581 lines
21 KiB
C
581 lines
21 KiB
C
|
/* Parameters for execution on an HP 9000 model 320, for GDB, the GNU debugger.
|
|||
|
Copyright (C) 1986, 1987, 1989 Free Software Foundation, Inc.
|
|||
|
|
|||
|
This file is part of GDB.
|
|||
|
|
|||
|
GDB is free software; you can redistribute it and/or modify
|
|||
|
it under the terms of the GNU General Public License as published by
|
|||
|
the Free Software Foundation; either version 1, or (at your option)
|
|||
|
any later version.
|
|||
|
|
|||
|
GDB is distributed in the hope that it will be useful,
|
|||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|||
|
GNU General Public License for more details.
|
|||
|
|
|||
|
You should have received a copy of the GNU General Public License
|
|||
|
along with GDB; see the file COPYING. If not, write to
|
|||
|
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
|||
|
|
|||
|
/* Define the bit, byte, and word ordering of the machine. */
|
|||
|
#define BITS_BIG_ENDIAN
|
|||
|
#define BYTES_BIG_ENDIAN
|
|||
|
#define WORDS_BIG_ENDIAN
|
|||
|
|
|||
|
#ifndef HP9K320
|
|||
|
#define HP9K320
|
|||
|
#endif
|
|||
|
|
|||
|
/* Define this to indicate problems with traps after continuing. */
|
|||
|
#define HP_OS_BUG
|
|||
|
|
|||
|
/* Set flag to indicate whether HP's assembler is in use. */
|
|||
|
#ifdef __GNUC__
|
|||
|
#ifdef __HPUX_ASM__
|
|||
|
#define HPUX_ASM
|
|||
|
#endif
|
|||
|
#else
|
|||
|
#define HPUX_ASM
|
|||
|
#endif
|
|||
|
|
|||
|
/* Define this for versions of hp-ux older than 6.0 */
|
|||
|
/* #define HPUX_VERSION_5 */
|
|||
|
|
|||
|
/* define USG if you are using sys5 /usr/include's */
|
|||
|
#define USG
|
|||
|
|
|||
|
#define HAVE_TERMIO
|
|||
|
|
|||
|
/* Get rid of any system-imposed stack limit if possible. */
|
|||
|
/* The hp9k320.h doesn't seem to have this feature. */
|
|||
|
/* #define SET_STACK_LIMIT_HUGE */
|
|||
|
/* So we'll just have to avoid big alloca's. */
|
|||
|
#define BROKEN_LARGE_ALLOCA
|
|||
|
|
|||
|
/* Define this if the C compiler puts an underscore at the front
|
|||
|
of external names before giving them to the linker. */
|
|||
|
|
|||
|
#define NAMES_HAVE_UNDERSCORE
|
|||
|
|
|||
|
/* Debugger information will be in DBX format. */
|
|||
|
|
|||
|
#define READ_DBX_FORMAT
|
|||
|
|
|||
|
/* Offset from address of function to start of its code.
|
|||
|
Zero on most machines. */
|
|||
|
|
|||
|
#define FUNCTION_START_OFFSET 0
|
|||
|
|
|||
|
/* Advance PC across any function entry prologue instructions
|
|||
|
to reach some "real" code. */
|
|||
|
|
|||
|
#define SKIP_PROLOGUE(pc) \
|
|||
|
{ register int op = read_memory_integer (pc, 2); \
|
|||
|
if (op == 0047126) \
|
|||
|
pc += 4; /* Skip link #word */ \
|
|||
|
else if (op == 0044016) \
|
|||
|
pc += 6; /* Skip link #long */ \
|
|||
|
}
|
|||
|
|
|||
|
/* Immediately after a function call, return the saved pc.
