NetBSD/sys/dev/pci/if_kse.c

1449 lines
41 KiB
C
Raw Normal View History

/* $NetBSD: if_kse.c,v 1.10 2007/10/19 12:00:46 ad Exp $ */
/*
* Copyright (c) 2006 Tohru Nishimura
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Tohru Nishimura.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_kse.c,v 1.10 2007/10/19 12:00:46 ad Exp $");
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/device.h>
#include <sys/queue.h>
#include <machine/endian.h>
#include <sys/bus.h>
#include <sys/intr.h>
#include <net/if.h>
#include <net/if_media.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcidevs.h>
#define CSR_READ_4(sc, off) \
bus_space_read_4(sc->sc_st, sc->sc_sh, off)
#define CSR_WRITE_4(sc, off, val) \
bus_space_write_4(sc->sc_st, sc->sc_sh, off, val)
#define CSR_READ_2(sc, off) \
bus_space_read_2(sc->sc_st, sc->sc_sh, off)
#define CSR_WRITE_2(sc, off, val) \
bus_space_write_2(sc->sc_st, sc->sc_sh, off, val)
#define MDTXC 0x000 /* DMA transmit control */
#define MDRXC 0x004 /* DMA receive control */
#define MDTSC 0x008 /* DMA transmit start */
#define MDRSC 0x00c /* DMA receive start */
#define TDLB 0x010 /* transmit descriptor list base */
#define RDLB 0x014 /* receive descriptor list base */
#define MTR0 0x020 /* multicast table 31:0 */
#define MTR1 0x024 /* multicast table 63:32 */
#define INTEN 0x028 /* interrupt enable */
#define INTST 0x02c /* interrupt status */
#define MARL 0x200 /* MAC address low */
#define MARM 0x202 /* MAC address middle */
#define MARH 0x204 /* MAC address high */
#define GRR 0x216 /* global reset */
#define CIDR 0x400 /* chip ID and enable */
#define CGCR 0x40a /* chip global control */
#define IACR 0x4a0 /* indirect access control */
#define IADR1 0x4a2 /* indirect access data 66:63 */
#define IADR2 0x4a4 /* indirect access data 47:32 */
#define IADR3 0x4a6 /* indirect access data 63:48 */
#define IADR4 0x4a8 /* indirect access data 15:0 */
#define IADR5 0x4aa /* indirect access data 31:16 */
#define P1CR4 0x512 /* port 1 control 4 */
#define P1SR 0x514 /* port 1 status */
#define P2CR4 0x532 /* port 2 control 4 */
#define P2SR 0x534 /* port 2 status */
#define TXC_BS_MSK 0x3f000000 /* burst size */
#define TXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
#define TXC_UCG (1U<<18) /* generate UDP checksum */
#define TXC_TCG (1U<<17) /* generate TCP checksum */
#define TXC_ICG (1U<<16) /* generate IP checksum */
#define TXC_FCE (1U<<9) /* enable flowcontrol */
#define TXC_EP (1U<<2) /* enable automatic padding */
#define TXC_AC (1U<<1) /* add CRC to frame */
#define TXC_TEN (1) /* enable DMA to run */
#define RXC_BS_MSK 0x3f000000 /* burst size */
#define RXC_BS_SFT (24) /* 1,2,4,8,16,32 or 0 for unlimited */
#define RXC_IHAE (1U<<19) /* IP header alignment enable */
#define RXC_UCC (1U<<18) /* run UDP checksum */
#define RXC_TCC (1U<<17) /* run TDP checksum */
#define RXC_ICC (1U<<16) /* run IP checksum */
#define RXC_FCE (1U<<9) /* enable flowcontrol */
#define RXC_RB (1U<<6) /* receive broadcast frame */
#define RXC_RM (1U<<5) /* receive multicast frame */
#define RXC_RU (1U<<4) /* receive unicast frame */
#define RXC_RE (1U<<3) /* accept error frame */
#define RXC_RA (1U<<2) /* receive all frame */
#define RXC_MHTE (1U<<1) /* use multicast hash table */
#define RXC_REN (1) /* enable DMA to run */
#define INT_DMLCS (1U<<31) /* link status change */
#define INT_DMTS (1U<<30) /* sending desc. has posted Tx done */
#define INT_DMRS (1U<<29) /* frame was received */
#define INT_DMRBUS (1U<<27) /* Rx descriptor pool is full */
#define T0_OWN (1U<<31) /* desc is ready to Tx */
#define R0_OWN (1U<<31) /* desc is empty */
#define R0_FS (1U<<30) /* first segment of frame */
#define R0_LS (1U<<29) /* last segment of frame */
#define R0_IPE (1U<<28) /* IP checksum error */
#define R0_TCPE (1U<<27) /* TCP checksum error */
#define R0_UDPE (1U<<26) /* UDP checksum error */
#define R0_ES (1U<<25) /* error summary */
#define R0_MF (1U<<24) /* multicast frame */
#define R0_SPN 0x00300000 /* 21:20 switch port 1/2 */
#define R0_ALIGN 0x00300000 /* 21:20 (KSZ8692P) Rx align amount */
#define R0_RE (1U<<19) /* MII reported error */
#define R0_TL (1U<<18) /* frame too long, beyond 1518 */
#define R0_RF (1U<<17) /* damaged runt frame */
