument describes a device that has been found
* on the given parent, but not necessarily configured. Locate the
* configuration data for that device (using the submatch function
* provided, or using candidates' cd_match configuration driver
* functions) and attach it, and return true. If the device was
* not configured, call the given `print' function and return 0.
*/
struct device *
config_found_sm(struct device *parent, void *aux, cfprint_t print,
cfmatch_t submatch)
{
struct cfdata *cf;
if ((cf = config_search(submatch, parent, aux)) != NULL)
return (config_attach(parent, cf, aux, print));
if (print) {
if (config_do_twiddle)
twiddle();
aprint_normal("%s", msgs[(*print)(aux, parent->dv_xname)]);
}
return (NULL);
}
/*
* As above, but for root devices.
*/
struct device *
config_rootfound(const char *rootname, void *aux)
{
struct cfdata *cf;
if ((cf = config_rootsearch((cfmatch_t)NULL, rootname, aux)) != NULL)
return (config_attach(ROOT, cf, aux, (cfprint_t)NULL));
aprint_error("root device %s not configured\n", rootname);
return (NULL);
}
/* just like sprintf(buf, "%d") except that it works from the end */
static char *
number(char *ep, int n)
{
*--ep = 0;
while (n >= 10) {
*--ep = (n % 10) + '0';
n /= 10;
}
*--ep = n + '0';
return (ep);
}
/*
* Expand the size of the cd_devs array if necessary.
*/
void
config_makeroom(int n, struct cfdriver *cd)
{
int old, new;
void **nsp;
if (n < cd->cd_ndevs)
return;
/*
* Need to expand the array.
*/
old = cd->cd_ndevs;
2001-12-10 03:33:04 +03:00
if (old == 0)
new = MINALLOCSIZE / sizeof(void *);
else
new = old * 2;
while (new <= n)
new *= 2;
cd->cd_ndevs = new;
nsp = malloc(new * sizeof(void *), M_DEVBUF,
cold ? M_NOWAIT : M_WAITOK);
2001-12-05 19:12:42 +03:00
if (nsp == NULL)
panic("config_attach: %sing dev array",
old != 0 ? "expand" : "creat");
memset(nsp + old, 0, (new - old) * sizeof(void *));
2001-12-10 03:33:04 +03:00
if (old != 0) {
memcpy(nsp, cd->cd_devs, old * sizeof(void *));
free(cd->cd_devs, M_DEVBUF);
}
cd->cd_devs = nsp;
}
/*
* Attach a found device. Allocates memory for device variables.
*/
struct device *
config_attach(struct device *parent, struct cfdata *cf, void *aux,
cfprint_t print)
{
struct device *dev;
struct cftable *ct;
struct cfdriver *cd;
struct cfattach *ca;
size_t lname, lunit;
const char *xunit;
int myunit;
char num[10];
cd = config_cfdriver_lookup(cf->cf_name);
KASSERT(cd != NULL);
ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
KASSERT(ca != NULL);
if (ca->ca_devsize < sizeof(struct device))
panic("config_attach");
#ifndef __BROKEN_CONFIG_UNIT_USAGE
if (cf->cf_fstate == FSTATE_STAR) {
for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
if (cd->cd_devs[myunit] == NULL)
break;
/*
* myunit is now the unit of the first NULL device pointer,
* or max(cd->cd_ndevs,cf->cf_unit).