|
|||
|
Can't go through the frames for this because on some machines
|
|||
|
the new frame is not set up until the new function executes
|
|||
|
some instructions. */
|
|||
|
|
|||
|
#define SAVED_PC_AFTER_CALL(frame) \
|
|||
|
read_memory_integer (read_register (SP_REGNUM), 4)
|
|||
|
|
|||
|
/* This is the amount to subtract from u.u_ar0
|
|||
|
to get the offset in the core file of the register values. */
|
|||
|
|
|||
|
#ifdef HPUX_VERSION_5
|
|||
|
#define KERNEL_U_ADDR 0x00979000
|
|||
|
#else
|
|||
|
#define KERNEL_U_ADDR 0x00C01000
|
|||
|
#endif
|
|||
|
|
|||
|
/* Address of end of stack space. */
|
|||
|
|
|||
|
#define STACK_END_ADDR 0xFFF00000
|
|||
|
|
|||
|
/* Stack grows downward. */
|
|||
|
|
|||
|
#define INNER_THAN <
|
|||
|
|
|||
|
/* Sequence of bytes for breakpoint instruction. */
|
|||
|
|
|||
|
#define BREAKPOINT {0x4e, 0x41}
|
|||
|
|
|||
|
/* Amount PC must be decremented by after a breakpoint.
|
|||
|
This is often the number of bytes in BREAKPOINT
|
|||
|
but not always. */
|
|||
|
|
|||
|
#define DECR_PC_AFTER_BREAK 2
|
|||
|
|
|||
|
/* Nonzero if instruction at PC is a return instruction. */
|
|||
|
|
|||
|
#define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 2) == 0x4e75)
|
|||
|
|
|||
|
/* Return 1 if P points to an invalid floating point value. */
|
|||
|
|
|||
|
#define INVALID_FLOAT(p, len) 0 /* Just a first guess; not checked */
|
|||
|
|
|||
|
/* Largest integer type */
|
|||
|
#define LONGEST long
|
|||
|
|
|||
|
/* Name of the builtin type for the LONGEST type above. */
|
|||
|
#define BUILTIN_TYPE_LONGEST builtin_type_long
|
|||
|
|
|||
|
/* Say how long (ordinary) registers are. */
|
|||
|
|
|||
|
#define REGISTER_TYPE long
|
|||
|
|
|||
|
/* Number of machine registers */
|
|||
|
|
|||
|
#define NUM_REGS 29
|
|||
|
|
|||
|
/* Initializer for an array of names of registers.
|
|||
|
There should be NUM_REGS strings in this initializer. */
|
|||
|
|
|||
|
#define REGISTER_NAMES \
|
|||
|
{"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \
|
|||
|
"a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp", \
|
|||
|
"ps", "pc", \
|
|||
|
"fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7", \
|
|||
|
"fpcontrol", "fpstatus", "fpiaddr" }
|
|||
|
|
|||
|
/* Register numbers of various important registers.
|
|||
|
Note that some of these values are "real" register numbers,
|
|||
|
and correspond to the general registers of the machine,
|
|||
|
and some are "phony" register numbers which are too large
|
|||
|
to be actual register numbers as far as the user is concerned
|
|||
|
but do serve to get the desired values when passed to read_register. */
|
|||
|
|
|||
|
#define FP_REGNUM 14 /* Contains address of executing stack frame */
|
|||
|
#define SP_REGNUM 15 /* Contains address of top of stack */
|
|||
|
#define PS_REGNUM 16 /* Contains processor status */
|
|||
|
#define PC_REGNUM 17 /* Contains program counter */
|
|||
|
#define FP0_REGNUM 18 /* Floating point register 0 */
|
|||
|
#define FPC_REGNUM 26 /* 68881 control register */
|