#define R0_CE (1U<<16) /* CRC error */
#define R0_FT (1U<<15) /* frame type */
#define R0_FL_MASK 0x7ff /* frame length 10:0 */
#define T1_IC (1U<<31) /* post interrupt on complete */
#define T1_FS (1U<<30) /* first segment of frame */
#define T1_LS (1U<<29) /* last segment of frame */
#define T1_IPCKG (1U<<28) /* generate IP checksum */
#define T1_TCPCKG (1U<<27) /* generate TCP checksum */
#define T1_UDPCKG (1U<<26) /* generate UDP checksum */
#define T1_TER (1U<<25) /* end of ring */
#define T1_SPN 0x00300000 /* 21:20 switch port 1/2 */
#define T1_TBS_MASK 0x7ff /* segment size 10:0 */
#define R1_RER (1U<<25) /* end of ring */
#define R1_RBS_MASK 0x7fc /* segment size 10:0 */
#define KSE_NTXSEGS 16
#define KSE_TXQUEUELEN 64
#define KSE_TXQUEUELEN_MASK (KSE_TXQUEUELEN - 1)
#define KSE_TXQUEUE_GC (KSE_TXQUEUELEN / 4)
#define KSE_NTXDESC 256
#define KSE_NTXDESC_MASK (KSE_NTXDESC - 1)
#define KSE_NEXTTX(x) (((x) + 1) & KSE_NTXDESC_MASK)
#define KSE_NEXTTXS(x) (((x) + 1) & KSE_TXQUEUELEN_MASK)
#define KSE_NRXDESC 64
#define KSE_NRXDESC_MASK (KSE_NRXDESC - 1)
#define KSE_NEXTRX(x) (((x) + 1) & KSE_NRXDESC_MASK)
struct tdes {
uint32_t t0, t1, t2, t3;
};
struct rdes {
uint32_t r0, r1, r2, r3;
};
struct kse_control_data {
struct tdes kcd_txdescs[KSE_NTXDESC];
struct rdes kcd_rxdescs[KSE_NRXDESC];
};
#define KSE_CDOFF(x) offsetof(struct kse_control_data, x)
#define KSE_CDTXOFF(x) KSE_CDOFF(kcd_txdescs[(x)])
#define KSE_CDRXOFF(x) KSE_CDOFF(kcd_rxdescs[(x)])
struct kse_txsoft {
struct mbuf *txs_mbuf; /* head of our mbuf chain */
bus_dmamap_t txs_dmamap; /* our DMA map */
int txs_firstdesc; /* first descriptor in packet */
int txs_lastdesc; /* last descriptor in packet */
int txs_ndesc; /* # of descriptors used */
};
struct kse_rxsoft {
struct mbuf *rxs_mbuf; /* head of our mbuf chain */
bus_dmamap_t rxs_dmamap; /* our DMA map */
};
struct kse_softc {
struct device sc_dev; /* generic device information */
bus_space_tag_t sc_st; /* bus space tag */
bus_space_handle_t sc_sh; /* bus space handle */
bus_dma_tag_t sc_dmat; /* bus DMA tag */
struct ethercom sc_ethercom; /* Ethernet common data */
void *sc_ih; /* interrupt cookie */
struct ifmedia sc_media; /* ifmedia information */
int sc_media_status; /* PHY */
int sc_media_active; /* PHY */
callout_t sc_callout; /* MII tick callout */
callout_t sc_stat_ch; /* statistics counter callout */
bus_dmamap_t sc_cddmamap; /* control data DMA map */
#define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
struct kse_control_data *sc_control_data;
#define sc_txdescs sc_control_data->kcd_txdescs
#define sc_rxdescs sc_control_data->kcd_rxdescs
struct kse_txsoft sc_txsoft[KSE_TXQUEUELEN];
struct kse_rxsoft sc_rxsoft[KSE_NRXDESC];
int sc_txfree; /* number of free Tx descriptors */
int sc_txnext; /* next ready Tx descriptor */
int sc_txsfree; /* number of free Tx jobs */
int sc_txsnext; /* next ready Tx job */
int sc_txsdirty; /* dirty Tx jobs */
int sc_rxptr; /* next ready Rx descriptor/descsoft */
uint32_t sc_txc, sc_rxc;
uint32_t sc_t1csum;
int sc_mcsum;
uint32_t sc_inten;
uint32_t sc_chip;
uint8_t sc_altmac[16][ETHER_ADDR_LEN];
uint16_t sc_vlan[16];
#ifdef KSE_EVENT_COUNTERS
struct ksext {
char evcntname[3][8];
struct evcnt pev[3][34];
} sc_ext; /* switch statistics */
#endif
};
#define KSE_CDTXADDR(sc, x) ((sc)->sc_cddma + KSE_CDTXOFF((x)))
#define KSE_CDRXADDR(sc, x) ((sc)->sc_cddma + KSE_CDRXOFF((x)))
#define KSE_CDTXSYNC(sc, x, n, ops) \
do { \
int __x, __n; \
\
__x = (x); \
__n = (n); \
\
/* If it will wrap around, sync to the end of the ring. */ \
if ((__x + __n) > KSE_NTXDESC) { \
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
KSE_CDTXOFF(__x), sizeof(struct tdes) * \
(KSE_NTXDESC - __x), (ops)); \
__n -= (KSE_NTXDESC - __x); \
__x = 0; \
} \
\
/* Now sync whatever is left. */ \
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
KSE_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops)); \
} while (/*CONSTCOND*/0)
#define KSE_CDRXSYNC(sc, x, ops) \
do { \
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
KSE_CDRXOFF((x)), sizeof(struct rdes), (ops)); \
} while (/*CONSTCOND*/0)
#define KSE_INIT_RXDESC(sc, x) \
do { \
struct kse_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
struct rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
