NetBSD/sys/dev/ic/mb86960var.h

2537 lines
65 KiB
C
Raw Normal View History

1998-01-12 12:39:57 +03:00
/* $NetBSD: mb86960var.h,v 1.20 1998/01/12 09:43:37 thorpej Exp $ */
1998-01-05 10:31:05 +03:00
/*
* All Rights Reserved, Copyright (C) Fujitsu Limited 1995
*
* This software may be used, modified, copied, distributed, and sold, in
* both source and binary form provided that the above copyright, these
* terms and the following disclaimer are retained. The name of the author
* and/or the contributor may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND THE CONTRIBUTOR ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR THE CONTRIBUTOR BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION.
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Portions copyright (C) 1993, David Greenman. This software may be used,
* modified, copied, distributed, and sold, in both source and binary form
* provided that the above copyright and these terms are retained. Under no
* circumstances is the author responsible for the proper functioning of this
* software, nor does the author assume any responsibility for damages
* incurred with its use.
*/
#define FE_VERSION "if_fe.c ver. 0.8"
/*
* Device driver for Fujitsu MB86960A/MB86965A based Ethernet cards.
* Contributed by M.S. <seki@sysrap.cs.fujitsu.co.jp>
*
* This version is intended to be a generic template for various
* MB86960A/MB86965A based Ethernet cards. It currently supports
* Fujitsu FMV-180 series (i.e., FMV-181 and FMV-182) and Allied-
* Telesis AT1700 series and RE2000 series. There are some
* unnecessary hooks embedded, which are primarily intended to support
* other types of Ethernet cards, but the author is not sure whether
* they are useful.
*/
#include "bpfilter.h"
1997-10-15 09:55:13 +04:00
#include "rnd.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/syslog.h>
#include <sys/device.h>
1997-10-15 09:55:13 +04:00
#if NRND > 0
#include <sys/rnd.h>
#endif
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/if_ether.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_inarp.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#include <machine/cpu.h>
1996-05-13 03:51:23 +04:00
#include <machine/intr.h>
#include <machine/pio.h>
#include <dev/isa/isareg.h>
#include <dev/isa/isavar.h>
#include <dev/ic/mb86960reg.h>
#include <dev/isa/if_fereg.h>
/*
* Default settings for fe driver specific options.
* They can be set in config file by "options" statements.
*/
/*
* Debug control.
* 0: No debug at all. All debug specific codes are stripped off.
* 1: Silent. No debug messages are logged except emergent ones.
* 2: Brief. Lair events and/or important information are logged.
* 3: Detailed. Logs all information which *may* be useful for debugging.
* 4: Trace. All actions in the driver is logged. Super verbose.
*/
#ifndef FE_DEBUG
#define FE_DEBUG 1
#endif
/*
* Delay padding of short transmission packets to minimum Ethernet size.
* This may or may not gain performance. An EXPERIMENTAL option.
*/
#ifndef FE_DELAYED_PADDING
#define FE_DELAYED_PADDING 0
#endif
/*
* Transmit just one packet per a "send" command to 86960.
* This option is intended for performance test. An EXPERIMENTAL option.
*/
#ifndef FE_SINGLE_TRANSMISSION
#define FE_SINGLE_TRANSMISSION 0
#endif
/*
* Device configuration flags.
*/
/* DLCR6 settings. */
#define FE_FLAGS_DLCR6_VALUE 0x007F
/* Force DLCR6 override. */
#define FE_FLAGS_OVERRIDE_DLCR6 0x0080
/* A cludge for PCMCIA support. */
#define FE_FLAGS_PCMCIA 0x8000
/* Identification of the driver version. */
static char const fe_version[] = FE_VERSION " / " FE_REG_VERSION;
/*
* Supported hardware (Ethernet card) types
* This information is currently used only for debugging
*/
enum fe_type {
/* For cards which are successfully probed but not identified. */
FE_TYPE_UNKNOWN,
/* Fujitsu FMV-180 series. */
FE_TYPE_FMV181,
FE_TYPE_FMV182,
/* Allied-Telesis AT1700 series and RE2000 series. */
FE_TYPE_AT1700T,
FE_TYPE_AT1700BT,
FE_TYPE_AT1700FT,
FE_TYPE_AT1700AT,
FE_TYPE_RE2000,
/* PCMCIA by Fujitsu. */
FE_TYPE_MBH10302,
FE_TYPE_MBH10304,
};
/*
* fe_softc: per line info and status
*/
struct fe_softc {
struct device sc_dev;
void *sc_ih;
struct ethercom sc_ethercom; /* ethernet common */
/* Set by probe() and not modified in later phases. */
enum fe_type type; /* interface type code */
char *typestr; /* printable name of the interface. */
int sc_iobase; /* MB86960A I/O base address */
u_char proto_dlcr4; /* DLCR4 prototype. */
u_char proto_dlcr5; /* DLCR5 prototype. */
u_char proto_dlcr6; /* DLCR6 prototype. */
u_char proto_dlcr7; /* DLCR7 prototype. */
u_char proto_bmpr13; /* BMPR13 prototype. */
/* Vendor specific hooks. */
void (*init) __P((struct fe_softc *)); /* Just before fe_init(). */
void (*stop) __P((struct fe_softc *)); /* Just after fe_stop(). */
/* Transmission buffer management. */
u_short txb_size; /* total bytes in TX buffer */
u_short txb_free; /* free bytes in TX buffer */
u_char txb_count; /* number of packets in TX buffer */
u_char txb_sched; /* number of scheduled packets */
u_char txb_padding; /* number of delayed padding bytes */
/* Multicast address filter management. */
u_char filter_change; /* MARs must be changed ASAP. */
u_char filter[FE_FILTER_LEN]; /* new filter value. */
u_int8_t sc_enaddr[ETHER_ADDR_LEN];
1997-10-15 09:55:13 +04:00
#if NRND > 0
rndsource_element_t rnd_source;
#endif
};
/* Standard driver entry points. These can be static. */
int feprobe __P((struct device *, void *, void *));
void feattach __P((struct device *, struct device *, void *));
int feintr __P((void *));
void fe_init __P((struct fe_softc *));
int fe_ioctl __P((struct ifnet *, u_long, caddr_t));
void fe_start __P((struct ifnet *));
void fe_reset __P((struct fe_softc *));
void fe_watchdog __P((struct ifnet *));
/* Local functions. Order of declaration is confused. FIXME. */
int fe_probe_fmv __P((struct fe_softc *, struct isa_attach_args *));
int fe_probe_ati __P((struct fe_softc *, struct isa_attach_args *));
int fe_probe_mbh __P((struct fe_softc *, struct isa_attach_args *));
void fe_read_eeprom __P((struct fe_softc *, u_char *));
void fe_init_mbh __P((struct fe_softc *));
int fe_get_packet __P((struct fe_softc *, int));
void fe_stop __P((struct fe_softc *));
void fe_tint __P((struct fe_softc *, u_char));
void fe_rint __P((struct fe_softc *, u_char));
static inline
void fe_xmit __P((struct fe_softc *));
void fe_write_mbufs __P((struct fe_softc *, struct mbuf *));
static inline
void fe_droppacket __P((struct fe_softc *));
void fe_getmcaf __P((struct ethercom *, u_char *));
void fe_setmode __P((struct fe_softc *));
void fe_loadmar __P((struct fe_softc *));
#if FE_DEBUG >= 1
void fe_dump __P((int, struct fe_softc *));
#endif
struct cfattach fe_ca = {
sizeof(struct fe_softc), feprobe, feattach
};
/* Ethernet constants. To be defined in if_ehter.h? FIXME. */
#define ETHER_MIN_LEN 60 /* with header, without CRC. */
#define ETHER_MAX_LEN 1514 /* with header, without CRC. */
#define ETHER_ADDR_LEN 6 /* number of bytes in an address. */
#define ETHER_HDR_SIZE 14 /* src addr, dst addr, and data type. */
/*
* Fe driver specific constants which relate to 86960/86965.
*/
/* Interrupt masks. */
#define FE_TMASK (FE_D2_COLL16 | FE_D2_TXDONE)
#define FE_RMASK (FE_D3_OVRFLO | FE_D3_CRCERR | \
FE_D3_ALGERR | FE_D3_SRTPKT | FE_D3_PKTRDY)
/* Maximum number of iterrations for a receive interrupt. */
#define FE_MAX_RECV_COUNT ((65536 - 2048 * 2) / 64)
/* Maximum size of SRAM is 65536,
* minimum size of transmission buffer in fe is 2x2KB,
* and minimum amount of received packet including headers
* added by the chip is 64 bytes.
* Hence FE_MAX_RECV_COUNT is the upper limit for number
* of packets in the receive buffer. */
/*
* Convenient routines to access contiguous I/O ports.
*/
static inline void
inblk (int addr, u_char * mem, int len)
{
while (--len >= 0) {
*mem++ = inb(addr++);
}
}
static inline void
outblk (int addr, u_char const * mem, int len)
{
while (--len >= 0) {
outb(addr++, *mem++);
}
}
/*
* Hardware probe routines.
*/
/*
* Determine if the device is present.
*/
int
feprobe(parent, match, aux)
struct device *parent;
void *match, *aux;
{
struct fe_softc *sc = match;
struct isa_attach_args *ia = aux;
#if FE_DEBUG >= 2
log(LOG_INFO, "%s: %s\n", sc->sc_dev.dv_xname, fe_version);
#endif
/* Probe an address. */
sc->sc_iobase = ia->ia_iobase;
if (fe_probe_fmv(sc, ia))
return (1);
if (fe_probe_ati(sc, ia))
return (1);
if (fe_probe_mbh(sc, ia))
return (1);
return (0);
}
/*
* Check for specific bits in specific registers have specific values.