*/
} else {
myunit = cf->cf_unit;
KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
cf->cf_fstate = FSTATE_FOUND;
}
#else
myunit = cf->cf_unit;
if (cf->cf_fstate == FSTATE_STAR)
cf->cf_unit++;
else {
KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
cf->cf_fstate = FSTATE_FOUND;
}
#endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
/* compute length of name and decimal expansion of unit number */
lname = strlen(cd->cd_name);
xunit = number(&num[sizeof(num)], myunit);
lunit = &num[sizeof(num)] - xunit;
if (lname + lunit > sizeof(dev->dv_xname))
panic("config_attach: device name too long");
/* get memory for all device vars */
dev = (struct device *)malloc(ca->ca_devsize, M_DEVBUF,
cold ? M_NOWAIT : M_WAITOK);
if (!dev)
panic("config_attach: memory allocation for device softc failed");
memset(dev, 0, ca->ca_devsize);
TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); /* link up */
dev->dv_class = cd->cd_class;
dev->dv_cfdata = cf;
dev->dv_cfdriver = cd;
dev->dv_cfattach = ca;
dev->dv_unit = myunit;
memcpy(dev->dv_xname, cd->cd_name, lname);
memcpy(dev->dv_xname + lname, xunit, lunit);
dev->dv_parent = parent;
dev->dv_flags = DVF_ACTIVE; /* always initially active */
if (config_do_twiddle)
twiddle();
else
aprint_naive("Found ");
/*
* We want the next two printfs for normal, verbose, and quiet,
* but not silent (in which case, we're twiddling, instead).
*/
if (parent == ROOT) {
if (config_do_twiddle)
aprint_normal("%s (root)", dev->dv_xname);
else
printf("%s (root)", dev->dv_xname);
} else {
if (config_do_twiddle)
aprint_normal("%s at %s", dev->dv_xname,
parent->dv_xname);
else
printf("%s at %s", dev->dv_xname, parent->dv_xname);
if (print)
(void) (*print)(aux, NULL);
}
/* put this device in the devices array */
config_makeroom(dev->dv_unit, cd);
if (cd->cd_devs[dev->dv_unit])
panic("config_attach: duplicate %s", dev->dv_xname);
cd->cd_devs[dev->dv_unit] = dev;
/*
* Before attaching, clobber any unfound devices that are
* otherwise identical.
*/
TAILQ_FOREACH(ct, &allcftables, ct_list) {
for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
if (STREQ(cf->cf_name, cd->cd_name) &&
cf->cf_unit == dev->dv_unit) {
if (cf->cf_fstate == FSTATE_NOTFOUND)
cf->cf_fstate = FSTATE_FOUND;
#ifdef __BROKEN_CONFIG_UNIT_USAGE
/*
* Bump the unit number on all starred cfdata
* entries for this device.
*/
if (cf->cf_fstate == FSTATE_STAR)
cf->cf_unit++;
#endif /* __BROKEN_CONFIG_UNIT_USAGE */
}
}
}
#ifdef __HAVE_DEVICE_REGISTER
device_register(dev, aux);
#endif
(*ca->ca_attach)(parent, dev, aux);
config_process_deferred(&deferred_config_queue, dev);
return (dev);
}
/*
* As above, but for pseudo-devices. Pseudo-devices attached in this
* way are silently inserted into the device tree, and their children
* attached.
*
* Note that because pseudo-devices are attached silently, any information
* the attach routine wishes to print should be prefixed with the device
* name by the attach routine.
*/
struct device *
config_attach_pseudo(const char *name, int unit)
{
struct device *dev;
struct cfdriver *cd;
struct cfattach *ca;
size_t lname, lunit;
const char *xunit;
int myunit;
char num[10];
cd = config_cfdriver_lookup(name);
if (cd == NULL)
return (NULL);
ca = config_cfattach_lookup_cd(cd, name);
if (ca == NULL)
return (NULL);
if (ca->ca_devsize < sizeof(struct device))
panic("config_attach_pseudo");
if (unit == DVUNIT_ANY) {
for (myunit = 0; myunit < cd->cd_ndevs; myunit++)
if (cd->cd_devs[myunit] == NULL)
break;
/*
* myunit is now the unit of the first NULL device pointer.