struct mbuf *__m = __rxs->rxs_mbuf; \
\
__m->m_data = __m->m_ext.ext_buf; \
__rxd->r2 = __rxs->rxs_dmamap->dm_segs[0].ds_addr; \
__rxd->r1 = R1_RBS_MASK /* __m->m_ext.ext_size */; \
__rxd->r0 = R0_OWN; \
KSE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
} while (/*CONSTCOND*/0)
u_int kse_burstsize = 32; /* DMA burst length tuning knob */
#ifdef KSEDIAGNOSTIC
u_int kse_monitor_rxintr; /* fragmented UDP csum HW bug hook */
#endif
static int kse_match(struct device *, struct cfdata *, void *);
static void kse_attach(struct device *, struct device *, void *);
CFATTACH_DECL(kse, sizeof(struct kse_softc),
kse_match, kse_attach, NULL, NULL);
static int kse_ioctl(struct ifnet *, u_long, void *);
static void kse_start(struct ifnet *);
static void kse_watchdog(struct ifnet *);
static int kse_init(struct ifnet *);
static void kse_stop(struct ifnet *, int);
static void kse_reset(struct kse_softc *);
static void kse_set_filter(struct kse_softc *);
static int add_rxbuf(struct kse_softc *, int);
static void rxdrain(struct kse_softc *);
static int kse_intr(void *);
static void rxintr(struct kse_softc *);
static void txreap(struct kse_softc *);
static void lnkchg(struct kse_softc *);
static int ifmedia_upd(struct ifnet *);
static void ifmedia_sts(struct ifnet *, struct ifmediareq *);
static void phy_tick(void *);
static int ifmedia2_upd(struct ifnet *);
static void ifmedia2_sts(struct ifnet *, struct ifmediareq *);
#ifdef KSE_EVENT_COUNTERS
static void stat_tick(void *);
static void zerostats(struct kse_softc *);
#endif
static int
kse_match(struct device *parent, struct cfdata *match, void *aux)
{
struct pci_attach_args *pa = (struct pci_attach_args *)aux;
if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MICREL &&
(PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8842 ||
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8841) &&
PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
return 1;
return 0;
}
static void
kse_attach(struct device *parent, struct device *self, void *aux)
{
struct kse_softc *sc = (struct kse_softc *)self;
struct pci_attach_args *pa = aux;
pci_chipset_tag_t pc = pa->pa_pc;
pci_intr_handle_t ih;
const char *intrstr;
struct ifnet *ifp;
struct ifmedia *ifm;
uint8_t enaddr[ETHER_ADDR_LEN];
bus_dma_segment_t seg;
int i, p, error, nseg;
pcireg_t pmode;
int pmreg;
if (pci_mapreg_map(pa, 0x10,
PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
0, &sc->sc_st, &sc->sc_sh, NULL, NULL) != 0) {
printf(": unable to map device registers\n");
return;
}
sc->sc_dmat = pa->pa_dmat;
/* Make sure bus mastering is enabled. */
pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
PCI_COMMAND_MASTER_ENABLE);
/* Get it out of power save mode, if needed. */
if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
PCI_PMCSR_STATE_MASK;
if (pmode == PCI_PMCSR_STATE_D3) {
/*
* The card has lost all configuration data in
* this state, so punt.
*/
printf("%s: unable to wake from power state D3\n",
sc->sc_dev.dv_xname);
return;
}
if (pmode != PCI_PMCSR_STATE_D0) {
printf("%s: waking up from power date D%d\n",
sc->sc_dev.dv_xname, pmode);
pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
PCI_PMCSR_STATE_D0);
}
}
sc->sc_chip = PCI_PRODUCT(pa->pa_id);
printf(": Micrel KSZ%04x Ethernet (rev. 0x%02x)\n",
sc->sc_chip, PCI_REVISION(pa->pa_class));
/*
* Read the Ethernet address from the EEPROM.
*/
i = CSR_READ_2(sc, MARL);
enaddr[5] = i; enaddr[4] = i >> 8;
i = CSR_READ_2(sc, MARM);
enaddr[3] = i; enaddr[2] = i >> 8;
i = CSR_READ_2(sc, MARH);
enaddr[1] = i; enaddr[0] = i >> 8;
printf("%s: Ethernet address: %s\n",
sc->sc_dev.dv_xname, ether_sprintf(enaddr));
/*
* Enable chip function.
*/
CSR_WRITE_2(sc, CIDR, 1);
/*
* Map and establish our interrupt.
*/
if (pci_intr_map(pa, &ih)) {
printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
return;
}
intrstr = pci_intr_string(pc, ih);
sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, kse_intr, sc);
if (sc->sc_ih == NULL) {
printf("%s: unable to establish interrupt",
sc->sc_dev.dv_xname);
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
return;
}
printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
/*
* Allocate the control data structures, and create and load the
* DMA map for it.
