NetBSD/share/man/man4/ahc.4

494 lines
14 KiB
Groff
Raw Normal View History

2003-05-03 22:10:37 +04:00
.\" $NetBSD: ahc.4,v 1.24 2003/05/03 18:10:39 wiz Exp $
.\"
.\" Copyright (c) 1995, 1996, 1997, 1998, 2000
.\" Justin T. Gibbs. All rights reserved.
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions
.\" are met:
.\" 1. Redistributions of source code must retain the above copyright
.\" notice, this list of conditions and the following disclaimer.
.\" 2. Redistributions in binary form must reproduce the above copyright
.\" notice, this list of conditions and the following disclaimer in the
.\" documentation and/or other materials provided with the distribution.
.\" 3. The name of the author may not be used to endorse or promote products
.\" derived from this software without specific prior written permission.
.\"
.\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
.\" IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
.\" OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
.\" IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
.\" INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
.\" NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
.\" DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
.\" THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
.\" (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
.\" THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
.\"
.\" $FreeBSD: src/share/man/man4/ahc.4,v 1.22 2000/02/14 16:40:58 gibbs Exp $
.\"
.Dd February 13, 2000
.Dt AHC 4
.Os
.\".Os FreeBSD
.Sh NAME
.Nm ahc
.Nd Adaptec VL/EISA/PCI/CardBus SCSI host adapter driver
.Sh SYNOPSIS
.ie 0 \{
For one or more VL/EISA cards:
.Cd device eisa
.Cd device ahc
\}
\{For VL cards:
.Cd ahc0 at isa? port ? irq ?
.Pp
For EISA cards:
.Cd ahc* at eisa? slot ?\}
.Pp
.ie 0 \{
For one or more PCI cards:
.Cd device pci
.Cd device ahc
\}
\{For PCI cards:
.Cd ahc* at pci? dev ? function ?
.Pp
For CardBus cards:
2000-02-02 22:57:17 +03:00
.Cd ahc* at cardbus? dev ? function ?\}
.Pp
To allow PCI adapters to use memory mapped I/O if enabled:
.Cd options AHC_ALLOW_MEMIO
.Pp
Disable tagged queuing (avoids hangs on some hardware under load)
.Cd options AHC_NO_TAGS
.Pp
.if 0 \{
To configure one or more controllers to assume the target role:
.Cd options AHC_TMODE_ENABLE \*[Lt]bitmask of units\*[Gt]
.Pp
\}
.ie 0 \{
For one or more SCSI busses:
.Cd device scbus0 at ahc0
\}
\{For
.Tn SCSI
busses:
.Cd scsibus* at ahc?\}
.Sh DESCRIPTION
.ie 0 \{
This driver provides access to the
.Tn SCSI
bus(es) connected to Adaptec
.Tn AIC7770 ,
.Tn AIC7850 ,
.Tn AIC7860 ,
.Tn AIC7870 ,
.Tn AIC7880 ,
.Tn AIC7890 ,
.Tn AIC7891 ,
.Tn AIC7892 ,
.Tn AIC7895 ,
.Tn AIC7896 ,
.Tn AIC7897
and
.Tn AIC7899
host adapter chips.
These chips are found on many motherboards as well as the following
Adaptec SCSI controller cards:
.Tn 274X(W) ,
.Tn 274X(T) ,
.Tn 284X ,
.Tn 2910 ,
.Tn 2915 ,
.Tn 2920C ,
.Tn 2930C ,
.Tn 2930U2 ,
.Tn 2940 ,
.Tn 2940U ,
.Tn 2940AU ,
.Tn 2940UW ,
.Tn 2940UW Dual ,
.Tn 2940UW Pro ,
.Tn 2940U2W ,
.Tn 2940U2B ,
.Tn 2950U2W ,
.Tn 2950U2B ,
.Tn 19160B ,
.Tn 29160B ,
.Tn 29160N ,
.Tn 3940 ,
.Tn 3940U ,
.Tn 3940AU ,
.Tn 3940UW ,
.Tn 3940AUW ,
.Tn 3940U2W ,
.Tn 3950U2 ,
.Tn 3960 ,
.Tn 39160 ,
.Tn 3985 ,
and
.Tn 4944UW .
\}
\{The
.Nm
device driver supports
.Tn SCSI
controllers based on
.Tn Adaptec
.Tn AIC77xx
and
.Tn AIC78xx
.Tn SCSI
host adapter chips found on many motherboards as well as
.Tn Adaptec
.Tn SCSI
controller cards.\}
.Pp
Driver features include support for twin and wide busses,
fast, ultra or ultra2 synchronous transfers depending on controller type,
.ie 0 \{
tagged queuing, SCB paging, and target mode.