*/
} else {
myunit = unit;
if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
return (NULL);
}
/* compute length of name and decimal expansion of unit number */
lname = strlen(cd->cd_name);
xunit = number(&num[sizeof(num)], myunit);
lunit = &num[sizeof(num)] - xunit;
if (lname + lunit > sizeof(dev->dv_xname))
panic("config_attach_pseudo: device name too long");
/* get memory for all device vars */
dev = (struct device *)malloc(ca->ca_devsize, M_DEVBUF,
cold ? M_NOWAIT : M_WAITOK);
if (!dev)
panic("config_attach_pseudo: memory allocation for device "
"softc failed");
memset(dev, 0, ca->ca_devsize);
TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); /* link up */
dev->dv_class = cd->cd_class;
dev->dv_cfdata = NULL;
dev->dv_cfdriver = cd;
dev->dv_cfattach = ca;
dev->dv_unit = myunit;
memcpy(dev->dv_xname, cd->cd_name, lname);
memcpy(dev->dv_xname + lname, xunit, lunit);
dev->dv_parent = ROOT;
dev->dv_flags = DVF_ACTIVE; /* always initially active */
/* put this device in the devices array */
config_makeroom(dev->dv_unit, cd);
if (cd->cd_devs[dev->dv_unit])
panic("config_attach_pseudo: duplicate %s", dev->dv_xname);
cd->cd_devs[dev->dv_unit] = dev;
#if 0 /* XXXJRT not yet */
#ifdef __HAVE_DEVICE_REGISTER
device_register(dev, NULL); /* like a root node */
#endif
#endif
(*ca->ca_attach)(ROOT, dev, NULL);
config_process_deferred(&deferred_config_queue, dev);
return (dev);
}
/*
* Detach a device. Optionally forced (e.g. because of hardware
* removal) and quiet. Returns zero if successful, non-zero
* (an error code) otherwise.
*
* Note that this code wants to be run from a process context, so
* that the detach can sleep to allow processes which have a device
* open to run and unwind their stacks.
*/
int
config_detach(struct device *dev, int flags)
{
struct cftable *ct;
struct cfdata *cf;
2002-09-28 00:41:46 +04:00
const struct cfattach *ca;
struct cfdriver *cd;
#ifdef DIAGNOSTIC
struct device *d;
#endif
int rv = 0, i;
#ifdef DIAGNOSTIC
if (dev->dv_cfdata != NULL &&
dev->dv_cfdata->cf_fstate != FSTATE_FOUND &&
dev->dv_cfdata->cf_fstate != FSTATE_STAR)
panic("config_detach: bad device fstate");
#endif
cd = dev->dv_cfdriver;
KASSERT(cd != NULL);
ca = dev->dv_cfattach;
KASSERT(ca != NULL);
/*
* Ensure the device is deactivated. If the device doesn't
* have an activation entry point, we allow DVF_ACTIVE to
* remain set. Otherwise, if DVF_ACTIVE is still set, the
* device is busy, and the detach fails.
*/
if (ca->ca_activate != NULL)
rv = config_deactivate(dev);
/*
* Try to detach the device. If that's not possible, then
* we either panic() (for the forced but failed case), or
* return an error.
*/
if (rv == 0) {
if (ca->ca_detach != NULL)
rv = (*ca->ca_detach)(dev, flags);
else
rv = EOPNOTSUPP;
}
if (rv != 0) {
if ((flags & DETACH_FORCE) == 0)
return (rv);
else
panic("config_detach: forced detach of %s failed (%d)",
dev->dv_xname, rv);
}
/*
* The device has now been successfully detached.
*/
#ifdef DIAGNOSTIC
/*
* Sanity: If you're successfully detached, you should have no
* children. (Note that because children must be attached
* after parents, we only need to search the latter part of
* the list.)
*/
for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
d = TAILQ_NEXT(d, dv_list)) {
if (d->dv_parent == dev) {
printf("config_detach: detached device %s"
" has children %s\n", dev->dv_xname, d->dv_xname);
panic("config_detach");
}
}
#endif
/*
* Mark cfdata to show that the unit can be reused, if possible.
*/
TAILQ_FOREACH(ct, &allcftables, ct_list) {
for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
if (STREQ(cf->cf_name, cd->cd_name)) {
if (cf->cf_fstate == FSTATE_FOUND &&
cf->cf_unit == dev->dv_unit)
cf->cf_fstate = FSTATE_NOTFOUND;
#ifdef __BROKEN_CONFIG_UNIT_USAGE
/*
* Note that we can only re-use a starred
* unit number if the unit being detached
* had the last assigned unit number.