*/
error = bus_dmamem_alloc(sc->sc_dmat,
sizeof(struct kse_control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
if (error != 0) {
printf("%s: unable to allocate control data, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_0;
}
error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
sizeof(struct kse_control_data), (void **)&sc->sc_control_data,
BUS_DMA_COHERENT);
if (error != 0) {
printf("%s: unable to map control data, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_1;
}
error = bus_dmamap_create(sc->sc_dmat,
sizeof(struct kse_control_data), 1,
sizeof(struct kse_control_data), 0, 0, &sc->sc_cddmamap);
if (error != 0) {
printf("%s: unable to create control data DMA map, "
"error = %d\n", sc->sc_dev.dv_xname, error);
goto fail_2;
}
error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
sc->sc_control_data, sizeof(struct kse_control_data), NULL, 0);
if (error != 0) {
printf("%s: unable to load control data DMA map, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_3;
}
for (i = 0; i < KSE_TXQUEUELEN; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
KSE_NTXSEGS, MCLBYTES, 0, 0,
&sc->sc_txsoft[i].txs_dmamap)) != 0) {
printf("%s: unable to create tx DMA map %d, "
"error = %d\n", sc->sc_dev.dv_xname, i, error);
goto fail_4;
}
}
for (i = 0; i < KSE_NRXDESC; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
printf("%s: unable to create rx DMA map %d, "
"error = %d\n", sc->sc_dev.dv_xname, i, error);
goto fail_5;
}
sc->sc_rxsoft[i].rxs_mbuf = NULL;
}
callout_init(&sc->sc_callout, 0);
callout_init(&sc->sc_stat_ch, 0);
ifm = &sc->sc_media;
if (sc->sc_chip == 0x8841) {
ifmedia_init(ifm, 0, ifmedia_upd, ifmedia_sts);
ifmedia_add(ifm, IFM_ETHER|IFM_10_T, 0, NULL);
ifmedia_add(ifm, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
ifmedia_add(ifm, IFM_ETHER|IFM_100_TX, 0, NULL);
ifmedia_add(ifm, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
ifmedia_add(ifm, IFM_ETHER|IFM_AUTO, 0, NULL);
ifmedia_set(ifm, IFM_ETHER|IFM_AUTO);
}
else {
ifmedia_init(ifm, 0, ifmedia2_upd, ifmedia2_sts);
ifmedia_add(ifm, IFM_ETHER|IFM_AUTO, 0, NULL);
ifmedia_set(ifm, IFM_ETHER|IFM_AUTO);
}
printf("%s: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto\n",
sc->sc_dev.dv_xname);
ifp = &sc->sc_ethercom.ec_if;
strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = kse_ioctl;
ifp->if_start = kse_start;
ifp->if_watchdog = kse_watchdog;
ifp->if_init = kse_init;
ifp->if_stop = kse_stop;
IFQ_SET_READY(&ifp->if_snd);
/*
* KSZ8842 can handle 802.1Q VLAN-sized frames,
* can do IPv4, TCPv4, and UDPv4 checksums in hardware.
*/
sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
ifp->if_capabilities |=
IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
if_attach(ifp);
ether_ifattach(ifp, enaddr);
p = (sc->sc_chip == 0x8842) ? 3 : 1;
#ifdef KSE_EVENT_COUNTERS
for (i = 0; i < p; i++) {
struct ksext *ee = &sc->sc_ext;
sprintf(ee->evcntname[i], "%s.%d", sc->sc_dev.dv_xname, i+1);
evcnt_attach_dynamic(&ee->pev[i][0], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "RxLoPriotyByte");
evcnt_attach_dynamic(&ee->pev[i][1], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "RxHiPriotyByte");
evcnt_attach_dynamic(&ee->pev[i][2], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "RxUndersizePkt");
evcnt_attach_dynamic(&ee->pev[i][3], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "RxFragments");
evcnt_attach_dynamic(&ee->pev[i][4], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "RxOversize");
evcnt_attach_dynamic(&ee->pev[i][5], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "RxJabbers");
evcnt_attach_dynamic(&ee->pev[i][6], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "RxSymbolError");
evcnt_attach_dynamic(&ee->pev[i][7], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "RxCRCError");
evcnt_attach_dynamic(&ee->pev[i][8], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "RxAlignmentError");
evcnt_attach_dynamic(&ee->pev[i][9], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "RxControl8808Pkts");
evcnt_attach_dynamic(&ee->pev[i][10], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "RxPausePkts");
evcnt_attach_dynamic(&ee->pev[i][11], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "RxBroadcast");
evcnt_attach_dynamic(&ee->pev[i][12], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "RxMulticast");
evcnt_attach_dynamic(&ee->pev[i][13], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "RxUnicast");
evcnt_attach_dynamic(&ee->pev[i][14], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "Rx64Octets");
evcnt_attach_dynamic(&ee->pev[i][15], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "Rx65To127Octets");
evcnt_attach_dynamic(&ee->pev[i][16], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "Rx128To255Octets");
evcnt_attach_dynamic(&ee->pev[i][17], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "Rx255To511Octets");
evcnt_attach_dynamic(&ee->pev[i][18], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "Rx512To1023Octets");
evcnt_attach_dynamic(&ee->pev[i][19], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "Rx1024To1522Octets");
evcnt_attach_dynamic(&ee->pev[i][20], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "TxLoPriotyByte");
evcnt_attach_dynamic(&ee->pev[i][21], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "TxHiPriotyByte");
evcnt_attach_dynamic(&ee->pev[i][22], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "TxLateCollision");
evcnt_attach_dynamic(&ee->pev[i][23], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "TxPausePkts");
evcnt_attach_dynamic(&ee->pev[i][24], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "TxBroadcastPkts");
evcnt_attach_dynamic(&ee->pev[i][25], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "TxMulticastPkts");
evcnt_attach_dynamic(&ee->pev[i][26], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "TxUnicastPkts");
evcnt_attach_dynamic(&ee->pev[i][27], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "TxDeferred");