|||
|
|
|||
|
/* Total amount of space needed to store our copies of the machine's
|
|||
|
register state, the array `registers'. */
|
|||
|
#define REGISTER_BYTES (16*4+8*12+8+12)
|
|||
|
|
|||
|
/* Index within `registers' of the first byte of the space for
|
|||
|
register N. */
|
|||
|
|
|||
|
#define REGISTER_BYTE(N) \
|
|||
|
((N) >= FPC_REGNUM ? (((N) - FPC_REGNUM) * 4) + 168 \
|
|||
|
: (N) >= FP0_REGNUM ? (((N) - FP0_REGNUM) * 12) + 72 \
|
|||
|
: (N) * 4)
|
|||
|
|
|||
|
/* Number of bytes of storage in the actual machine representation
|
|||
|
for register N. On the 68000, all regs are 4 bytes
|
|||
|
except the floating point regs which are 12 bytes. */
|
|||
|
|
|||
|
#define REGISTER_RAW_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 8 ? 12 : 4)
|
|||
|
|
|||
|
/* Number of bytes of storage in the program's representation
|
|||
|
for register N. On the 68000, all regs are 4 bytes
|
|||
|
except the floating point regs which are 8-byte doubles. */
|
|||
|
|
|||
|
#define REGISTER_VIRTUAL_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 8 ? 8 : 4)
|
|||
|
|
|||
|
/* Largest value REGISTER_RAW_SIZE can have. */
|
|||
|
|
|||
|
#define MAX_REGISTER_RAW_SIZE 12
|
|||
|
|
|||
|
/* Largest value REGISTER_VIRTUAL_SIZE can have. */
|
|||
|
|
|||
|
#define MAX_REGISTER_VIRTUAL_SIZE 8
|
|||
|
|
|||
|
/* Nonzero if register N requires conversion
|
|||
|
from raw format to virtual format. */
|
|||
|
|
|||
|
#define REGISTER_CONVERTIBLE(N) (((unsigned)(N) - FP0_REGNUM) < 8)
|
|||
|
|
|||
|
/* Convert data from raw format for register REGNUM
|
|||
|
to virtual format for register REGNUM. */
|
|||
|
|
|||
|
#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
|
|||
|
{ if ((REGNUM) >= FP0_REGNUM && (REGNUM) < FPC_REGNUM) \
|
|||
|
convert_from_68881 ((FROM), (TO)); \
|
|||
|
else \
|
|||
|
bcopy ((FROM), (TO), 4); }
|
|||
|
|
|||
|
/* Convert data from virtual format for register REGNUM
|
|||
|
to raw format for register REGNUM. */
|
|||
|
|
|||
|
#define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
|
|||
|
{ if ((REGNUM) >= FP0_REGNUM && (REGNUM) < FPC_REGNUM) \
|
|||
|
convert_to_68881 ((FROM), (TO)); \
|
|||
|
else \
|
|||
|
bcopy ((FROM), (TO), 4); }
|
|||
|
|
|||
|
/* Return the GDB type object for the "standard" data type
|
|||
|
of data in register N. */
|
|||
|
|
|||
|
#define REGISTER_VIRTUAL_TYPE(N) \
|
|||
|
(((unsigned)(N) - FP0_REGNUM) < 8 ? builtin_type_double : builtin_type_int)
|
|||
|
|
|||
|
/* Store the address of the place in which to copy the structure the
|
|||
|
subroutine will return. This is called from call_function. */
|
|||
|
|
|||
|
#define STORE_STRUCT_RETURN(ADDR, SP) \
|
|||
|
{ write_register (9, (ADDR)); }
|
|||
|
|
|||
|
/* Extract from an array REGBUF containing the (raw) register state
|
|||
|
a function return value of type TYPE, and copy that, in virtual format,
|
|||
|
into VALBUF. */
|
|||
|
|
|||
|
#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
|
|||
|
bcopy (REGBUF, VALBUF, TYPE_LENGTH (TYPE))
|
|||
|
|
|||
|
