NetBSD/sys/vm/vm_pageout.c

373 lines
10 KiB
C
Raw Normal View History

1993-03-21 12:45:37 +03:00
/*
* Copyright (c) 1991 Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
1993-05-20 07:59:08 +04:00
* from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91
* $Id: vm_pageout.c,v 1.12 1994/05/05 20:35:11 mycroft Exp $
1993-03-21 12:45:37 +03:00
*
*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*
* The proverbial page-out daemon.
*/
1993-12-17 10:56:32 +03:00
#include <sys/param.h>
1993-12-20 15:39:55 +03:00
#include <sys/vmmeter.h>
1993-03-21 12:45:37 +03:00
1993-12-17 10:56:32 +03:00
#include <vm/vm.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
1993-12-20 15:39:55 +03:00
#include <machine/cpu.h>
1993-03-21 12:45:37 +03:00
int vm_pages_needed; /* Event on which pageout daemon sleeps */
int vm_pageout_free_min = 0; /* Stop pageout to wait for pagers at this free level */
int vm_page_free_min_sanity = 40;
/*
* vm_pageout_scan does the dirty work for the pageout daemon.
*/
1994-01-07 21:14:07 +03:00
void
1993-03-21 12:45:37 +03:00
vm_pageout_scan()
{
register vm_page_t m, next;
1993-03-21 12:45:37 +03:00
register int page_shortage;
register int s;
register int pages_freed;
int free;
vm_object_t object;
1993-03-21 12:45:37 +03:00
/*
* Only continue when we want more pages to be "free"
*/
s = splimp();
simple_lock(&vm_page_queue_free_lock);
free = cnt.v_free_count;
1993-03-21 12:45:37 +03:00
simple_unlock(&vm_page_queue_free_lock);
splx(s);
if (free < cnt.v_free_target) {
1993-03-21 21:04:42 +03:00
#ifdef OMIT
1993-03-21 12:45:37 +03:00
swapout_threads();
1993-03-21 21:04:42 +03:00
#endif /* OMIT*/
1993-03-21 12:45:37 +03:00
/*
* Be sure the pmap system is updated so
* we can scan the inactive queue.
*/
pmap_update();
}
/*
* Acquire the resident page system lock,
* as we may be changing what's resident quite a bit.
*/
vm_page_lock_queues();
1993-03-21 12:45:37 +03:00
/*
* Start scanning the inactive queue for pages we can free.
* We keep scanning until we have enough free pages or
* we have scanned through the entire queue. If we
* encounter dirty pages, we start cleaning them.
*/
pages_freed = 0;
for (m = vm_page_queue_inactive.tqh_first; m != NULL; m = next) {
1993-03-21 12:45:37 +03:00
s = splimp();
simple_lock(&vm_page_queue_free_lock);
free = cnt.v_free_count;
1993-03-21 12:45:37 +03:00
simple_unlock(&vm_page_queue_free_lock);
splx(s);
if (free >= cnt.v_free_target)
1993-03-21 12:45:37 +03:00
break;
cnt.v_scan++;
next = m->pageq.tqe_next;
/*
* If the page has been referenced, move it back to the
* active queue.
*/
if (pmap_is_referenced(VM_PAGE_TO_PHYS(m))) {
vm_page_activate(m);
cnt.v_reactivated++;
continue;
}
/*
* If the page is clean, free it up.
*/
1993-12-20 15:39:55 +03:00
if (m->flags & PG_CLEAN) {
object = m->object;
if (vm_object_lock_try(object)) {
1993-03-21 12:45:37 +03:00
pmap_page_protect(VM_PAGE_TO_PHYS(m),
VM_PROT_NONE);
vm_page_free(m);
1993-03-21 12:45:37 +03:00
pages_freed++;
cnt.v_dfree++;
1993-03-21 12:45:37 +03:00
vm_object_unlock(object);
}
continue;
1993-03-21 12:45:37 +03:00
}
/*
* If the page is dirty but already being washed, skip it.
*/
if ((m->flags & PG_LAUNDRY) == 0)
continue;
1993-03-21 12:45:37 +03:00
/*
* Otherwise the page is dirty and still in the laundry,
* so we start the cleaning operation and remove it from
* the laundry.
*/
object = m->object;
if (!vm_object_lock_try(object))
continue;
cnt.v_pageouts++;
vm_pageout_page(m, object);
thread_wakeup((int) object);
vm_object_unlock(object);
/*
* Former next page may no longer even be on the inactive
* queue (due to potential blocking in the pager with the
* queues unlocked). If it isn't, we just start over.
*/
if (next && (next->flags & PG_INACTIVE) == 0)
next = vm_page_queue_inactive.tqh_first;
1993-03-21 12:45:37 +03:00
}
/*
* Compute the page shortage. If we are still very low on memory
* be sure that we will move a minimal amount of pages from active
* to inactive.
*/
page_shortage = cnt.v_inactive_target - cnt.v_inactive_count;
if (page_shortage <= 0 && pages_freed == 0)
1993-03-21 12:45:37 +03:00
page_shortage = 1;
while (page_shortage > 0) {
/*
* Move some more pages from active to inactive.