evcnt_attach_dynamic(&ee->pev[i][28], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "TxTotalCollision");
evcnt_attach_dynamic(&ee->pev[i][29], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "TxExcessiveCollision");
evcnt_attach_dynamic(&ee->pev[i][30], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "TxSingleCollision");
evcnt_attach_dynamic(&ee->pev[i][31], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "TxMultipleCollision");
evcnt_attach_dynamic(&ee->pev[i][32], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "TxDropPkts");
evcnt_attach_dynamic(&ee->pev[i][33], EVCNT_TYPE_MISC,
NULL, ee->evcntname[i], "RxDropPkts");
}
#endif
return;
fail_5:
for (i = 0; i < KSE_NRXDESC; i++) {
if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
sc->sc_rxsoft[i].rxs_dmamap);
}
fail_4:
for (i = 0; i < KSE_TXQUEUELEN; i++) {
if (sc->sc_txsoft[i].txs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
sc->sc_txsoft[i].txs_dmamap);
}
bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
fail_3:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
fail_2:
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
sizeof(struct kse_control_data));
fail_1:
bus_dmamem_free(sc->sc_dmat, &seg, nseg);
fail_0:
return;
}
static int
kse_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct kse_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int s, error;
s = splnet();
switch (cmd) {
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
break;
default:
error = ether_ioctl(ifp, cmd, data);
if (cmd == ENETRESET) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
if (ifp->if_flags & IFF_RUNNING)
kse_set_filter(sc);
error = 0;
}
break;
}
kse_start(ifp);
splx(s);
return error;
}
static int
kse_init(struct ifnet *ifp)
{
struct kse_softc *sc = ifp->if_softc;
uint32_t paddr;
int i, error = 0;
/* cancel pending I/O */
kse_stop(ifp, 0);
/* reset all registers but PCI configuration */
kse_reset(sc);
/* craft Tx descriptor ring */
memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
for (i = 0, paddr = KSE_CDTXADDR(sc, 1); i < KSE_NTXDESC - 1; i++) {
sc->sc_txdescs[i].t3 = paddr;
paddr += sizeof(struct tdes);
}
sc->sc_txdescs[KSE_NTXDESC - 1].t3 = KSE_CDTXADDR(sc, 0);
KSE_CDTXSYNC(sc, 0, KSE_NTXDESC,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
sc->sc_txfree = KSE_NTXDESC;
sc->sc_txnext = 0;
for (i = 0; i < KSE_TXQUEUELEN; i++)
sc->sc_txsoft[i].txs_mbuf = NULL;
sc->sc_txsfree = KSE_TXQUEUELEN;
sc->sc_txsnext = 0;
sc->sc_txsdirty = 0;
/* craft Rx descriptor ring */
memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
for (i = 0, paddr = KSE_CDRXADDR(sc, 1); i < KSE_NRXDESC - 1; i++) {
sc->sc_rxdescs[i].r3 = paddr;
paddr += sizeof(struct rdes);
}
sc->sc_rxdescs[KSE_NRXDESC - 1].r3 = KSE_CDRXADDR(sc, 0);
for (i = 0; i < KSE_NRXDESC; i++) {
if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
if ((error = add_rxbuf(sc, i)) != 0) {
printf("%s: unable to allocate or map rx "
"buffer %d, error = %d\n",
sc->sc_dev.dv_xname, i, error);
rxdrain(sc);
goto out;
}
}
else
KSE_INIT_RXDESC(sc, i);
}
sc->sc_rxptr = 0;
/* hand Tx/Rx rings to HW */
CSR_WRITE_4(sc, TDLB, KSE_CDTXADDR(sc, 0));
CSR_WRITE_4(sc, RDLB, KSE_CDRXADDR(sc, 0));
sc->sc_txc = TXC_TEN | TXC_EP | TXC_AC | TXC_FCE;
sc->sc_rxc = RXC_REN | RXC_RU | RXC_FCE;
if (ifp->if_flags & IFF_PROMISC)
sc->sc_rxc |= RXC_RA;
if (ifp->if_flags & IFF_BROADCAST)
sc->sc_rxc |= RXC_RB;
sc->sc_t1csum = sc->sc_mcsum = 0;
if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
sc->sc_rxc |= RXC_ICC;
sc->sc_mcsum |= M_CSUM_IPv4;
}
if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
sc->sc_txc |= TXC_ICG;
sc->sc_t1csum |= T1_IPCKG;
}
if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
sc->sc_rxc |= RXC_TCC;
sc->sc_mcsum |= M_CSUM_TCPv4;
}
if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
sc->sc_txc |= TXC_TCG;
sc->sc_t1csum |= T1_TCPCKG;
}
if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
sc->sc_rxc |= RXC_UCC;
sc->sc_mcsum |= M_CSUM_UDPv4;
}
if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
sc->sc_txc |= TXC_UCG;
sc->sc_t1csum |= T1_UDPCKG;
}
sc->sc_txc |= (kse_burstsize << TXC_BS_SFT);
sc->sc_rxc |= (kse_burstsize << RXC_BS_SFT);
/* build multicast hash filter if necessary */
kse_set_filter(sc);
/* set current media */
(void)ifmedia_upd(ifp);
/* enable transmitter and receiver */
CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
CSR_WRITE_4(sc, MDRSC, 1);
/* enable interrupts */
sc->sc_inten = INT_DMTS|INT_DMRS|INT_DMRBUS;
if (sc->sc_chip == 0x8841)
sc->sc_inten |= INT_DMLCS;
CSR_WRITE_4(sc, INTST, ~0);
CSR_WRITE_4(sc, INTEN, sc->sc_inten);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
if (sc->sc_chip == 0x8841) {
/* start one second timer */
callout_reset(&sc->sc_callout, hz, phy_tick, sc);
}
#ifdef KSE_EVENT_COUNTERS
/* start statistics gather 1 minute timer */
zerostats(sc);
callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, sc);
#endif
out:
if (error) {
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
printf("%s: interface not running\n", sc->sc_dev.dv_xname);
}
return error;
}
static void
kse_stop(struct ifnet *ifp, int disable)
{
struct kse_softc *sc = ifp->if_softc;
struct kse_txsoft *txs;
int i;
if (sc->sc_chip == 0x8841)
callout_stop(&sc->sc_callout);
callout_stop(&sc->sc_stat_ch);
sc->sc_txc &= ~TXC_TEN;
sc->sc_rxc &= ~RXC_REN;
CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
for (i = 0; i < KSE_TXQUEUELEN; i++) {
txs = &sc->sc_txsoft[i];
if (txs->txs_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
}
if (disable)
rxdrain(sc);
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
}
static void
kse_reset(struct kse_softc *sc)
{
CSR_WRITE_2(sc, GRR, 1);
delay(1000); /* PDF does not mention the delay amount */
CSR_WRITE_2(sc, GRR, 0);
CSR_WRITE_2(sc, CIDR, 1);
}
static void
kse_watchdog(struct ifnet *ifp)
{
struct kse_softc *sc = ifp->if_softc;
/*
* Since we're not interrupting every packet, sweep
* up before we report an error.