/* Write into appropriate registers a function return value
|
|||
|
of type TYPE, given in virtual format. */
|
|||
|
|
|||
|
#define STORE_RETURN_VALUE(TYPE,VALBUF) \
|
|||
|
write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
|
|||
|
|
|||
|
/* Extract from an array REGBUF containing the (raw) register state
|
|||
|
the address in which a function should return its structure value,
|
|||
|
as a CORE_ADDR (or an expression that can be used as one). */
|
|||
|
|
|||
|
#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF))
|
|||
|
|
|||
|
#define REGISTER_ADDR(u_ar0, regno) \
|
|||
|
(((regno) < PS_REGNUM) \
|
|||
|
? (&((struct exception_stack *) (u_ar0))->e_regs[(regno + R0)]) \
|
|||
|
: (((regno) == PS_REGNUM) \
|
|||
|
? ((int *) (&((struct exception_stack *) (u_ar0))->e_PS)) \
|
|||
|
: (&((struct exception_stack *) (u_ar0))->e_PC)))
|
|||
|
|
|||
|
#define FP_REGISTER_ADDR(u, regno) \
|
|||
|
(((char *) \
|
|||
|
(((regno) < FPC_REGNUM) \
|
|||
|
? (&u.u_pcb.pcb_mc68881[FMC68881_R0 + (((regno) - FP0_REGNUM) * 3)]) \
|
|||
|
: (&u.u_pcb.pcb_mc68881[FMC68881_C + ((regno) - FPC_REGNUM)]))) \
|
|||
|
- ((char *) (& u)))
|
|||
|
|
|||
|
/* Do implement the attach and detach commands. */
|
|||
|
|
|||
|
#define ATTACH_DETACH
|
|||
|
|
|||
|
/* Describe the pointer in each stack frame to the previous stack frame
|
|||
|
(its caller). */
|
|||
|
|
|||
|
/* FRAME_CHAIN takes a frame's nominal address
|
|||
|
and produces the frame's chain-pointer.
|
|||
|
|
|||
|
FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
|
|||
|
and produces the nominal address of the caller frame.
|
|||
|
|
|||
|
However, if FRAME_CHAIN_VALID returns zero,
|
|||
|
it means the given frame is the outermost one and has no caller.
|
|||
|
In that case, FRAME_CHAIN_COMBINE is not used. */
|
|||
|
|
|||
|
/* In the case of the Sun, the frame's nominal address
|
|||
|
is the address of a 4-byte word containing the calling frame's address. */
|
|||
|
|
|||
|
#define FRAME_CHAIN(thisframe) \
|
|||
|
(outside_startup_file ((thisframe)->pc) ? \
|
|||
|
read_memory_integer ((thisframe)->frame, 4) : \
|
|||
|
0)
|
|||
|
|
|||
|
#define FRAME_CHAIN_VALID(chain, thisframe) \
|
|||
|
(chain != 0 && (outside_startup_file (FRAME_SAVED_PC (thisframe))))
|
|||
|
|
|||
|
#define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
|
|||
|
|
|||
|
/* Define other aspects of the stack frame. */
|
|||
|
|
|||
|
/* A macro that tells us whether the function invocation represented
|
|||
|
by FI does not have a frame on the stack associated with it. If it
|
|||
|
does not, FRAMELESS is set to 1, else 0. */
|
|||
|
#define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
|
|||
|
FRAMELESS_LOOK_FOR_PROLOGUE(FI, FRAMELESS)
|
|||
|
|
|||
|
#define FRAME_SAVED_PC(FRAME) (read_memory_integer ((FRAME)->frame + 4, 4))
|
|||
|
|
|||
|
#define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
|
|||
|
|
|||
|
#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
|
|||
|
|
|||
|
/* Set VAL to the number of args passed to frame described by FI.