*/
struct fe_simple_probe_struct {
u_char port; /* Offset from the base I/O address. */
u_char mask; /* Bits to be checked. */
u_char bits; /* Values to be compared against. */
};
static inline int
fe_simple_probe (int addr, struct fe_simple_probe_struct const * sp)
{
struct fe_simple_probe_struct const * p;
for (p = sp; p->mask != 0; p++) {
if ((inb(addr + p->port) & p->mask) != p->bits) {
return (0);
}
}
return (1);
}
/*
* Routines to read all bytes from the config EEPROM through MB86965A.
* I'm not sure what exactly I'm doing here... I was told just to follow
* the steps, and it worked. Could someone tell me why the following
* code works? (Or, why all similar codes I tried previously doesn't
* work.) FIXME.
*/
static inline void
strobe (int bmpr16)
{
/*
* Output same value twice. To speed-down execution?
*/
outb(bmpr16, FE_B16_SELECT);
outb(bmpr16, FE_B16_SELECT);
outb(bmpr16, FE_B16_SELECT | FE_B16_CLOCK);
outb(bmpr16, FE_B16_SELECT | FE_B16_CLOCK);
outb(bmpr16, FE_B16_SELECT);
outb(bmpr16, FE_B16_SELECT);
}
void
fe_read_eeprom(sc, data)
struct fe_softc *sc;
u_char *data;
{
int iobase = sc->sc_iobase;
int bmpr16 = iobase + FE_BMPR16;
int bmpr17 = iobase + FE_BMPR17;
u_char n, val, bit;
/* Read bytes from EEPROM; two bytes per an iterration. */
for (n = 0; n < FE_EEPROM_SIZE / 2; n++) {
/* Reset the EEPROM interface. */
outb(bmpr16, 0x00);
outb(bmpr17, 0x00);
outb(bmpr16, FE_B16_SELECT);
/* Start EEPROM access. */
outb(bmpr17, FE_B17_DATA);
strobe(bmpr16);
/* Pass the iterration count to the chip. */
val = 0x80 | n;
for (bit = 0x80; bit != 0x00; bit >>= 1) {
outb(bmpr17, (val & bit) ? FE_B17_DATA : 0);
strobe(bmpr16);
}
outb(bmpr17, 0x00);
/* Read a byte. */
val = 0;
for (bit = 0x80; bit != 0x00; bit >>= 1) {
strobe(bmpr16);
if (inb(bmpr17) & FE_B17_DATA)
val |= bit;
}
*data++ = val;
/* Read one more byte. */
val = 0;
for (bit = 0x80; bit != 0x00; bit >>= 1) {
strobe(bmpr16);
if (inb(bmpr17) & FE_B17_DATA)
val |= bit;
}
*data++ = val;
}
#if FE_DEBUG >= 3
/* Report what we got. */
data -= FE_EEPROM_SIZE;
log(LOG_INFO, "%s: EEPROM at %04x:"
" %02x%02x%02x%02x %02x%02x%02x%02x -"
" %02x%02x%02x%02x %02x%02x%02x%02x -"
" %02x%02x%02x%02x %02x%02x%02x%02x -"
" %02x%02x%02x%02x %02x%02x%02x%02x\n",
sc->sc_dev.dv_xname, iobase,
data[ 0], data[ 1], data[ 2], data[ 3],
data[ 4], data[ 5], data[ 6], data[ 7],
data[ 8], data[ 9], data[10], data[11],
data[12], data[13], data[14], data[15],
data[16], data[17], data[18], data[19],
data[20], data[21], data[22], data[23],
data[24], data[25], data[26], data[27],
data[28], data[29], data[30], data[31]);
#endif
}
/*
* Hardware (vendor) specific probe routines.
*/
/*
* Probe and initialization for Fujitsu FMV-180 series boards
*/
int
fe_probe_fmv(sc, ia)
struct fe_softc *sc;
struct isa_attach_args *ia;
{
int i, n;
int iobase = sc->sc_iobase;
int irq;
static int const iomap[8] =
{ 0x220, 0x240, 0x260, 0x280, 0x2A0, 0x2C0, 0x300, 0x340 };
static int const irqmap[4] =
{ 3, 7, 10, 15 };
static struct fe_simple_probe_struct const probe_table[] = {
{ FE_DLCR2, 0x70, 0x00 },
{ FE_DLCR4, 0x08, 0x00 },
/* { FE_DLCR5, 0x80, 0x00 }, Doesn't work. */
{ FE_FMV0, FE_FMV0_MAGIC_MASK, FE_FMV0_MAGIC_VALUE },
{ FE_FMV1, FE_FMV1_CARDID_MASK, FE_FMV1_CARDID_ID },
{ FE_FMV3, FE_FMV3_EXTRA_MASK, FE_FMV3_EXTRA_VALUE },
#if 1
/*
* Test *vendor* part of the station address for Fujitsu.
* The test will gain reliability of probe process, but
* it rejects FMV-180 clone boards manufactured by other vendors.
* We have to turn the test off when such cards are made available.
*/
{ FE_FMV4, 0xFF, 0x00 },
{ FE_FMV5, 0xFF, 0x00 },
{ FE_FMV6, 0xFF, 0x0E },
#else
/*
* We can always verify the *first* 2 bits (in Ehternet
* bit order) are "no multicast" and "no local" even for
* unknown vendors.
*/
{ FE_FMV4, 0x03, 0x00 },
#endif
{ 0 }
};
#if 0
/*
* Dont probe at all if the config says we are PCMCIA...
*/
if ((cf->cf_flags & FE_FLAGS_PCMCIA) != 0)
return (0);
#endif
/*
* See if the sepcified address is possible for FMV-180 series.
*/
for (i = 0; i < 8; i++) {
if (iomap[i] == iobase)
break;
}
if (i == 8)
return (0);
/* Simple probe. */
if (!fe_simple_probe(iobase, probe_table))
return (0);
/* Check if our I/O address matches config info on EEPROM. */
n = (inb(iobase + FE_FMV2) & FE_FMV2_ADDR) >> FE_FMV2_ADDR_SHIFT;
if (iomap[n] != iobase)
return (0);
/* Determine the card type. */
switch (inb(iobase + FE_FMV0) & FE_FMV0_MODEL) {
case FE_FMV0_MODEL_FMV181:
sc->type = FE_TYPE_FMV181;
sc->typestr = "FMV-181";
break;
case FE_FMV0_MODEL_FMV182:
sc->type = FE_TYPE_FMV182;
sc->typestr = "FMV-182";
break;
default:
/* Unknown card type: maybe a new model, but... */
return (0);
}
/*
* An FMV-180 has successfully been proved.
* Determine which IRQ to be used.
*
* In this version, we always get an IRQ assignment from the
* FMV-180's configuration EEPROM, ignoring that specified in
* config file.
*/
n = (inb(iobase + FE_FMV2) & FE_FMV2_IRQ) >> FE_FMV2_IRQ_SHIFT;
irq = irqmap[n];
if (ia->ia_irq != IRQUNK) {
if (ia->ia_irq != irq) {
1996-10-13 05:37:04 +04:00
printf("%s: irq mismatch; kernel configured %d != board configured %d\n",
sc->sc_dev.dv_xname, ia->ia_irq, irq);
return (0);
}
} else
ia->ia_irq = irq;
/*
* Initialize constants in the per-line structure.
*/
/* Get our station address from EEPROM. */
inblk(iobase + FE_FMV4, sc->sc_enaddr, ETHER_ADDR_LEN);
/* Make sure we got a valid station address. */
if ((sc->sc_enaddr[0] & 0x03) != 0x00
|| (sc->sc_enaddr[0] == 0x00
&& sc->sc_enaddr[1] == 0x00
&& sc->sc_enaddr[2] == 0x00))
return (0);
/* Register values which depend on board design. */
sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
sc->proto_dlcr5 = 0;
sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_EC;
sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
/*
* Program the 86960 as follows:
* SRAM: 32KB, 100ns, byte-wide access.
* Transmission buffer: 4KB x 2.
* System bus interface: 16 bits.
* We cannot change these values but TXBSIZE, because they
* are hard-wired on the board. Modifying TXBSIZE will affect
* the driver performance.
*/
sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
/*
* Minimum initialization of the hardware.
* We write into registers; hope I/O ports have no
* overlap with other boards.
*/
/* Initialize ASIC. */
outb(iobase + FE_FMV3, 0);
outb(iobase + FE_FMV10, 0);
/* Wait for a while. I'm not sure this is necessary. FIXME. */
delay(200);
/* Initialize 86960. */
outb(iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
delay(200);
/* Disable all interrupts. */
outb(iobase + FE_DLCR2, 0);
outb(iobase + FE_DLCR3, 0);
/* Turn the "master interrupt control" flag of ASIC on. */
outb(iobase + FE_FMV3, FE_FMV3_ENABLE_FLAG);
/*
* That's all. FMV-180 occupies 32 I/O addresses, by the way.
*/
ia->ia_iosize = 32;
ia->ia_msize = 0;
return (1);
}
/*
* Probe and initialization for Allied-Telesis AT1700/RE2000 series.