*/
if (cf->cf_fstate == FSTATE_STAR &&
cf->cf_unit == dev->dv_unit + 1)
cf->cf_unit--;
#endif /* __BROKEN_CONFIG_UNIT_USAGE */
}
}
}
/*
* Unlink from device list.
*/
TAILQ_REMOVE(&alldevs, dev, dv_list);
/*
* Remove from cfdriver's array, tell the world (unless it was
* a pseudo-device), and free softc.
*/
cd->cd_devs[dev->dv_unit] = NULL;
if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
aprint_normal("%s detached\n", dev->dv_xname);
free(dev, M_DEVBUF);
/*
* If the device now has no units in use, deallocate its softc array.
*/
for (i = 0; i < cd->cd_ndevs; i++)
if (cd->cd_devs[i] != NULL)
break;
if (i == cd->cd_ndevs) { /* nothing found; deallocate */
free(cd->cd_devs, M_DEVBUF);
cd->cd_devs = NULL;
cd->cd_ndevs = 0;
}
/*
* Return success.
*/
return (0);
}
int
config_activate(struct device *dev)
{
const struct cfattach *ca = dev->dv_cfattach;
int rv = 0, oflags = dev->dv_flags;
if (ca->ca_activate == NULL)
return (EOPNOTSUPP);
if ((dev->dv_flags & DVF_ACTIVE) == 0) {
dev->dv_flags |= DVF_ACTIVE;
rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
if (rv)
dev->dv_flags = oflags;
}
return (rv);
}
int
config_deactivate(struct device *dev)
{
const struct cfattach *ca = dev->dv_cfattach;
int rv = 0, oflags = dev->dv_flags;
if (ca->ca_activate == NULL)
return (EOPNOTSUPP);
if (dev->dv_flags & DVF_ACTIVE) {
dev->dv_flags &= ~DVF_ACTIVE;
rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
if (rv)
dev->dv_flags = oflags;
}
return (rv);
}
/*
* Defer the configuration of the specified device until all
* of its parent's devices have been attached.
*/
void
config_defer(struct device *dev, void (*func)(struct device *))
{
struct deferred_config *dc;
if (dev->dv_parent == NULL)
panic("config_defer: can't defer config of a root device");
#ifdef DIAGNOSTIC
for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
dc = TAILQ_NEXT(dc, dc_queue)) {
if (dc->dc_dev == dev)
panic("config_defer: deferred twice");
}
#endif
dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
if (dc == NULL)
panic("config_defer: unable to allocate callback");
dc->dc_dev = dev;
dc->dc_func = func;
TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
config_pending_incr();
}
/*
* Defer some autoconfiguration for a device until after interrupts
* are enabled.
*/
void
config_interrupts(struct device *dev, void (*func)(struct device *))
{
struct deferred_config *dc;
/*
* If interrupts are enabled, callback now.
*/
if (cold == 0) {
(*func)(dev);
return;
}
#ifdef DIAGNOSTIC
for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
dc = TAILQ_NEXT(dc, dc_queue)) {
if (dc->dc_dev == dev)
panic("config_interrupts: deferred twice");
}
#endif
dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
if (dc == NULL)
panic("config_interrupts: unable to allocate callback");
dc->dc_dev = dev;
dc->dc_func = func;
TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
config_pending_incr();
}
/*
* Process a deferred configuration queue.
*/
static void
config_process_deferred(struct deferred_config_head *queue,
struct device *parent)
{
struct deferred_config *dc, *ndc;
for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
ndc = TAILQ_NEXT(dc, dc_queue);
if (parent == NULL || dc->dc_dev->dv_parent == parent) {
TAILQ_REMOVE(queue, dc, dc_queue);
(*dc->dc_func)(dc->dc_dev);
free(dc, M_DEVBUF);
config_pending_decr();
}
}
}
/*
* Manipulate the config_pending semaphore.