|
|||
|
Can set VAL to -1, meaning no way to tell. */
|
|||
|
|
|||
|
/* We can't tell how many args there are
|
|||
|
now that the C compiler delays popping them. */
|
|||
|
#define FRAME_NUM_ARGS(val,fi) (val = -1)
|
|||
|
|
|||
|
#if 0
|
|||
|
#define FRAME_NUM_ARGS(val, fi) \
|
|||
|
{ register CORE_ADDR pc = FRAME_SAVED_PC (fi); \
|
|||
|
register int insn = 0177777 & read_memory_integer (pc, 2); \
|
|||
|
val = 0; \
|
|||
|
if (insn == 0047757 || insn == 0157374) /* lea W(sp),sp or addaw #W,sp */ \
|
|||
|
val = read_memory_integer (pc + 2, 2); \
|
|||
|
else if ((insn & 0170777) == 0050217 /* addql #N, sp */ \
|
|||
|
|| (insn & 0170777) == 0050117) /* addqw */ \
|
|||
|
{ val = (insn >> 9) & 7; if (val == 0) val = 8; } \
|
|||
|
else if (insn == 0157774) /* addal #WW, sp */ \
|
|||
|
val = read_memory_integer (pc + 2, 4); \
|
|||
|
val >>= 2; }
|
|||
|
#endif
|
|||
|
|
|||
|
/* Return number of bytes at start of arglist that are not really args. */
|
|||
|
|
|||
|
#define FRAME_ARGS_SKIP 8
|
|||
|
|
|||
|
/* Put here the code to store, into a struct frame_saved_regs,
|
|||
|
the addresses of the saved registers of frame described by FRAME_INFO.
|
|||
|
This includes special registers such as pc and fp saved in special
|
|||
|
ways in the stack frame. sp is even more special:
|
|||
|
the address we return for it IS the sp for the next frame. */
|
|||
|
|
|||
|
#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
|
|||
|
{ register int regnum; \
|
|||
|
register int regmask; \
|
|||
|
register CORE_ADDR next_addr; \
|
|||
|
register CORE_ADDR pc; \
|
|||
|
int nextinsn; \
|
|||
|
bzero (&frame_saved_regs, sizeof frame_saved_regs); \
|
|||
|
if ((frame_info)->pc >= (frame_info)->frame - CALL_DUMMY_LENGTH - FP_REGNUM*4 - 8*12 - 4 \
|
|||
|
&& (frame_info)->pc <= (frame_info)->frame) \
|
|||
|
{ next_addr = (frame_info)->frame; \
|
|||
|
pc = (frame_info)->frame - CALL_DUMMY_LENGTH - FP_REGNUM * 4 - 8*12 - 4; }\
|
|||
|
else \
|
|||
|
{ pc = get_pc_function_start ((frame_info)->pc); \
|
|||
|
/* Verify we have a link a6 instruction next; \
|
|||
|
if not we lose. If we win, find the address above the saved \
|
|||
|
regs using the amount of storage from the link instruction. */\
|
|||
|
if (044016 == read_memory_integer (pc, 2)) \
|
|||
|
next_addr = (frame_info)->frame + read_memory_integer (pc += 2, 4), pc+=4; \
|
|||
|
else if (047126 == read_memory_integer (pc, 2)) \
|
|||
|
next_addr = (frame_info)->frame + read_memory_integer (pc += 2, 2), pc+=2; \
|
|||
|
else goto lose; \
|
|||
|
/* If have an addal #-n, sp next, adjust next_addr. */ \
|
|||
|
if ((0177777 & read_memory_integer (pc, 2)) == 0157774) \
|
|||
|
next_addr += read_memory_integer (pc += 2, 4), pc += 4; \
|
|||
|
} \
|
|||
|
/* next should be a moveml to (sp) or -(sp) or a movl r,-(sp) */ \
|
|||
|
regmask = read_memory_integer (pc + 2, 2); \
|
|||
|
/* But before that can come an fmovem. Check for it. */ \
|
|||
|
nextinsn = 0xffff & read_memory_integer (pc, 2); \
|
|||
|
if (0xf227 == nextinsn \
|
|||
|
&& (regmask & 0xff00) == 0xe000) \
|
|||
|
{ pc += 4; /* Regmask's low bit is for register fp7, the first pushed */ \
|
|||
|
for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--, regmask >>= 1) \