*/
int
fe_probe_ati(sc, ia)
struct fe_softc *sc;
struct isa_attach_args *ia;
{
int i, n;
int iobase = sc->sc_iobase;
u_char eeprom[FE_EEPROM_SIZE];
u_char save16, save17;
int irq;
static int const iomap[8] =
{ 0x260, 0x280, 0x2A0, 0x240, 0x340, 0x320, 0x380, 0x300 };
static int const irqmap[4][4] = {
{ 3, 4, 5, 9 },
{ 10, 11, 12, 15 },
{ 3, 11, 5, 15 },
{ 10, 11, 14, 15 },
};
static struct fe_simple_probe_struct const probe_table[] = {
{ FE_DLCR2, 0x70, 0x00 },
{ FE_DLCR4, 0x08, 0x00 },
{ FE_DLCR5, 0x80, 0x00 },
#if 0
{ FE_BMPR16, 0x1B, 0x00 },
{ FE_BMPR17, 0x7F, 0x00 },
#endif
{ 0 }
};
#if 0
/*
* Don't probe at all if the config says we are PCMCIA...
*/
if ((cf->cf_flags & FE_FLAGS_PCMCIA) != 0)
return (0);
#endif
#if FE_DEBUG >= 4
log(LOG_INFO, "%s: probe (0x%x) for ATI\n", sc->sc_dev.dv_xname, iobase);
fe_dump(LOG_INFO, sc);
#endif
/*
* See if the sepcified address is possible for MB86965A JLI mode.
*/
for (i = 0; i < 8; i++) {
if (iomap[i] == iobase)
break;
}
if (i == 8)
return (0);
/*
* We should test if MB86965A is on the base address now.
* Unfortunately, it is very hard to probe it reliably, since
* we have no way to reset the chip under software control.
* On cold boot, we could check the "signature" bit patterns
* described in the Fujitsu document. On warm boot, however,
* we can predict almost nothing about register values.
*/
if (!fe_simple_probe(iobase, probe_table))
return (0);
/* Save old values of the registers. */
save16 = inb(iobase + FE_BMPR16);
save17 = inb(iobase + FE_BMPR17);
/* Check if our I/O address matches config info on 86965. */
n = (inb(iobase + FE_BMPR19) & FE_B19_ADDR) >> FE_B19_ADDR_SHIFT;
if (iomap[n] != iobase)
goto fail;
/*
* We are now almost sure we have an AT1700 at the given
* address. So, read EEPROM through 86965. We have to write
* into LSI registers to read from EEPROM. I want to avoid it
* at this stage, but I cannot test the presense of the chip
* any further without reading EEPROM. FIXME.
*/
fe_read_eeprom(sc, eeprom);
/* Make sure the EEPROM is turned off. */
outb(iobase + FE_BMPR16, 0);
outb(iobase + FE_BMPR17, 0);
/* Make sure that config info in EEPROM and 86965 agree. */
if (eeprom[FE_EEPROM_CONF] != inb(iobase + FE_BMPR19))
goto fail;
/*
* Determine the card type.
*/
switch (eeprom[FE_ATI_EEP_MODEL]) {
case FE_ATI_MODEL_AT1700T:
sc->type = FE_TYPE_AT1700T;
sc->typestr = "AT-1700T";
break;
case FE_ATI_MODEL_AT1700BT:
sc->type = FE_TYPE_AT1700BT;
sc->typestr = "AT-1700BT";
break;
case FE_ATI_MODEL_AT1700FT:
sc->type = FE_TYPE_AT1700FT;
sc->typestr = "AT-1700FT";
break;
case FE_ATI_MODEL_AT1700AT:
sc->type = FE_TYPE_AT1700AT;
sc->typestr = "AT-1700AT";
break;
default:
sc->type = FE_TYPE_RE2000;
sc->typestr = "unknown (RE-2000?)";
break;
}
/*
* Try to determine IRQ settings.
* Different models use different ranges of IRQs.
*/
n = (inb(iobase + FE_BMPR19) & FE_B19_IRQ) >> FE_B19_IRQ_SHIFT;
switch (eeprom[FE_ATI_EEP_REVISION] & 0xf0) {
case 0x30:
irq = irqmap[3][n];
break;
case 0x10:
case 0x50:
irq = irqmap[2][n];
break;
case 0x40:
case 0x60:
if (eeprom[FE_ATI_EEP_MAGIC] & 0x04) {
irq = irqmap[1][n];
break;
}
default:
irq = irqmap[0][n];
break;
}
if (ia->ia_irq != IRQUNK) {
if (ia->ia_irq != irq) {
1996-10-13 05:37:04 +04:00
printf("%s: irq mismatch; kernel configured %d != board configured %d\n",
sc->sc_dev.dv_xname, ia->ia_irq, irq);
return (0);
}
} else
ia->ia_irq = irq;
/*
* Initialize constants in the per-line structure.
*/
/* Get our station address from EEPROM. */
bcopy(eeprom + FE_ATI_EEP_ADDR, sc->sc_enaddr, ETHER_ADDR_LEN);
/* Make sure we got a valid station address. */
if ((sc->sc_enaddr[0] & 0x03) != 0x00
|| (sc->sc_enaddr[0] == 0x00
&& sc->sc_enaddr[1] == 0x00
&& sc->sc_enaddr[2] == 0x00))
goto fail;
/* Should find all register prototypes here. FIXME. */
sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL; /* FIXME */
sc->proto_dlcr5 = 0;
sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_EC;
#if 0 /* XXXX Should we use this? */
sc->proto_bmpr13 = eeprom[FE_ATI_EEP_MEDIA];
#else
sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
#endif
/*
* Program the 86965 as follows:
* SRAM: 32KB, 100ns, byte-wide access.
* Transmission buffer: 4KB x 2.
* System bus interface: 16 bits.
* We cannot change these values but TXBSIZE, because they
* are hard-wired on the board. Modifying TXBSIZE will affect
* the driver performance.
*/
sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
#if FE_DEBUG >= 3
log(LOG_INFO, "%s: ATI found\n", sc->sc_dev.dv_xname);
fe_dump(LOG_INFO, sc);
#endif
/* Initialize 86965. */
outb(iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
delay(200);
/* Disable all interrupts. */
outb(iobase + FE_DLCR2, 0);
outb(iobase + FE_DLCR3, 0);
#if FE_DEBUG >= 3
log(LOG_INFO, "%s: end of fe_probe_ati()\n", sc->sc_dev.dv_xname);
fe_dump(LOG_INFO, sc);
#endif
/*
* That's all. AT1700 occupies 32 I/O addresses, by the way.
*/
ia->ia_iosize = 32;
ia->ia_msize = 0;
return (1);
fail:
/* Restore register values, in the case we had no 86965. */
outb(iobase + FE_BMPR16, save16);
outb(iobase + FE_BMPR17, save17);
return (0);
}
/*
* Probe and initialization for Fujitsu MBH10302 PCMCIA Ethernet interface.
*/
int
fe_probe_mbh(sc, ia)
struct fe_softc *sc;
struct isa_attach_args *ia;
{
int iobase = sc->sc_iobase;
static struct fe_simple_probe_struct probe_table[] = {
{ FE_DLCR2, 0x70, 0x00 },
{ FE_DLCR4, 0x08, 0x00 },
/* { FE_DLCR5, 0x80, 0x00 }, Does not work well. */
#if 0
/*
* Test *vendor* part of the address for Fujitsu.
* The test will gain reliability of probe process, but
* it rejects clones by other vendors, or OEM product
* supplied by resalers other than Fujitsu.
*/
{ FE_MBH10, 0xFF, 0x00 },
{ FE_MBH11, 0xFF, 0x00 },
{ FE_MBH12, 0xFF, 0x0E },
#else
/*
* We can always verify the *first* 2 bits (in Ehternet
* bit order) are "global" and "unicast" even for
* unknown vendors.
*/
{ FE_MBH10, 0x03, 0x00 },
#endif
/* Just a gap? Seems reliable, anyway. */
{ 0x12, 0xFF, 0x00 },
{ 0x13, 0xFF, 0x00 },
{ 0x14, 0xFF, 0x00 },
{ 0x15, 0xFF, 0x00 },
{ 0x16, 0xFF, 0x00 },
{ 0x17, 0xFF, 0x00 },
{ 0x18, 0xFF, 0xFF },
{ 0x19, 0xFF, 0xFF },
{ 0 }
};
#if 0
/*
* We need a PCMCIA flag.
*/
if ((cf->cf_flags & FE_FLAGS_PCMCIA) == 0)
return (0);
#endif
/*
* We need explicit IRQ and supported address.
*/
if (ia->ia_irq == IRQUNK || (iobase & ~0x3E0) != 0)
return (0);
#if FE_DEBUG >= 3
log(LOG_INFO, "%s: top of fe_probe_mbh()\n", sc->sc_dev.dv_xname);
fe_dump(LOG_INFO, sc);
#endif
/*
* See if MBH10302 is on its address.
* I'm not sure the following probe code works. FIXME.
*/
if (!fe_simple_probe(iobase, probe_table))
return (0);
/* Determine the card type. */
sc->type = FE_TYPE_MBH10302;
sc->typestr = "MBH10302 (PCMCIA)";
/*
* Initialize constants in the per-line structure.