*/
txreap(sc);
if (sc->sc_txfree != KSE_NTXDESC) {
printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
sc->sc_txnext);
ifp->if_oerrors++;
/* Reset the interface. */
kse_init(ifp);
}
else if (ifp->if_flags & IFF_DEBUG)
printf("%s: recovered from device timeout\n",
sc->sc_dev.dv_xname);
/* Try to get more packets going. */
kse_start(ifp);
}
static void
kse_start(struct ifnet *ifp)
{
struct kse_softc *sc = ifp->if_softc;
struct mbuf *m0, *m;
struct kse_txsoft *txs;
bus_dmamap_t dmamap;
int error, nexttx, lasttx, ofree, seg;
uint32_t tdes0;
if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
return;
/*
* Remember the previous number of free descriptors.
*/
ofree = sc->sc_txfree;
/*
* Loop through the send queue, setting up transmit descriptors
* until we drain the queue, or use up all available transmit
* descriptors.
*/
for (;;) {
IFQ_POLL(&ifp->if_snd, m0);
if (m0 == NULL)
break;
if (sc->sc_txsfree < KSE_TXQUEUE_GC) {
txreap(sc);
if (sc->sc_txsfree == 0)
break;
}
txs = &sc->sc_txsoft[sc->sc_txsnext];
dmamap = txs->txs_dmamap;
error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
BUS_DMA_WRITE|BUS_DMA_NOWAIT);
if (error) {
if (error == EFBIG) {
printf("%s: Tx packet consumes too many "
"DMA segments, dropping...\n",
sc->sc_dev.dv_xname);
IFQ_DEQUEUE(&ifp->if_snd, m0);
m_freem(m0);
continue;
}
/* Short on resources, just stop for now. */
break;
}
if (dmamap->dm_nsegs > sc->sc_txfree) {
/*
* Not enough free descriptors to transmit this
* packet. We haven't committed anything yet,
* so just unload the DMA map, put the packet
* back on the queue, and punt. Notify the upper
* layer that there are not more slots left.
*/
ifp->if_flags |= IFF_OACTIVE;
bus_dmamap_unload(sc->sc_dmat, dmamap);
break;
}
IFQ_DEQUEUE(&ifp->if_snd, m0);
/*
* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
*/
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
lasttx = -1; tdes0 = 0;
for (nexttx = sc->sc_txnext, seg = 0;
seg < dmamap->dm_nsegs;
seg++, nexttx = KSE_NEXTTX(nexttx)) {
struct tdes *tdes = &sc->sc_txdescs[nexttx];
/*
* If this is the first descriptor we're
* enqueueing, don't set the OWN bit just
* yet. That could cause a race condition.
* We'll do it below.
*/
tdes->t2 = dmamap->dm_segs[seg].ds_addr;
tdes->t1 = sc->sc_t1csum
| (dmamap->dm_segs[seg].ds_len & T1_TBS_MASK);
tdes->t0 = tdes0;
tdes0 |= T0_OWN;
lasttx = nexttx;
}
/*
* Outgoing NFS mbuf must be unloaded when Tx completed.
* Without T1_IC NFS mbuf is left unack'ed for excessive
* time and NFS stops to proceed until kse_watchdog()
* calls txreap() to reclaim the unack'ed mbuf.
* It's painful to traverse every mbuf chain to determine
* whether someone is waiting for Tx completion.