|
|||
|
if (regmask & 1) \
|
|||
|
(frame_saved_regs).regs[regnum] = (next_addr -= 12); \
|
|||
|
regmask = read_memory_integer (pc + 2, 2); } \
|
|||
|
if (0044327 == read_memory_integer (pc, 2)) \
|
|||
|
{ pc += 4; /* Regmask's low bit is for register 0, the first written */ \
|
|||
|
for (regnum = 0; regnum < 16; regnum++, regmask >>= 1) \
|
|||
|
if (regmask & 1) \
|
|||
|
(frame_saved_regs).regs[regnum] = (next_addr += 4) - 4; } \
|
|||
|
else if (0044347 == read_memory_integer (pc, 2)) \
|
|||
|
{ pc += 4; /* Regmask's low bit is for register 15, the first pushed */ \
|
|||
|
for (regnum = 15; regnum >= 0; regnum--, regmask >>= 1) \
|
|||
|
if (regmask & 1) \
|
|||
|
(frame_saved_regs).regs[regnum] = (next_addr -= 4); } \
|
|||
|
else if (0x2f00 == 0xfff0 & read_memory_integer (pc, 2)) \
|
|||
|
{ regnum = 0xf & read_memory_integer (pc, 2); pc += 2; \
|
|||
|
(frame_saved_regs).regs[regnum] = (next_addr -= 4); } \
|
|||
|
/* fmovemx to index of sp may follow. */ \
|
|||
|
regmask = read_memory_integer (pc + 2, 2); \
|
|||
|
nextinsn = 0xffff & read_memory_integer (pc, 2); \
|
|||
|
if (0xf236 == nextinsn \
|
|||
|
&& (regmask & 0xff00) == 0xf000) \
|
|||
|
{ pc += 10; /* Regmask's low bit is for register fp0, the first written */ \
|
|||
|
for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--, regmask >>= 1) \
|
|||
|
if (regmask & 1) \
|
|||
|
(frame_saved_regs).regs[regnum] = (next_addr += 12) - 12; \
|
|||
|
regmask = read_memory_integer (pc + 2, 2); } \
|
|||
|
/* clrw -(sp); movw ccr,-(sp) may follow. */ \
|
|||
|
if (0x426742e7 == read_memory_integer (pc, 4)) \
|
|||
|
(frame_saved_regs).regs[PS_REGNUM] = (next_addr -= 4); \
|
|||
|
lose: ; \
|
|||
|
(frame_saved_regs).regs[SP_REGNUM] = (frame_info)->frame + 8; \
|
|||
|
(frame_saved_regs).regs[FP_REGNUM] = (frame_info)->frame; \
|
|||
|
(frame_saved_regs).regs[PC_REGNUM] = (frame_info)->frame + 4; \
|
|||
|
}
|
|||
|
|
|||
|
/* Things needed for making the inferior call functions. */
|
|||
|
|
|||
|
/* Push an empty stack frame, to record the current PC, etc. */
|
|||
|
|
|||
|
#define PUSH_DUMMY_FRAME \
|
|||
|
{ register CORE_ADDR sp = read_register (SP_REGNUM); \
|
|||
|
register int regnum; \
|
|||
|
char raw_buffer[12]; \
|
|||
|
sp = push_word (sp, read_register (PC_REGNUM)); \
|
|||
|
sp = push_word (sp, read_register (FP_REGNUM)); \
|
|||
|
write_register (FP_REGNUM, sp); \
|
|||
|
for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--) \
|
|||
|
{ read_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 12); \
|
|||
|
sp = push_bytes (sp, raw_buffer, 12); } \
|
|||
|
for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--) \
|
|||
|
sp = push_word (sp, read_register (regnum)); \
|
|||
|
sp = push_word (sp, read_register (PS_REGNUM)); \
|
|||
|
write_register (SP_REGNUM, sp); }
|
|||
|
|
|||
|
/* Discard from the stack the innermost frame,
|
|||
|
restoring all saved registers. */
|
|||
|
|
|||
|
#define POP_FRAME \
|
|||
|
{ register FRAME frame = get_current_frame (); \
|
|||
|
register CORE_ADDR fp; \
|
|||
|
register int regnum; \
|
|||
|
struct frame_saved_regs fsr; \
|
|||
|
struct frame_info *fi; \
|
|||
|
char raw_buffer[12]; \