*/
/* Get our station address from EEPROM. */
inblk(iobase + FE_MBH10, sc->sc_enaddr, ETHER_ADDR_LEN);
/* Make sure we got a valid station address. */
if ((sc->sc_enaddr[0] & 0x03) != 0x00
|| (sc->sc_enaddr[0] == 0x00
&& sc->sc_enaddr[1] == 0x00
&& sc->sc_enaddr[2] == 0x00))
return (0);
/* Should find all register prototypes here. FIXME. */
sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
sc->proto_dlcr5 = 0;
sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_NICE;
sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
/*
* Program the 86960 as follows:
* SRAM: 32KB, 100ns, byte-wide access.
* Transmission buffer: 4KB x 2.
* System bus interface: 16 bits.
* We cannot change these values but TXBSIZE, because they
* are hard-wired on the board. Modifying TXBSIZE will affect
* the driver performance.
*/
sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
/* Setup hooks. We need a special initialization procedure. */
sc->init = fe_init_mbh;
/*
* Minimum initialization.
*/
/* Wait for a while. I'm not sure this is necessary. FIXME. */
delay(200);
/* Minimul initialization of 86960. */
outb(iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
delay(200);
/* Disable all interrupts. */
outb(iobase + FE_DLCR2, 0);
outb(iobase + FE_DLCR3, 0);
#if 1 /* FIXME. */
/* Initialize system bus interface and encoder/decoder operation. */
outb(iobase + FE_MBH0, FE_MBH0_MAGIC | FE_MBH0_INTR_DISABLE);
#endif
/*
* That's all. MBH10302 occupies 32 I/O addresses, by the way.
*/
ia->ia_iosize = 32;
ia->ia_msize = 0;
return (1);
}
/* MBH specific initialization routine. */
void
fe_init_mbh(sc)
struct fe_softc *sc;
{
/* Probably required after hot-insertion... */
/* Wait for a while. I'm not sure this is necessary. FIXME. */
delay(200);
/* Minimul initialization of 86960. */
outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
delay(200);
/* Disable all interrupts. */
outb(sc->sc_iobase + FE_DLCR2, 0);
outb(sc->sc_iobase + FE_DLCR3, 0);
/* Enable master interrupt flag. */
outb(sc->sc_iobase + FE_MBH0, FE_MBH0_MAGIC | FE_MBH0_INTR_ENABLE);
}
/*
* Install interface into kernel networking data structures
*/
void
feattach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct fe_softc *sc = (void *)self;
struct isa_attach_args *ia = aux;
struct cfdata *cf = sc->sc_dev.dv_cfdata;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
/* Stop the 86960. */
fe_stop(sc);
/* Initialize ifnet structure. */
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_start = fe_start;
ifp->if_ioctl = fe_ioctl;
ifp->if_watchdog = fe_watchdog;
ifp->if_flags =
IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
/*
* Set maximum size of output queue, if it has not been set.
* It is done here as this driver may be started after the
* system intialization (i.e., the interface is PCMCIA.)
*
* I'm not sure this is really necessary, but, even if it is,
* it should be done somewhere else, e.g., in if_attach(),
* since it must be a common workaround for all network drivers.
* FIXME.
*/
if (ifp->if_snd.ifq_maxlen == 0) {
extern int ifqmaxlen; /* Don't be so shocked... */
ifp->if_snd.ifq_maxlen = ifqmaxlen;
}
#if FE_DEBUG >= 3
log(LOG_INFO, "%s: feattach()\n", sc->sc_dev.dv_xname);
fe_dump(LOG_INFO, sc);
#endif
#if FE_SINGLE_TRANSMISSION
/* Override txb config to allocate minimum. */
sc->proto_dlcr6 &= ~FE_D6_TXBSIZ
sc->proto_dlcr6 |= FE_D6_TXBSIZ_2x2KB;
#endif
/* Modify hardware config if it is requested. */
if ((cf->cf_flags & FE_FLAGS_OVERRIDE_DLCR6) != 0)
sc->proto_dlcr6 = cf->cf_flags & FE_FLAGS_DLCR6_VALUE;
/* Find TX buffer size, based on the hardware dependent proto. */
switch (sc->proto_dlcr6 & FE_D6_TXBSIZ) {
case FE_D6_TXBSIZ_2x2KB:
sc->txb_size = 2048;
break;
case FE_D6_TXBSIZ_2x4KB:
sc->txb_size = 4096;
break;
case FE_D6_TXBSIZ_2x8KB:
sc->txb_size = 8192;
break;
default:
/* Oops, we can't work with single buffer configuration. */
#if FE_DEBUG >= 2
log(LOG_WARNING, "%s: strange TXBSIZ config; fixing\n",
sc->sc_dev.dv_xname);
#endif
sc->proto_dlcr6 &= ~FE_D6_TXBSIZ;
sc->proto_dlcr6 |= FE_D6_TXBSIZ_2x2KB;
sc->txb_size = 2048;
break;
}
/* Attach the interface. */
if_attach(ifp);
ether_ifattach(ifp, sc->sc_enaddr);
/* Print additional info when attached. */
1996-10-13 05:37:04 +04:00
printf(": address %s, type %s\n",
ether_sprintf(sc->sc_enaddr), sc->typestr);
#if FE_DEBUG >= 3
{
int buf, txb, bbw, sbw, ram;
buf = txb = bbw = sbw = ram = -1;
switch (sc->proto_dlcr6 & FE_D6_BUFSIZ) {
case FE_D6_BUFSIZ_8KB:
buf = 8;
break;
case FE_D6_BUFSIZ_16KB:
buf = 16;
break;
case FE_D6_BUFSIZ_32KB:
buf = 32;
break;
case FE_D6_BUFSIZ_64KB:
buf = 64;
break;
}
switch (sc->proto_dlcr6 & FE_D6_TXBSIZ) {
case FE_D6_TXBSIZ_2x2KB:
txb = 2;
break;
case FE_D6_TXBSIZ_2x4KB:
txb = 4;
break;
case FE_D6_TXBSIZ_2x8KB:
txb = 8;
break;
}
switch (sc->proto_dlcr6 & FE_D6_BBW) {
case FE_D6_BBW_BYTE:
bbw = 8;
break;
case FE_D6_BBW_WORD:
bbw = 16;
break;
}
switch (sc->proto_dlcr6 & FE_D6_SBW) {
case FE_D6_SBW_BYTE:
sbw = 8;
break;
case FE_D6_SBW_WORD:
sbw = 16;
break;
}
switch (sc->proto_dlcr6 & FE_D6_SRAM) {
case FE_D6_SRAM_100ns:
ram = 100;
break;
case FE_D6_SRAM_150ns:
ram = 150;
break;
}
1996-10-13 05:37:04 +04:00
printf("%s: SRAM %dKB %dbit %dns, TXB %dKBx2, %dbit I/O\n",
sc->sc_dev.dv_xname, buf, bbw, ram, txb, sbw);
}
#endif
#if NBPFILTER > 0
/* If BPF is in the kernel, call the attach for it. */
bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
sc->sc_ih = isa_intr_establish(ia->ia_ic, ia->ia_irq, IST_EDGE,
IPL_NET, feintr, sc);
1997-10-15 09:55:13 +04:00
#if NRND > 0
rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
RND_TYPE_NET);
#endif
}
/*
* Reset interface.
*/
void
fe_reset(sc)
struct fe_softc *sc;
{
int s;
s = splnet();
fe_stop(sc);
fe_init(sc);
splx(s);
}
/*
* Stop everything on the interface.
*
* All buffered packets, both transmitting and receiving,
* if any, will be lost by stopping the interface.
*/
void
fe_stop(sc)
struct fe_softc *sc;
{
#if FE_DEBUG >= 3
log(LOG_INFO, "%s: top of fe_stop()\n", sc->sc_dev.dv_xname);
fe_dump(LOG_INFO, sc);
#endif
/* Disable interrupts. */
outb(sc->sc_iobase + FE_DLCR2, 0x00);
outb(sc->sc_iobase + FE_DLCR3, 0x00);
/* Stop interface hardware. */
delay(200);
outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
delay(200);
/* Clear all interrupt status. */
outb(sc->sc_iobase + FE_DLCR0, 0xFF);
outb(sc->sc_iobase + FE_DLCR1, 0xFF);
/* Put the chip in stand-by mode. */
delay(200);
outb(sc->sc_iobase + FE_DLCR7, sc->proto_dlcr7 | FE_D7_POWER_DOWN);
delay(200);
/* MAR loading can be delayed. */
sc->filter_change = 0;
/* Call a hook. */
if (sc->stop)
sc->stop(sc);
#if DEBUG >= 3
log(LOG_INFO, "%s: end of fe_stop()\n", sc->sc_dev.dv_xname);
fe_dump(LOG_INFO, sc);
#endif
}
/*
* Device timeout/watchdog routine. Entered if the device neglects to
* generate an interrupt after a transmit has been started on it.
*/
void
fe_watchdog(ifp)
struct ifnet *ifp;
{
struct fe_softc *sc = ifp->if_softc;
log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
#if FE_DEBUG >= 3
fe_dump(LOG_INFO, sc);
#endif
/* Record how many packets are lost by this accident. */
sc->sc_ethercom.ec_if.if_oerrors += sc->txb_sched + sc->txb_count;
fe_reset(sc);
}
/*
* Drop (skip) a packet from receive buffer in 86960 memory.
*/
static inline void
fe_droppacket(sc)
struct fe_softc *sc;
{
outb(sc->sc_iobase + FE_BMPR14, FE_B14_FILTER | FE_B14_SKIP);
}
/*
* Initialize device.