*/
m = m0;
do {
if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
sc->sc_txdescs[lasttx].t1 |= T1_IC;
break;
}
} while ((m = m->m_next) != NULL);
/* write last T0_OWN bit of the 1st segment */
sc->sc_txdescs[lasttx].t1 |= T1_LS;
sc->sc_txdescs[sc->sc_txnext].t1 |= T1_FS;
sc->sc_txdescs[sc->sc_txnext].t0 = T0_OWN;
KSE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/* tell DMA start transmit */
CSR_WRITE_4(sc, MDTSC, 1);
txs->txs_mbuf = m0;
txs->txs_firstdesc = sc->sc_txnext;
txs->txs_lastdesc = lasttx;
txs->txs_ndesc = dmamap->dm_nsegs;
sc->sc_txfree -= txs->txs_ndesc;
sc->sc_txnext = nexttx;
sc->sc_txsfree--;
sc->sc_txsnext = KSE_NEXTTXS(sc->sc_txsnext);
#if NBPFILTER > 0
/*
* Pass the packet to any BPF listeners.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m0);
#endif /* NBPFILTER > 0 */
}
if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
/* No more slots left; notify upper layer. */
ifp->if_flags |= IFF_OACTIVE;
}
if (sc->sc_txfree != ofree) {
/* Set a watchdog timer in case the chip flakes out. */
ifp->if_timer = 5;
}
}
static void
kse_set_filter(struct kse_softc *sc)
{
struct ether_multistep step;
struct ether_multi *enm;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
uint32_t h, hashes[2];
sc->sc_rxc &= ~(RXC_MHTE | RXC_RM);
ifp->if_flags &= ~IFF_ALLMULTI;
if (ifp->if_flags & IFF_PROMISC)
return;
ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
if (enm == NULL)
return;
hashes[0] = hashes[1] = 0;
do {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
*/
goto allmulti;
}
h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26;
hashes[h >> 5] |= 1 << (h & 0x1f);
ETHER_NEXT_MULTI(step, enm);
} while (enm != NULL);
sc->sc_rxc |= RXC_MHTE;
CSR_WRITE_4(sc, MTR0, hashes[0]);
CSR_WRITE_4(sc, MTR1, hashes[1]);
return;
allmulti:
sc->sc_rxc |= RXC_RM;
ifp->if_flags |= IFF_ALLMULTI;
}
static int
add_rxbuf(struct kse_softc *sc, int idx)
{
struct kse_rxsoft *rxs = &sc->sc_rxsoft[idx];
struct mbuf *m;
int error;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return ENOBUFS;
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return ENOBUFS;
}
if (rxs->rxs_mbuf != NULL)
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
rxs->rxs_mbuf = m;
error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
if (error) {
printf("%s: can't load rx DMA map %d, error = %d\n",
sc->sc_dev.dv_xname, idx, error);
panic("kse_add_rxbuf");
}
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
KSE_INIT_RXDESC(sc, idx);
return 0;
}
static void
rxdrain(struct kse_softc *sc)
{
struct kse_rxsoft *rxs;
int i;
for (i = 0; i < KSE_NRXDESC; i++) {
rxs = &sc->sc_rxsoft[i];
if (rxs->rxs_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
m_freem(rxs->rxs_mbuf);
rxs->rxs_mbuf = NULL;
}
}
}
static int
kse_intr(void *arg)
{
struct kse_softc *sc = arg;
uint32_t isr;
if ((isr = CSR_READ_4(sc, INTST)) == 0)
return 0;
if (isr & INT_DMRS)
rxintr(sc);
if (isr & INT_DMTS)
txreap(sc);
if (isr & INT_DMLCS)
lnkchg(sc);
if (isr & INT_DMRBUS)
printf("%s: Rx descriptor full\n", sc->sc_dev.dv_xname);
CSR_WRITE_4(sc, INTST, isr);
return 1;
}
static void
rxintr(struct kse_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct kse_rxsoft *rxs;
struct mbuf *m;
uint32_t rxstat;
int i, len;
for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = KSE_NEXTRX(i)) {
rxs = &sc->sc_rxsoft[i];
KSE_CDRXSYNC(sc, i,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
rxstat = sc->sc_rxdescs[i].r0;
if (rxstat & R0_OWN) /* desc is left empty */
break;
/* R0_FS|R0_LS must have been marked for this desc */
if (rxstat & R0_ES) {
ifp->if_ierrors++;
#define PRINTERR(bit, str) \
if (rxstat & (bit)) \
printf("%s: receive error: %s\n", \
sc->sc_dev.dv_xname, str)
PRINTERR(R0_TL, "frame too long");
PRINTERR(R0_RF, "runt frame");
PRINTERR(R0_CE, "bad FCS");
#undef PRINTERR
KSE_INIT_RXDESC(sc, i);
continue;
}
/* HW errata; frame might be too small or too large */
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
len = rxstat & R0_FL_MASK;
len -= ETHER_CRC_LEN; /* trim CRC off */
m = rxs->rxs_mbuf;
if (add_rxbuf(sc, i) != 0) {
ifp->if_ierrors++;
KSE_INIT_RXDESC(sc, i);
bus_dmamap_sync(sc->sc_dmat,
rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize,
BUS_DMASYNC_PREREAD);
continue;
}
ifp->if_ipackets++;
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = len;
if (sc->sc_mcsum) {
m->m_pkthdr.csum_flags |= sc->sc_mcsum;
if (rxstat & R0_IPE)
m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
if (rxstat & (R0_TCPE | R0_UDPE))
m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
}
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif /* NBPFILTER > 0 */
(*ifp->if_input)(ifp, m);
#ifdef KSEDIAGNOSTIC
if (kse_monitor_rxintr > 0) {
printf("m stat %x data %p len %d\n",
rxstat, m->m_data, m->m_len);
}
#endif
}
sc->sc_rxptr = i;
}
static void
txreap(struct kse_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct kse_txsoft *txs;
uint32_t txstat;
int i;
ifp->if_flags &= ~IFF_OACTIVE;
for (i = sc->sc_txsdirty; sc->sc_txsfree != KSE_TXQUEUELEN;