|
|||
|
fi = get_frame_info (frame); \
|
|||
|
fp = fi->frame; \
|
|||
|
get_frame_saved_regs (fi, &fsr); \
|
|||
|
for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--) \
|
|||
|
if (fsr.regs[regnum]) \
|
|||
|
{ read_memory (fsr.regs[regnum], raw_buffer, 12); \
|
|||
|
write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 12); }\
|
|||
|
for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--) \
|
|||
|
if (fsr.regs[regnum]) \
|
|||
|
write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); \
|
|||
|
if (fsr.regs[PS_REGNUM]) \
|
|||
|
write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4)); \
|
|||
|
write_register (FP_REGNUM, read_memory_integer (fp, 4)); \
|
|||
|
write_register (PC_REGNUM, read_memory_integer (fp + 4, 4)); \
|
|||
|
write_register (SP_REGNUM, fp + 8); \
|
|||
|
flush_cached_frames (); \
|
|||
|
set_current_frame (create_new_frame (read_register (FP_REGNUM),\
|
|||
|
read_pc ()));}
|
|||
|
|
|||
|
/* This sequence of words is the instructions
|
|||
|
fmovem 0xff,-(sp)
|
|||
|
moveml 0xfffc,-(sp)
|
|||
|
clrw -(sp)
|
|||
|
movew ccr,-(sp)
|
|||
|
/..* The arguments are pushed at this point by GDB;
|
|||
|
no code is needed in the dummy for this.
|
|||
|
The CALL_DUMMY_START_OFFSET gives the position of
|
|||
|
the following jsr instruction. *../
|
|||
|
jsr @#32323232
|
|||
|
addl #69696969,sp
|
|||
|
bpt
|
|||
|
nop
|
|||
|
Note this is 28 bytes.
|
|||
|
We actually start executing at the jsr, since the pushing of the
|
|||
|
registers is done by PUSH_DUMMY_FRAME. If this were real code,
|
|||
|
the arguments for the function called by the jsr would be pushed
|
|||
|
between the moveml and the jsr, and we could allow it to execute through.
|
|||
|
But the arguments have to be pushed by GDB after the PUSH_DUMMY_FRAME is done,
|
|||
|
and we cannot allow the moveml to push the registers again lest they be
|
|||
|
taken for the arguments. */
|
|||
|
|
|||
|
#define CALL_DUMMY {0xf227e0ff, 0x48e7fffc, 0x426742e7, 0x4eb93232, 0x3232dffc, 0x69696969, 0x4e414e71}
|
|||
|
|
|||
|
#define CALL_DUMMY_LENGTH 28
|
|||
|
|
|||
|
#define CALL_DUMMY_START_OFFSET 12
|
|||
|
|
|||
|
/* Insert the specified number of args and function address
|
|||
|
into a call sequence of the above form stored at DUMMYNAME. */
|
|||
|
|
|||
|
#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, type) \
|
|||
|
{ *(int *)((char *) dummyname + 20) = nargs * 4; \
|
|||
|
*(int *)((char *) dummyname + 14) = fun; }
|
|||
|
|
|||
|
/* Interface definitions for kernel debugger KDB. */
|
|||
|
|
|||
|
/* Map machine fault codes into signal numbers.
|
|||
|
First subtract 0, divide by 4, then index in a table.
|
|||
|
Faults for which the entry in this table is 0
|
|||
|
are not handled by KDB; the program's own trap handler
|
|||
|
gets to handle then. */
|
|||
|
|
|||
|
#define FAULT_CODE_ORIGIN 0
|
|||
|
#define FAULT_CODE_UNITS 4
|
|||
|
#define FAULT_TABLE \
|
|||
|
{ 0, 0, 0, 0, SIGTRAP, 0, 0, 0, \
|
|||
|
0, SIGTRAP, 0, 0, 0, 0, 0, SIGKILL, \
|
|||
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
|||
|
SIGILL }
|
|||
|
|
|||
|
#ifndef HPUX_ASM
|
|||
|
|
|||
|
/* Start running with a stack stretching from BEG to END.