*/
if ((m = vm_page_queue_active.tqh_first) == NULL)
1993-03-21 12:45:37 +03:00
break;
vm_page_deactivate(m);
page_shortage--;
}
vm_page_unlock_queues();
1993-03-21 12:45:37 +03:00
}
/*
* Called with object and page queues locked.
* If reactivate is TRUE, a pager error causes the page to be
* put back on the active queue, ow it is left on the inactive queue.
*/
void
vm_pageout_page(m, object)
vm_page_t m;
vm_object_t object;
{
vm_pager_t pager;
int pageout_status;
/*
* We set the busy bit to cause potential page faults on
* this page to block.
*
* We also set pageout-in-progress to keep the object from
* disappearing during pageout. This guarantees that the
* page won't move from the inactive queue. (However, any
* other page on the inactive queue may move!)
*/
pmap_page_protect(VM_PAGE_TO_PHYS(m), VM_PROT_NONE);
m->flags |= PG_BUSY;
/*
* Try to collapse the object before making a pager for it.
* We must unlock the page queues first.
*/
vm_page_unlock_queues();
if (object->pager == NULL)
vm_object_collapse(object);
object->paging_in_progress++;
vm_object_unlock(object);
/*
* Do a wakeup here in case the following operations block.
*/
thread_wakeup((int) &cnt.v_free_count);
/*
* If there is no pager for the page, use the default pager.
* If there is no place to put the page at the moment,
* leave it in the laundry and hope that there will be
* paging space later.
*/
if ((pager = object->pager) == NULL) {
pager = vm_pager_allocate(PG_DFLT, (caddr_t)0, object->size,
VM_PROT_ALL, (vm_offset_t)0);
if (pager != NULL)
vm_object_setpager(object, pager, 0, FALSE);
}
pageout_status = pager ? vm_pager_put(pager, m, FALSE) : VM_PAGER_FAIL;
vm_object_lock(object);
vm_page_lock_queues();
switch (pageout_status) {
case VM_PAGER_OK:
case VM_PAGER_PEND:
cnt.v_pgpgout++;
m->flags &= ~PG_LAUNDRY;
break;
case VM_PAGER_BAD:
/*
* Page outside of range of object. Right now we
* essentially lose the changes by pretending it
* worked.
*
* XXX dubious, what should we do?
*/
m->flags &= ~PG_LAUNDRY;
m->flags |= PG_CLEAN;
pmap_clear_modify(VM_PAGE_TO_PHYS(m));
break;
case VM_PAGER_FAIL:
/*
* If page couldn't be paged out, then reactivate
* the page so it doesn't clog the inactive list.
* (We will try paging out it again later).
*/
vm_page_activate(m);
cnt.v_reactivated++;
break;
}
pmap_clear_reference(VM_PAGE_TO_PHYS(m));
/*
* If the operation is still going, leave the page busy
* to block all other accesses. Also, leave the paging
* in progress indicator set so that we don't attempt an
* object collapse.
*/
if (pageout_status != VM_PAGER_PEND) {
m->flags &= ~PG_BUSY;
PAGE_WAKEUP(m);
object->paging_in_progress--;
}
}
1993-03-21 12:45:37 +03:00
/*
* vm_pageout is the high level pageout daemon.
*/
1994-01-07 21:14:07 +03:00
void
vm_pageout()
1993-03-21 12:45:37 +03:00
{
(void) spl0();
/*
* Initialize some paging parameters.
*/
if (cnt.v_free_min == 0) {
cnt.v_free_min = cnt.v_free_count / 20;
if (cnt.v_free_min < 3)
cnt.v_free_min = 3;
1993-03-21 12:45:37 +03:00
if (cnt.v_free_min > vm_page_free_min_sanity)
cnt.v_free_min = vm_page_free_min_sanity;
1993-03-21 12:45:37 +03:00
}
if (cnt.v_free_target == 0)
cnt.v_free_target = (cnt.v_free_min * 4) / 3;
1993-03-21 12:45:37 +03:00
if (cnt.v_inactive_target == 0)
cnt.v_inactive_target = cnt.v_free_min * 2;
1993-03-21 12:45:37 +03:00
if (cnt.v_free_target <= cnt.v_free_min)
cnt.v_free_target = cnt.v_free_min + 1;
1993-03-21 12:45:37 +03:00
if (cnt.v_inactive_target <= cnt.v_free_target)
cnt.v_inactive_target = cnt.v_free_target + 1;
1993-03-21 12:45:37 +03:00
/*
* The pageout daemon is never done, so loop
* forever.
*/
simple_lock(&vm_pages_needed_lock);
while (TRUE) {
thread_sleep((int) &vm_pages_needed, &vm_pages_needed_lock);
1993-05-07 11:12:43 +04:00
cnt.v_scan++;
1993-03-21 12:45:37 +03:00
vm_pageout_scan();
vm_pager_sync();
simple_lock(&vm_pages_needed_lock);
thread_wakeup((int) &cnt.v_free_count);
1993-03-21 12:45:37 +03:00
}
}