*/
void
config_pending_incr(void)
{
config_pending++;
}
void
config_pending_decr(void)
{
#ifdef DIAGNOSTIC
if (config_pending == 0)
panic("config_pending_decr: config_pending == 0");
#endif
config_pending--;
if (config_pending == 0)
wakeup((void *)&config_pending);
}
/*
* Register a "finalization" routine. Finalization routines are
* called iteratively once all real devices have been found during
* autoconfiguration, for as long as any one finalizer has done
* any work.
*/
int
config_finalize_register(struct device *dev, int (*fn)(struct device *))
{
struct finalize_hook *f;
/*
* If finalization has already been done, invoke the
* callback function now.
*/
if (config_finalize_done) {
while ((*fn)(dev) != 0)
/* loop */ ;
}
/* Ensure this isn't already on the list. */
TAILQ_FOREACH(f, &config_finalize_list, f_list) {
if (f->f_func == fn && f->f_dev == dev)
return (EEXIST);
}
f = malloc(sizeof(*f), M_TEMP, M_WAITOK);
f->f_func = fn;
f->f_dev = dev;
TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
return (0);
}
void
config_finalize(void)
{
struct finalize_hook *f;
int rv;
/* Run the hooks until none of them does any work. */
do {
rv = 0;
TAILQ_FOREACH(f, &config_finalize_list, f_list)
rv |= (*f->f_func)(f->f_dev);
} while (rv != 0);
config_finalize_done = 1;
/* Now free all the hooks. */
while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
TAILQ_REMOVE(&config_finalize_list, f, f_list);
free(f, M_TEMP);
}
}
/*
* We need a dummy object to stuff into the evcnt link set to
* ensure that there always is at least one object in the set.
*/
static struct evcnt dummy_static_evcnt;
__link_set_add_bss(evcnts, dummy_static_evcnt);
/*
* Initialize event counters. This does the attach procedure for
* each of the static event counters in the "evcnts" link set.
*/
void
evcnt_init(void)
{
__link_set_decl(evcnts, struct evcnt);
struct evcnt * const *evp;
__link_set_foreach(evp, evcnts) {
if (*evp == &dummy_static_evcnt)
continue;
evcnt_attach_static(*evp);
}
}
/*
* Attach a statically-initialized event. The type and string pointers
* are already set up.
*/
void
evcnt_attach_static(struct evcnt *ev)
{
int len;
len = strlen(ev->ev_group);
#ifdef DIAGNOSTIC
if (len >= EVCNT_STRING_MAX) /* ..._MAX includes NUL */
panic("evcnt_attach_static: group length (%s)", ev->ev_group);
#endif
ev->ev_grouplen = len;
len = strlen(ev->ev_name);
#ifdef DIAGNOSTIC
if (len >= EVCNT_STRING_MAX) /* ..._MAX includes NUL */
panic("evcnt_attach_static: name length (%s)", ev->ev_name);
#endif
ev->ev_namelen = len;
TAILQ_INSERT_TAIL(&allevents, ev, ev_list);
}
/*
* Attach a dynamically-initialized event. Zero it, set up the type
* and string pointers and then act like it was statically initialized.
*/
void
evcnt_attach_dynamic(struct evcnt *ev, int type, const struct evcnt *parent,
const char *group, const char *name)
{
memset(ev, 0, sizeof *ev);
ev->ev_type = type;
ev->ev_parent = parent;
ev->ev_group = group;
ev->ev_name = name;
evcnt_attach_static(ev);
}
/*
* Detach an event.
*/
void
evcnt_detach(struct evcnt *ev)
{
TAILQ_REMOVE(&allevents, ev, ev_list);
}
#ifdef DDB
void
event_print(int full, void (*pr)(const char *, ...))
{
struct evcnt *evp;
TAILQ_FOREACH(evp, &allevents, ev_list) {
if (evp->ev_count == 0 && !full)
continue;
(*pr)("evcnt type %d: %s %s = %lld\n", evp->ev_type,
evp->ev_group, evp->ev_name, evp->ev_count);
}
}
#endif /* DDB */