|
|||
|
BEG and END should be symbols meaningful to the assembler.
|
|||
|
This is used only for kdb. */
|
|||
|
|
|||
|
#define INIT_STACK(beg, end) \
|
|||
|
{ asm (".globl end"); \
|
|||
|
asm ("movel $ end, sp"); \
|
|||
|
asm ("clrl fp"); }
|
|||
|
|
|||
|
/* Push the frame pointer register on the stack. */
|
|||
|
#define PUSH_FRAME_PTR \
|
|||
|
asm ("movel fp, -(sp)");
|
|||
|
|
|||
|
/* Copy the top-of-stack to the frame pointer register. */
|
|||
|
#define POP_FRAME_PTR \
|
|||
|
asm ("movl (sp), fp");
|
|||
|
|
|||
|
/* After KDB is entered by a fault, push all registers
|
|||
|
that GDB thinks about (all NUM_REGS of them),
|
|||
|
so that they appear in order of ascending GDB register number.
|
|||
|
The fault code will be on the stack beyond the last register. */
|
|||
|
|
|||
|
#define PUSH_REGISTERS \
|
|||
|
{ asm ("clrw -(sp)"); \
|
|||
|
asm ("pea 10(sp)"); \
|
|||
|
asm ("movem $ 0xfffe,-(sp)"); }
|
|||
|
|
|||
|
/* Assuming the registers (including processor status) have been
|
|||
|
pushed on the stack in order of ascending GDB register number,
|
|||
|
restore them and return to the address in the saved PC register. */
|
|||
|
|
|||
|
#define POP_REGISTERS \
|
|||
|
{ asm ("subil $8,28(sp)"); \
|
|||
|
asm ("movem (sp),$ 0xffff"); \
|
|||
|
asm ("rte"); }
|
|||
|
|
|||
|
#else /* HPUX_ASM */
|
|||
|
|
|||
|
/* Start running with a stack stretching from BEG to END.
|
|||
|
BEG and END should be symbols meaningful to the assembler.
|
|||
|
This is used only for kdb. */
|
|||
|
|
|||
|
#define INIT_STACK(beg, end) \
|
|||
|
{ asm ("global end"); \
|
|||
|
asm ("mov.l &end,%sp"); \
|
|||
|
asm ("clr.l %a6"); }
|
|||
|
|
|||
|
/* Push the frame pointer register on the stack. */
|
|||
|
#define PUSH_FRAME_PTR \
|
|||
|
asm ("mov.l %fp,-(%sp)");
|
|||
|
|
|||
|
/* Copy the top-of-stack to the frame pointer register. */
|
|||
|
#define POP_FRAME_PTR \
|
|||
|
asm ("mov.l (%sp),%fp");
|
|||
|
|
|||
|
/* After KDB is entered by a fault, push all registers
|
|||
|
that GDB thinks about (all NUM_REGS of them),
|
|||
|
so that they appear in order of ascending GDB register number.
|
|||
|
The fault code will be on the stack beyond the last register. */
|
|||
|
|
|||
|
#define PUSH_REGISTERS \
|
|||
|
{ asm ("clr.w -(%sp)"); \
|
|||
|
asm ("pea 10(%sp)"); \
|
|||
|
asm ("movm.l &0xfffe,-(%sp)"); }
|
|||
|
|
|||
|
/* Assuming the registers (including processor status) have been
|
|||
|
pushed on the stack in order of ascending GDB register number,
|
|||
|
restore them and return to the address in the saved PC register. */
|
|||
|
|
|||
|
#define POP_REGISTERS \
|
|||
|
{ asm ("subi.l &8,28(%sp)"); \
|
|||
|
asm ("mov.m (%sp),&0xffff"); \
|
|||
|
asm ("rte"); }
|
|||
|
|
|||
|
#endif /* HPUX_ASM */
|