*/
void
fe_init(sc)
struct fe_softc *sc;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
int i;
#if FE_DEBUG >= 3
log(LOG_INFO, "%s: top of fe_init()\n", sc->sc_dev.dv_xname);
fe_dump(LOG_INFO, sc);
#endif
/* Reset transmitter flags. */
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_timer = 0;
sc->txb_free = sc->txb_size;
sc->txb_count = 0;
sc->txb_sched = 0;
/* Call a hook. */
if (sc->init)
sc->init(sc);
#if FE_DEBUG >= 3
log(LOG_INFO, "%s: after init hook\n", sc->sc_dev.dv_xname);
fe_dump(LOG_INFO, sc);
#endif
/*
* Make sure to disable the chip, also.
* This may also help re-programming the chip after
* hot insertion of PCMCIAs.
*/
outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
/* Power up the chip and select register bank for DLCRs. */
delay(200);
outb(sc->sc_iobase + FE_DLCR7,
sc->proto_dlcr7 | FE_D7_RBS_DLCR | FE_D7_POWER_UP);
delay(200);
/* Feed the station address. */
outblk(sc->sc_iobase + FE_DLCR8, sc->sc_enaddr, ETHER_ADDR_LEN);
/* Select the BMPR bank for runtime register access. */
outb(sc->sc_iobase + FE_DLCR7,
sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP);
/* Initialize registers. */
outb(sc->sc_iobase + FE_DLCR0, 0xFF); /* Clear all bits. */
outb(sc->sc_iobase + FE_DLCR1, 0xFF); /* ditto. */
outb(sc->sc_iobase + FE_DLCR2, 0x00);
outb(sc->sc_iobase + FE_DLCR3, 0x00);
outb(sc->sc_iobase + FE_DLCR4, sc->proto_dlcr4);
outb(sc->sc_iobase + FE_DLCR5, sc->proto_dlcr5);
outb(sc->sc_iobase + FE_BMPR10, 0x00);
outb(sc->sc_iobase + FE_BMPR11, FE_B11_CTRL_SKIP);
outb(sc->sc_iobase + FE_BMPR12, 0x00);
outb(sc->sc_iobase + FE_BMPR13, sc->proto_bmpr13);
outb(sc->sc_iobase + FE_BMPR14, FE_B14_FILTER);
outb(sc->sc_iobase + FE_BMPR15, 0x00);
#if FE_DEBUG >= 3
log(LOG_INFO, "%s: just before enabling DLC\n", sc->sc_dev.dv_xname);
fe_dump(LOG_INFO, sc);
#endif
/* Enable interrupts. */
outb(sc->sc_iobase + FE_DLCR2, FE_TMASK);
outb(sc->sc_iobase + FE_DLCR3, FE_RMASK);
/* Enable transmitter and receiver. */
delay(200);
outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_ENABLE);
delay(200);
#if FE_DEBUG >= 3
log(LOG_INFO, "%s: just after enabling DLC\n", sc->sc_dev.dv_xname);
fe_dump(LOG_INFO, sc);
#endif
/*
* Make sure to empty the receive buffer.
*
* This may be redundant, but *if* the receive buffer were full
* at this point, the driver would hang. I have experienced
* some strange hangups just after UP. I hope the following
* code solve the problem.
*
* I have changed the order of hardware initialization.
* I think the receive buffer cannot have any packets at this
* point in this version. The following code *must* be
* redundant now. FIXME.
*/
for (i = 0; i < FE_MAX_RECV_COUNT; i++) {
if (inb(sc->sc_iobase + FE_DLCR5) & FE_D5_BUFEMP)
break;
fe_droppacket(sc);
}
#if FE_DEBUG >= 1
if (i >= FE_MAX_RECV_COUNT) {
log(LOG_ERR, "%s: cannot empty receive buffer\n",
sc->sc_dev.dv_xname);
}
#endif
#if FE_DEBUG >= 3
if (i < FE_MAX_RECV_COUNT) {
log(LOG_INFO, "%s: receive buffer emptied (%d)\n",
sc->sc_dev.dv_xname, i);
}
#endif
#if FE_DEBUG >= 3
log(LOG_INFO, "%s: after ERB loop\n", sc->sc_dev.dv_xname);
fe_dump(LOG_INFO, sc);
#endif
/* Do we need this here? */
outb(sc->sc_iobase + FE_DLCR0, 0xFF); /* Clear all bits. */
outb(sc->sc_iobase + FE_DLCR1, 0xFF); /* ditto. */
#if FE_DEBUG >= 3
log(LOG_INFO, "%s: after FIXME\n", sc->sc_dev.dv_xname);
fe_dump(LOG_INFO, sc);
#endif
/* Set 'running' flag. */
ifp->if_flags |= IFF_RUNNING;
/*
* At this point, the interface is runnung properly,
* except that it receives *no* packets. we then call
* fe_setmode() to tell the chip what packets to be
* received, based on the if_flags and multicast group
* list. It completes the initialization process.
*/
fe_setmode(sc);
#if FE_DEBUG >= 3
log(LOG_INFO, "%s: after setmode\n", sc->sc_dev.dv_xname);
fe_dump(LOG_INFO, sc);
#endif
/* ...and attempt to start output. */
fe_start(ifp);
#if FE_DEBUG >= 3
log(LOG_INFO, "%s: end of fe_init()\n", sc->sc_dev.dv_xname);
fe_dump(LOG_INFO, sc);
#endif
}
/*
* This routine actually starts the transmission on the interface
*/
static inline void
fe_xmit(sc)
struct fe_softc *sc;
{
/*
* Set a timer just in case we never hear from the board again.
* We use longer timeout for multiple packet transmission.
* I'm not sure this timer value is appropriate. FIXME.
*/
sc->sc_ethercom.ec_if.if_timer = 1 + sc->txb_count;
/* Update txb variables. */
sc->txb_sched = sc->txb_count;
sc->txb_count = 0;
sc->txb_free = sc->txb_size;
#if FE_DELAYED_PADDING
/* Omit the postponed padding process. */
sc->txb_padding = 0;
#endif
/* Start transmitter, passing packets in TX buffer. */
outb(sc->sc_iobase + FE_BMPR10, sc->txb_sched | FE_B10_START);
}
/*
* Start output on interface.
* We make two assumptions here:
* 1) that the current priority is set to splnet _before_ this code
* is called *and* is returned to the appropriate priority after
* return
* 2) that the IFF_OACTIVE flag is checked before this code is called
* (i.e. that the output part of the interface is idle)
*/
void
fe_start(ifp)
struct ifnet *ifp;
{
struct fe_softc *sc = ifp->if_softc;
struct mbuf *m;
#if FE_DEBUG >= 1
/* Just a sanity check. */
if ((sc->txb_count == 0) != (sc->txb_free == sc->txb_size)) {
/*
* Txb_count and txb_free co-works to manage the
* transmission buffer. Txb_count keeps track of the
* used potion of the buffer, while txb_free does unused
* potion. So, as long as the driver runs properly,
* txb_count is zero if and only if txb_free is same
* as txb_size (which represents whole buffer.)
*/
log(LOG_ERR, "%s: inconsistent txb variables (%d, %d)\n",
sc->sc_dev.dv_xname, sc->txb_count, sc->txb_free);
/*
* So, what should I do, then?
*
* We now know txb_count and txb_free contradicts. We
* cannot, however, tell which is wrong. More
* over, we cannot peek 86960 transmission buffer or
* reset the transmission buffer. (In fact, we can
* reset the entire interface. I don't want to do it.)
*
* If txb_count is incorrect, leaving it as is will cause
* sending of gabages after next interrupt. We have to
* avoid it. Hence, we reset the txb_count here. If
* txb_free was incorrect, resetting txb_count just loose
* some packets. We can live with it.
*/
sc->txb_count = 0;
}
#endif
#if FE_DEBUG >= 1
/*
* First, see if there are buffered packets and an idle
* transmitter - should never happen at this point.
*/
if ((sc->txb_count > 0) && (sc->txb_sched == 0)) {
log(LOG_ERR, "%s: transmitter idle with %d buffered packets\n",
sc->sc_dev.dv_xname, sc->txb_count);
fe_xmit(sc);
}
#endif
/*
* Stop accepting more transmission packets temporarily, when
* a filter change request is delayed. Updating the MARs on
* 86960 flushes the transmisstion buffer, so it is delayed
* until all buffered transmission packets have been sent
* out.
*/
if (sc->filter_change) {
/*
* Filter change requst is delayed only when the DLC is
* working. DLC soon raise an interrupt after finishing
* the work.
*/
goto indicate_active;
}
for (;;) {
/*
* See if there is room to put another packet in the buffer.
* We *could* do better job by peeking the send queue to
* know the length of the next packet. Current version just
* tests against the worst case (i.e., longest packet). FIXME.
*
* When adding the packet-peek feature, don't forget adding a
* test on txb_count against QUEUEING_MAX.
* There is a little chance the packet count exceeds
* the limit. Assume transmission buffer is 8KB (2x8KB
* configuration) and an application sends a bunch of small
* (i.e., minimum packet sized) packets rapidly. An 8KB
* buffer can hold 130 blocks of 62 bytes long...
*/
if (sc->txb_free < ETHER_MAX_LEN + FE_DATA_LEN_LEN) {
/* No room. */
goto indicate_active;
}
#if FE_SINGLE_TRANSMISSION
if (sc->txb_count > 0) {
/* Just one packet per a transmission buffer. */
goto indicate_active;
}
#endif
/*
* Get the next mbuf chain for a packet to send.