i = KSE_NEXTTXS(i), sc->sc_txsfree++) {
txs = &sc->sc_txsoft[i];
KSE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
if (txstat & T0_OWN) /* desc is still in use */
break;
/* there is no way to tell transmission status per frame */
ifp->if_opackets++;
sc->sc_txfree += txs->txs_ndesc;
bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
sc->sc_txsdirty = i;
if (sc->sc_txsfree == KSE_TXQUEUELEN)
ifp->if_timer = 0;
}
static void
lnkchg(struct kse_softc *sc)
{
struct ifmediareq ifmr;
#if 0 /* rambling link status */
printf("%s: link %s\n", sc->sc_dev.dv_xname,
(CSR_READ_2(sc, P1SR) & (1U << 5)) ? "up" : "down");
#endif
ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
}
static int
ifmedia_upd(struct ifnet *ifp)
{
struct kse_softc *sc = ifp->if_softc;
struct ifmedia *ifm = &sc->sc_media;
uint16_t ctl;
ctl = 0;
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
ctl |= (1U << 13); /* restart AN */
ctl |= (1U << 7); /* enable AN */
ctl |= (1U << 4); /* advertise flow control pause */
ctl |= (1U << 3) | (1U << 2) | (1U << 1) | (1U << 0);
}
else {
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX)
ctl |= (1U << 6);
if (ifm->ifm_media & IFM_FDX)
ctl |= (1U << 5);
}
CSR_WRITE_2(sc, P1CR4, ctl);
sc->sc_media_active = IFM_NONE;
sc->sc_media_status = IFM_AVALID;
return 0;
}
static void
ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct kse_softc *sc = ifp->if_softc;
struct ifmedia *ifm = &sc->sc_media;
uint16_t ctl, sts, result;
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
ctl = CSR_READ_2(sc, P1CR4);
sts = CSR_READ_2(sc, P1SR);
if ((sts & (1U << 5)) == 0) {
ifmr->ifm_active |= IFM_NONE;
goto out; /* link is down */
}
ifmr->ifm_status |= IFM_ACTIVE;
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
if ((sts & (1U << 6)) == 0) {
ifmr->ifm_active |= IFM_NONE;
goto out; /* negotiation in progress */
}
result = ctl & sts & 017;
if (result & (1U << 3))
ifmr->ifm_active |= IFM_100_TX|IFM_FDX;
else if (result & (1U << 2))
ifmr->ifm_active |= IFM_100_TX;
else if (result & (1U << 1))
ifmr->ifm_active |= IFM_10_T|IFM_FDX;
else if (result & (1U << 0))
ifmr->ifm_active |= IFM_10_T;
else
ifmr->ifm_active |= IFM_NONE;
if (ctl & (1U << 4))
ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
if (sts & (1U << 4))
ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
}
else {
ifmr->ifm_active |= (sts & (1U << 10)) ? IFM_100_TX : IFM_10_T;
if (sts & (1U << 9))
ifmr->ifm_active |= IFM_FDX;
if (sts & (1U << 12))
ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
if (sts & (1U << 11))
ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
}
out:
sc->sc_media_status = ifmr->ifm_status;
sc->sc_media_active = ifmr->ifm_active;
}
static void
phy_tick(void *arg)
{
struct kse_softc *sc = arg;
struct ifmediareq ifmr;
int s;
s = splnet();
ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
splx(s);
callout_reset(&sc->sc_callout, hz, phy_tick, sc);
}
static int
ifmedia2_upd(struct ifnet *ifp)
{
struct kse_softc *sc = ifp->if_softc;
sc->sc_media_status = IFM_AVALID;
sc->sc_media_active = IFM_NONE;
return 0;
}
static void
ifmedia2_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct kse_softc *sc = ifp->if_softc;
int p1sts, p2sts;
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
p1sts = CSR_READ_2(sc, P1SR);
p2sts = CSR_READ_2(sc, P2SR);
if (((p1sts | p2sts) & (1U << 5)) == 0)
ifmr->ifm_active |= IFM_NONE;
else {
ifmr->ifm_status |= IFM_ACTIVE;
ifmr->ifm_active |= IFM_100_TX|IFM_FDX;
ifmr->ifm_active |= IFM_FLOW|IFM_ETH_RXPAUSE|IFM_ETH_TXPAUSE;
}
sc->sc_media_status = ifmr->ifm_status;
sc->sc_media_active = ifmr->ifm_active;
}
#ifdef KSE_EVENT_COUNTERS
static void
stat_tick(arg)
void *arg;
{
struct kse_softc *sc = arg;
struct ksext *ee = &sc->sc_ext;
int nport, p, i, val;
nport = (sc->sc_chip == 0x8842) ? 3 : 1;
for (p = 0; p < nport; p++) {
for (i = 0; i < 32; i++) {
val = 0x1c00 | (p * 0x20 + i);
CSR_WRITE_2(sc, IACR, val);
do {
val = CSR_READ_2(sc, IADR5) << 16;
} while ((val & (1U << 30)) == 0);
if (val & (1U << 31)) {
(void)CSR_READ_2(sc, IADR4);
val = 0x3fffffff; /* has made overflow */
}
else {
val &= 0x3fff0000; /* 29:16 */
val |= CSR_READ_2(sc, IADR4); /* 15:0 */
}
ee->pev[p][i].ev_count += val; /* i (0-31) */
}
CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p);
ee->pev[p][32].ev_count = CSR_READ_2(sc, IADR4); /* 32 */
CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p * 3 + 1);
ee->pev[p][33].ev_count = CSR_READ_2(sc, IADR4); /* 33 */
}
callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, arg);
}
static void
zerostats(struct kse_softc *sc)
{
struct ksext *ee = &sc->sc_ext;
int nport, p, i, val;
/* make sure all the HW counters get zero */
nport = (sc->sc_chip == 0x8842) ? 3 : 1;
for (p = 0; p < nport; p++) {
for (i = 0; i < 31; i++) {
val = 0x1c00 | (p * 0x20 + i);
CSR_WRITE_2(sc, IACR, val);
do {
val = CSR_READ_2(sc, IADR5) << 16;
} while ((val & (1U << 30)) == 0);
(void)CSR_READ_2(sc, IADR4);
ee->pev[p][i].ev_count = 0;
}
}
}
#endif