*/
IF_DEQUEUE(&ifp->if_snd, m);
if (m == 0) {
/* No more packets to send. */
goto indicate_inactive;
}
#if NBPFILTER > 0
/* Tap off here if there is a BPF listener. */
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif
/*
* Copy the mbuf chain into the transmission buffer.
* txb_* variables are updated as necessary.
*/
fe_write_mbufs(sc, m);
m_freem(m);
/* Start transmitter if it's idle. */
if (sc->txb_sched == 0)
fe_xmit(sc);
}
indicate_inactive:
/*
* We are using the !OACTIVE flag to indicate to
* the outside world that we can accept an
* additional packet rather than that the
* transmitter is _actually_ active. Indeed, the
* transmitter may be active, but if we haven't
* filled all the buffers with data then we still
* want to accept more.
*/
ifp->if_flags &= ~IFF_OACTIVE;
return;
indicate_active:
/*
* The transmitter is active, and there are no room for
* more outgoing packets in the transmission buffer.
*/
ifp->if_flags |= IFF_OACTIVE;
return;
}
/*
* Transmission interrupt handler
* The control flow of this function looks silly. FIXME.
*/
void
fe_tint(sc, tstat)
struct fe_softc *sc;
u_char tstat;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
int left;
int col;
/*
* Handle "excessive collision" interrupt.
*/
if (tstat & FE_D0_COLL16) {
/*
* Find how many packets (including this collided one)
* are left unsent in transmission buffer.
*/
left = inb(sc->sc_iobase + FE_BMPR10);
#if FE_DEBUG >= 2
log(LOG_WARNING, "%s: excessive collision (%d/%d)\n",
sc->sc_dev.dv_xname, left, sc->txb_sched);
#endif
#if FE_DEBUG >= 3
fe_dump(LOG_INFO, sc);
#endif
/*
* Update statistics.
*/
ifp->if_collisions += 16;
ifp->if_oerrors++;
ifp->if_opackets += sc->txb_sched - left;
/*
* Collision statistics has been updated.
* Clear the collision flag on 86960 now to avoid confusion.
*/
outb(sc->sc_iobase + FE_DLCR0, FE_D0_COLLID);
/*
* Restart transmitter, skipping the
* collided packet.
*
* We *must* skip the packet to keep network running
* properly. Excessive collision error is an
* indication of the network overload. If we
* tried sending the same packet after excessive
* collision, the network would be filled with
* out-of-time packets. Packets belonging
* to reliable transport (such as TCP) are resent
* by some upper layer.
*/
outb(sc->sc_iobase + FE_BMPR11,
FE_B11_CTRL_SKIP | FE_B11_MODE1);
sc->txb_sched = left - 1;
}
/*
* Handle "transmission complete" interrupt.
*/
if (tstat & FE_D0_TXDONE) {
/*
* Add in total number of collisions on last
* transmission. We also clear "collision occurred" flag
* here.
*
* 86960 has a design flow on collision count on multiple
* packet transmission. When we send two or more packets
* with one start command (that's what we do when the
* transmission queue is clauded), 86960 informs us number
* of collisions occured on the last packet on the
* transmission only. Number of collisions on previous
* packets are lost. I have told that the fact is clearly
* stated in the Fujitsu document.
*
* I considered not to mind it seriously. Collision
* count is not so important, anyway. Any comments? FIXME.
*/
if (inb(sc->sc_iobase + FE_DLCR0) & FE_D0_COLLID) {
/* Clear collision flag. */
outb(sc->sc_iobase + FE_DLCR0, FE_D0_COLLID);
/* Extract collision count from 86960. */
col = inb(sc->sc_iobase + FE_DLCR4) & FE_D4_COL;
if (col == 0) {
/*
* Status register indicates collisions,
* while the collision count is zero.
* This can happen after multiple packet
* transmission, indicating that one or more
* previous packet(s) had been collided.
*
* Since the accurate number of collisions
* has been lost, we just guess it as 1;
* Am I too optimistic? FIXME.
*/
col = 1;
} else
col >>= FE_D4_COL_SHIFT;
ifp->if_collisions += col;
#if FE_DEBUG >= 4
log(LOG_WARNING, "%s: %d collision%s (%d)\n",
sc->sc_dev.dv_xname, col, col == 1 ? "" : "s",
sc->txb_sched);
#endif
}
/*
* Update total number of successfully
* transmitted packets.
*/
ifp->if_opackets += sc->txb_sched;
sc->txb_sched = 0;
}
if (sc->txb_sched == 0) {
/*
* The transmitter is no more active.
* Reset output active flag and watchdog timer.
*/
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_timer = 0;
/*
* If more data is ready to transmit in the buffer, start
* transmitting them. Otherwise keep transmitter idle,
* even if more data is queued. This gives receive
* process a slight priority.
*/
if (sc->txb_count > 0)
fe_xmit(sc);
}
}
/*
* Ethernet interface receiver interrupt.
*/
void
fe_rint(sc, rstat)
struct fe_softc *sc;
u_char rstat;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
int len;
u_char status;
int i;
/*
* Update statistics if this interrupt is caused by an error.
*/
if (rstat & (FE_D1_OVRFLO | FE_D1_CRCERR |
FE_D1_ALGERR | FE_D1_SRTPKT)) {
#if FE_DEBUG >= 3
log(LOG_WARNING, "%s: receive error: %b\n",
sc->sc_dev.dv_xname, rstat, FE_D1_ERRBITS);
#endif
ifp->if_ierrors++;
}
/*
* MB86960 has a flag indicating "receive queue empty."
* We just loop cheking the flag to pull out all received
* packets.
*
* We limit the number of iterrations to avoid infinite loop.
* It can be caused by a very slow CPU (some broken
* peripheral may insert incredible number of wait cycles)
* or, worse, by a broken MB86960 chip.
*/
for (i = 0; i < FE_MAX_RECV_COUNT; i++) {
/* Stop the iterration if 86960 indicates no packets. */
if (inb(sc->sc_iobase + FE_DLCR5) & FE_D5_BUFEMP)
break;
/*
* Extract A receive status byte.
* As our 86960 is in 16 bit bus access mode, we have to
* use inw() to get the status byte. The significant
* value is returned in lower 8 bits.
*/
status = (u_char)inw(sc->sc_iobase + FE_BMPR8);
#if FE_DEBUG >= 4
log(LOG_INFO, "%s: receive status = %02x\n",
sc->sc_dev.dv_xname, status);
#endif
/*
* If there was an error, update statistics and drop
* the packet, unless the interface is in promiscuous
* mode.
*/
if ((status & 0xF0) != 0x20) { /* XXXX ? */
if ((ifp->if_flags & IFF_PROMISC) == 0) {
ifp->if_ierrors++;
fe_droppacket(sc);
continue;
}
}
/*
* Extract the packet length.
* It is a sum of a header (14 bytes) and a payload.
* CRC has been stripped off by the 86960.
*/
len = inw(sc->sc_iobase + FE_BMPR8);
/*
* MB86965 checks the packet length and drop big packet
* before passing it to us. There are no chance we can
* get [crufty] packets. Hence, if the length exceeds
* the specified limit, it means some serious failure,
* such as out-of-sync on receive buffer management.
*
* Is this statement true? FIXME.
*/
if (len > ETHER_MAX_LEN || len < ETHER_HDR_SIZE) {
#if FE_DEBUG >= 2
log(LOG_WARNING,
"%s: received a %s packet? (%u bytes)\n",
sc->sc_dev.dv_xname,
len < ETHER_HDR_SIZE ? "partial" : "big", len);
#endif
ifp->if_ierrors++;
fe_droppacket(sc);
continue;
}
/*
* Check for a short (RUNT) packet. We *do* check
* but do nothing other than print a message.
* Short packets are illegal, but does nothing bad
* if it carries data for upper layer.
*/
#if FE_DEBUG >= 2
if (len < ETHER_MIN_LEN) {
log(LOG_WARNING,
"%s: received a short packet? (%u bytes)\n",
sc->sc_dev.dv_xname, len);
}
#endif
/*
* Go get a packet.
*/
if (!fe_get_packet(sc, len)) {
/* Skip a packet, updating statistics. */
#if FE_DEBUG >= 2
log(LOG_WARNING,
"%s: out of mbufs; dropping packet (%u bytes)\n",
sc->sc_dev.dv_xname, len);
#endif
ifp->if_ierrors++;
fe_droppacket(sc);
/*
* We stop receiving packets, even if there are
* more in the buffer. We hope we can get more
* mbufs next time.
*/
return;
}
/* Successfully received a packet. Update stat. */
ifp->if_ipackets++;
}
}
/*
* Ethernet interface interrupt processor
*/
int
feintr(arg)
void *arg;
{
struct fe_softc *sc = arg;
u_char tstat, rstat;
#if FE_DEBUG >= 4
log(LOG_INFO, "%s: feintr()\n", sc->sc_dev.dv_xname);
fe_dump(LOG_INFO, sc);
#endif
/*
* Get interrupt conditions, masking unneeded flags.
*/
tstat = inb(sc->sc_iobase + FE_DLCR0) & FE_TMASK;
rstat = inb(sc->sc_iobase + FE_DLCR1) & FE_RMASK;
if (tstat == 0 && rstat == 0)
return (0);
/*
* Loop until there are no more new interrupt conditions.
*/
for (;;) {
/*
* Reset the conditions we are acknowledging.
*/
outb(sc->sc_iobase + FE_DLCR0, tstat);
outb(sc->sc_iobase + FE_DLCR1, rstat);
/*
* Handle transmitter interrupts. Handle these first because
* the receiver will reset the board under some conditions.
*/
if (tstat != 0)
fe_tint(sc, tstat);
/*
* Handle receiver interrupts.
*/
if (rstat != 0)
fe_rint(sc, rstat);
/*
* Update the multicast address filter if it is
* needed and possible. We do it now, because
* we can make sure the transmission buffer is empty,
* and there is a good chance that the receive queue
* is empty. It will minimize the possibility of
* packet lossage.
*/
if (sc->filter_change &&
sc->txb_count == 0 && sc->txb_sched == 0) {
fe_loadmar(sc);
sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
}
/*
* If it looks like the transmitter can take more data,
* attempt to start output on the interface. This is done
* after handling the receiver interrupt to give the
* receive operation priority.
*/
if ((sc->sc_ethercom.ec_if.if_flags & IFF_OACTIVE) == 0)
fe_start(&sc->sc_ethercom.ec_if);
1997-10-15 09:55:13 +04:00
#if NRND > 0
if (rstat != 0 || tstat != 0)
rnd_add_uint32(&sc->rnd_source, rstat + tstat);
#endif
/*
* Get interrupt conditions, masking unneeded flags.
*/
tstat = inb(sc->sc_iobase + FE_DLCR0) & FE_TMASK;
rstat = inb(sc->sc_iobase + FE_DLCR1) & FE_RMASK;
if (tstat == 0 && rstat == 0)
return (1);
}
}
/*
* Process an ioctl request. This code needs some work - it looks pretty ugly.
*/
int
fe_ioctl(ifp, command, data)
register struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct fe_softc *sc = ifp->if_softc;
register struct ifaddr *ifa = (struct ifaddr *)data;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
#if FE_DEBUG >= 3
log(LOG_INFO, "%s: ioctl(%x)\n", sc->sc_dev.dv_xname, command);
#endif
s = splnet();
switch (command) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
fe_init(sc);
arp_ifinit(ifp, ifa);
break;
#endif
#ifdef NS
case AF_NS:
{
register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
if (ns_nullhost(*ina))
ina->x_host =
*(union ns_host *)(sc->sc_enaddr);
else {
bcopy(ina->x_host.c_host, sc->sc_enaddr,
ETHER_ADDR_LEN);
bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
ETHER_ADDR_LEN);
}
/* Set new address. */
fe_init(sc);
break;
}
#endif
default:
fe_init(sc);
break;
}
break;
case SIOCSIFFLAGS:
if ((ifp->if_flags & IFF_UP) == 0 &&
(ifp->if_flags & IFF_RUNNING) != 0) {
/*
* If interface is marked down and it is running, then
* stop it.
*/
fe_stop(sc);
ifp->if_flags &= ~IFF_RUNNING;
} else if ((ifp->if_flags & IFF_UP) != 0 &&
(ifp->if_flags & IFF_RUNNING) == 0) {
/*
* If interface is marked up and it is stopped, then
* start it.
*/
fe_init(sc);
} else {
/*
* Reset the interface to pick up changes in any other
* flags that affect hardware registers.
*/
fe_setmode(sc);
}
#if DEBUG >= 1
/* "ifconfig fe0 debug" to print register dump. */
if (ifp->if_flags & IFF_DEBUG) {
log(LOG_INFO, "%s: SIOCSIFFLAGS(DEBUG)\n", sc->sc_dev.dv_xname);
fe_dump(LOG_DEBUG, sc);
}
#endif
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/* Update our multicast list. */
error = (command == SIOCADDMULTI) ?
ether_addmulti(ifr, &sc->sc_ethercom) :
ether_delmulti(ifr, &sc->sc_ethercom);
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
fe_setmode(sc);
error = 0;
}
break;
default:
error = EINVAL;
}
splx(s);
return (error);
}
/*
* Retreive packet from receive buffer and send to the next level up via
* ether_input(). If there is a BPF listener, give a copy to BPF, too.
* Returns 0 if success, -1 if error (i.e., mbuf allocation failure).
*/
int
fe_get_packet(sc, len)
struct fe_softc *sc;
int len;
{
struct ether_header *eh;
struct mbuf *m;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
/* Allocate a header mbuf. */
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == 0)
return (0);
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = len;
/* The following silliness is to make NFS happy. */
#define EROUND ((sizeof(struct ether_header) + 3) & ~3)
#define EOFF (EROUND - sizeof(struct ether_header))
/*
* Our strategy has one more problem. There is a policy on
* mbuf cluster allocation. It says that we must have at
* least MINCLSIZE (208 bytes) to allocate a cluster. For a
* packet of a size between (MHLEN - 2) to (MINCLSIZE - 2),
* our code violates the rule...
* On the other hand, the current code is short, simle,
* and fast, however. It does no harmful thing, just waists
* some memory. Any comments? FIXME.
*/
/* Attach a cluster if this packet doesn't fit in a normal mbuf. */
if (len > MHLEN - EOFF) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return (0);
}
}
/*
* The following assumes there is room for the ether header in the
* header mbuf.
*/
m->m_data += EOFF;
eh = mtod(m, struct ether_header *);
/* Set the length of this packet. */
m->m_len = len;
/* Get a packet. */
insw(sc->sc_iobase + FE_BMPR8, m->m_data, (len + 1) >> 1);
#if NBPFILTER > 0
/*
* Check if there's a BPF listener on this interface. If so, hand off
* the raw packet to bpf.
*/
if (ifp->if_bpf) {
bpf_mtap(ifp->if_bpf, m);
/*
* Note that the interface cannot be in promiscuous mode if
* there are no BPF listeners. And if we are in promiscuous
* mode, we have to check if this packet is really ours.
*/
if ((ifp->if_flags & IFF_PROMISC) != 0 &&
(eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
bcmp(eh->ether_dhost, sc->sc_enaddr,
sizeof(eh->ether_dhost)) != 0) {
m_freem(m);
return (1);
}
}
#endif
/* Fix up data start offset in mbuf to point past ether header. */
m_adj(m, sizeof(struct ether_header));
ether_input(ifp, eh, m);
return (1);
}
/*
* Write an mbuf chain to the transmission buffer memory using 16 bit PIO.
* Returns number of bytes actually written, including length word.
*
* If an mbuf chain is too long for an Ethernet frame, it is not sent.
* Packets shorter than Ethernet minimum are legal, and we pad them
* before sending out. An exception is "partial" packets which are
* shorter than mandatory Ethernet header.
*
* I wrote a code for an experimental "delayed padding" technique.
* When employed, it postpones the padding process for short packets.
* If xmit() occured at the moment, the padding process is omitted, and
* garbages are sent as pad data. If next packet is stored in the
* transmission buffer before xmit(), write_mbuf() pads the previous
* packet before transmitting new packet. This *may* gain the
* system performance (slightly).
*/
void
fe_write_mbufs(sc, m)
struct fe_softc *sc;
struct mbuf *m;
{
int bmpr8 = sc->sc_iobase + FE_BMPR8;
u_char *data;
u_short savebyte; /* WARNING: Architecture dependent! */
int totlen, len, wantbyte;
/* XXX thorpej 960116 - quiet bogus compiler warning. */
savebyte = 0;
#if FE_DELAYED_PADDING
/* Do the "delayed padding." */
len = sc->txb_padding >> 1;
if (len > 0) {
while (--len >= 0)
outw(bmpr8, 0);
sc->txb_padding = 0;
}
#endif
/* We need to use m->m_pkthdr.len, so require the header */
if ((m->m_flags & M_PKTHDR) == 0)
panic("fe_write_mbufs: no header mbuf");
#if FE_DEBUG >= 2
/* First, count up the total number of bytes to copy. */
for (totlen = 0, mp = m; mp != 0; mp = mp->m_next)
totlen += mp->m_len;
/* Check if this matches the one in the packet header. */
if (totlen != m->m_pkthdr.len)
log(LOG_WARNING, "%s: packet length mismatch? (%d/%d)\n",
sc->sc_dev.dv_xname, totlen, m->m_pkthdr.len);
#else
/* Just use the length value in the packet header. */
totlen = m->m_pkthdr.len;
#endif
#if FE_DEBUG >= 1
/*
* Should never send big packets. If such a packet is passed,
* it should be a bug of upper layer. We just ignore it.
* ... Partial (too short) packets, neither.
*/
if (totlen > ETHER_MAX_LEN || totlen < ETHER_HDR_SIZE) {
log(LOG_ERR, "%s: got a %s packet (%u bytes) to send\n",
sc->sc_dev.dv_xname,
totlen < ETHER_HDR_SIZE ? "partial" : "big", totlen);
sc->sc_ethercom.ec_if.if_oerrors++;
return;
}
#endif
/*
* Put the length word for this frame.
* Does 86960 accept odd length? -- Yes.
* Do we need to pad the length to minimum size by ourselves?
* -- Generally yes. But for (or will be) the last
* packet in the transmission buffer, we can skip the
* padding process. It may gain performance slightly. FIXME.
*/
outw(bmpr8, max(totlen, ETHER_MIN_LEN));
/*
* Update buffer status now.
* Truncate the length up to an even number, since we use outw().
*/
totlen = (totlen + 1) & ~1;
sc->txb_free -= FE_DATA_LEN_LEN + max(totlen, ETHER_MIN_LEN);
sc->txb_count++;
#if FE_DELAYED_PADDING
/* Postpone the packet padding if necessary. */
if (totlen < ETHER_MIN_LEN)
sc->txb_padding = ETHER_MIN_LEN - totlen;
#endif
/*
* Transfer the data from mbuf chain to the transmission buffer.
* MB86960 seems to require that data be transferred as words, and
* only words. So that we require some extra code to patch
* over odd-length mbufs.
*/
wantbyte = 0;
for (; m != 0; m = m->m_next) {
/* Ignore empty mbuf. */
len = m->m_len;
if (len == 0)
continue;
/* Find the actual data to send. */
data = mtod(m, caddr_t);
/* Finish the last byte. */
if (wantbyte) {
outw(bmpr8, savebyte | (*data << 8));
data++;
len--;
wantbyte = 0;
}
/* Output contiguous words. */
if (len > 1)
outsw(bmpr8, data, len >> 1);
/* Save remaining byte, if there is one. */
if (len & 1) {
data += len & ~1;
savebyte = *data;
wantbyte = 1;
}
}
/* Spit the last byte, if the length is odd. */
if (wantbyte)
outw(bmpr8, savebyte);
#if ! FE_DELAYED_PADDING
/*
* Pad the packet to the minimum length if necessary.
*/
len = (ETHER_MIN_LEN >> 1) - (totlen >> 1);
while (--len >= 0)
outw(bmpr8, 0);
#endif
}
/*
* Compute the multicast address filter from the
* list of multicast addresses we need to listen to.
*/
void
fe_getmcaf(ec, af)
struct ethercom *ec;
u_char *af;
{
struct ifnet *ifp = &ec->ec_if;
struct ether_multi *enm;
register u_char *cp, c;
register u_long crc;
register int i, len;
struct ether_multistep step;
/*
* Set up multicast address filter by passing all multicast addresses
* through a crc generator, and then using the high order 6 bits as an
* index into the 64 bit logical address filter. The high order bit
* selects the word, while the rest of the bits select the bit within
* the word.
*/
if ((ifp->if_flags & IFF_PROMISC) != 0)
goto allmulti;
af[0] = af[1] = af[2] = af[3] = af[4] = af[5] = af[6] = af[7] = 0x00;
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
sizeof(enm->enm_addrlo)) != 0) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
*/
goto allmulti;
}
cp = enm->enm_addrlo;
crc = 0xffffffff;
for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
c = *cp++;
for (i = 8; --i >= 0;) {
if ((crc & 0x01) ^ (c & 0x01)) {
crc >>= 1;
crc ^= 0xedb88320;
} else
crc >>= 1;
c >>= 1;
}
}
/* Just want the 6 most significant bits. */
crc >>= 26;
/* Turn on the corresponding bit in the filter. */
af[crc >> 3] |= 1 << (crc & 7);
ETHER_NEXT_MULTI(step, enm);
}
ifp->if_flags &= ~IFF_ALLMULTI;
return;
allmulti:
ifp->if_flags |= IFF_ALLMULTI;
af[0] = af[1] = af[2] = af[3] = af[4] = af[5] = af[6] = af[7] = 0xff;
}
/*
* Calculate a new "multicast packet filter" and put the 86960
* receiver in appropriate mode.
*/
void
fe_setmode(sc)
struct fe_softc *sc;
{
int flags = sc->sc_ethercom.ec_if.if_flags;
/*
* If the interface is not running, we postpone the update
* process for receive modes and multicast address filter
* until the interface is restarted. It reduces some
* complicated job on maintaining chip states. (Earlier versions
* of this driver had a bug on that point...)
*
* To complete the trick, fe_init() calls fe_setmode() after
* restarting the interface.
*/
if ((flags & IFF_RUNNING) == 0)
return;
/*
* Promiscuous mode is handled separately.
*/
if ((flags & IFF_PROMISC) != 0) {
/*
* Program 86960 to receive all packets on the segment
* including those directed to other stations.
* Multicast filter stored in MARs are ignored
* under this setting, so we don't need to update it.
*
* Promiscuous mode is used solely by BPF, and BPF only
* listens to valid (no error) packets. So, we ignore
* errornous ones even in this mode.
*/
outb(sc->sc_iobase + FE_DLCR5,
sc->proto_dlcr5 | FE_D5_AFM0 | FE_D5_AFM1);
sc->filter_change = 0;
#if FE_DEBUG >= 3
log(LOG_INFO, "%s: promiscuous mode\n", sc->sc_dev.dv_xname);
#endif
return;
}
/*
* Turn the chip to the normal (non-promiscuous) mode.
*/
outb(sc->sc_iobase + FE_DLCR5, sc->proto_dlcr5 | FE_D5_AFM1);
/*
* Find the new multicast filter value.
*/
fe_getmcaf(&sc->sc_ethercom, sc->filter);
sc->filter_change = 1;
#if FE_DEBUG >= 3
log(LOG_INFO,
"%s: address filter: [%02x %02x %02x %02x %02x %02x %02x %02x]\n",
sc->sc_dev.dv_xname,
sc->filter[0], sc->filter[1], sc->filter[2], sc->filter[3],
sc->filter[4], sc->filter[5], sc->filter[6], sc->filter[7]);
#endif
/*
* We have to update the multicast filter in the 86960, A.S.A.P.
*
* Note that the DLC (Data Linc Control unit, i.e. transmitter
* and receiver) must be stopped when feeding the filter, and
* DLC trushes all packets in both transmission and receive
* buffers when stopped.
*
* ... Are the above sentenses correct? I have to check the
* manual of the MB86960A. FIXME.
*
* To reduce the packet lossage, we delay the filter update
* process until buffers are empty.
*/
if (sc->txb_sched == 0 && sc->txb_count == 0 &&
(inb(sc->sc_iobase + FE_DLCR1) & FE_D1_PKTRDY) == 0) {
/*
* Buffers are (apparently) empty. Load
* the new filter value into MARs now.
*/
fe_loadmar(sc);
} else {
/*
* Buffers are not empty. Mark that we have to update
* the MARs. The new filter will be loaded by feintr()
* later.
*/
#if FE_DEBUG >= 4
log(LOG_INFO, "%s: filter change delayed\n", sc->sc_dev.dv_xname);
#endif
}
}
/*
* Load a new multicast address filter into MARs.
*
* The caller must have splnet'ed befor fe_loadmar.
* This function starts the DLC upon return. So it can be called only
* when the chip is working, i.e., from the driver's point of view, when
* a device is RUNNING. (I mistook the point in previous versions.)
*/
void
fe_loadmar(sc)
struct fe_softc *sc;
{
/* Stop the DLC (transmitter and receiver). */
outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
/* Select register bank 1 for MARs. */
outb(sc->sc_iobase + FE_DLCR7,
sc->proto_dlcr7 | FE_D7_RBS_MAR | FE_D7_POWER_UP);
/* Copy filter value into the registers. */
outblk(sc->sc_iobase + FE_MAR8, sc->filter, FE_FILTER_LEN);
/* Restore the bank selection for BMPRs (i.e., runtime registers). */
outb(sc->sc_iobase + FE_DLCR7,
sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP);
/* Restart the DLC. */
outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_ENABLE);
/* We have just updated the filter. */
sc->filter_change = 0;
#if FE_DEBUG >= 3
log(LOG_INFO, "%s: address filter changed\n", sc->sc_dev.dv_xname);
#endif
}
#if FE_DEBUG >= 1
void
fe_dump(level, sc)
int level;
struct fe_softc *sc;
{
int iobase = sc->sc_iobase;
u_char save_dlcr7;
save_dlcr7 = inb(iobase + FE_DLCR7);
log(level, "\tDLCR = %02x %02x %02x %02x %02x %02x %02x %02x",
inb(iobase + FE_DLCR0), inb(iobase + FE_DLCR1),
inb(iobase + FE_DLCR2), inb(iobase + FE_DLCR3),
inb(iobase + FE_DLCR4), inb(iobase + FE_DLCR5),
inb(iobase + FE_DLCR6), inb(iobase + FE_DLCR7));
outb(iobase + FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_DLCR);
log(level, "\t %02x %02x %02x %02x %02x %02x %02x %02x,",
inb(iobase + FE_DLCR8), inb(iobase + FE_DLCR9),
inb(iobase + FE_DLCR10), inb(iobase + FE_DLCR11),
inb(iobase + FE_DLCR12), inb(iobase + FE_DLCR13),
inb(iobase + FE_DLCR14), inb(iobase + FE_DLCR15));
outb(iobase + FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_MAR);
log(level, "\tMAR = %02x %02x %02x %02x %02x %02x %02x %02x,",
inb(iobase + FE_MAR8), inb(iobase + FE_MAR9),
inb(iobase + FE_MAR10), inb(iobase + FE_MAR11),
inb(iobase + FE_MAR12), inb(iobase + FE_MAR13),
inb(iobase + FE_MAR14), inb(iobase + FE_MAR15));
outb(iobase + FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_BMPR);
log(level, "\tBMPR = xx xx %02x %02x %02x %02x %02x %02x %02x %02x xx %02x.",
inb(iobase + FE_BMPR10), inb(iobase + FE_BMPR11),
inb(iobase + FE_BMPR12), inb(iobase + FE_BMPR13),
inb(iobase + FE_BMPR14), inb(iobase + FE_BMPR15),
inb(iobase + FE_BMPR16), inb(iobase + FE_BMPR17),
inb(iobase + FE_BMPR19));
outb(iobase + FE_DLCR7, save_dlcr7);
}
#endif