\}
\{
tagged queuing and SCB paging.\}
.Pp
Memory mapped I/O can be enabled for PCI devices with the
.Dq Dv AHC_ALLOW_MEMIO
configuration option.
Memory mapped I/O is more efficient than the alternative, programmed I/O.
Most PCI BIOSes will map devices so that either technique for communicating
with the card is available.
In some cases,
usually when the PCI device is sitting behind a PCI-\*[Gt]PCI bridge,
the BIOS may fail to properly initialize the chip for memory mapped I/O.
The typical symptom of this problem is a system hang if memory mapped I/O
is attempted.
Most modern motherboards perform the initialization correctly and work fine
with this option enabled.
.Pp
.if 0 \{
Individual controllers may be configured to operate in the target role
through the
.Dq Dv AHC_TMODE_ENABLE
configuration option. The value assigned to this option should be a bitmap
of all units where target mode is desired.
For example, a value of 0x25, would enable target mode on units 0, 2, and 5.
.Pp
\}
Per target configuration performed in the
.Tn SCSI-Select
menu, accessible at boot
in
.No non- Ns Tn EISA
models,
or through an
.Tn EISA
configuration utility for
.Tn EISA
models,
is honored by this driver.
This includes synchronous/asynchronous transfers,
maximum synchronous negotiation rate,
wide transfers,
disconnection,
the host adapter's SCSI ID,
and,
in the case of
.Tn EISA
Twin Channel controllers,
the primary channel selection.
For systems that store non-volatile settings in a system specific manner
2003-03-30 22:05:22 +04:00
rather than a serial EEPROM directly connected to the aic7xxx controller,
the
.Tn BIOS
must be enabled for the driver to access this information.
This restriction applies to all
.Tn EISA
and many motherboard configurations.
.Pp
Note that I/O addresses are determined automatically by the probe routines,
but care should be taken when using a 284x
.Pq Tn VESA No local bus controller
in an
.Tn EISA
system. The jumpers setting the I/O area for the 284x should match the
.Tn EISA
slot into which the card is inserted to prevent conflicts with other
.Tn EISA
cards.
.Pp
Performance and feature sets vary throughout the aic7xxx product line.
The following table provides a comparison of the different chips supported
by the
.Nm
driver. Note that wide and twin channel features, although always supported
by a particular chip, may be disabled in a particular motherboard or card
design.
.Pp
.Bd -filled -offset indent
.Bl -column "aic7770 " "10 " "EISA/VL " "10MHz " "16bit " "SCBs " Features
.Em "Chip MIPS Bus MaxSync MaxWidth SCBs Features"
aic7770 10 EISA/VL 10MHz 16Bit 4 1
aic7850 10 PCI/32 10MHz 8Bit 3
aic7860 10 PCI/32 20MHz 8Bit 3
aic7870 10 PCI/32 10MHz 16Bit 16
aic7880 10 PCI/32 20MHz 16Bit 16
aic7890 20 PCI/32 40MHz 16Bit 16 3 4 5 6 7 8
aic7891 20 PCI/64 40MHz 16Bit 16 3 4 5 6 7 8
aic7892 20 PCI/64 80MHz 16Bit 16 3 4 5 6 7 8
aic7895 15 PCI/32 20MHz 16Bit 16 2 3 4 5
aic7895C 15 PCI/32 20MHz 16Bit 16 2 3 4 5 8
aic7896 20 PCI/32 40MHz 16Bit 16 2 3 4 5 6 7 8
aic7897 20 PCI/64 40MHz 16Bit 16 2 3 4 5 6 7 8
aic7899 20 PCI/64 80MHz 16Bit 16 2 3 4 5 6 7 8
.El
.Bl -enum -compact
.It
Multiplexed Twin Channel Device - One controller servicing two busses.
.It
Multi-function Twin Channel Device - Two controllers on one chip.
.It
Command Channel Secondary DMA Engine - Allows scatter gather list and
SCB prefetch.
.It
64 Byte SCB Support - SCSI CDB is embedded in the SCB to eliminate an extra DMA.
.It
Block Move Instruction Support - Doubles the speed of certain sequencer
operations.
.It
.Sq Bayonet
style Scatter Gather Engine - Improves S/G prefetch performance.
.It
Queuing Registers - Allows queuing of new transactions without pausing the
sequencer.
.It
Multiple Target IDs - Allows the controller to respond to selection as a
target on multiple SCSI IDs.
.El
.Ed
.Sh HARDWARE
Supported
.Tn SCSI
controllers include:
.Pp
.Bl -item -offset indent
.It
.Tn Adaptec AHA-2742W
EISA Fast Wide SCSI adapter
.It
.Tn Adaptec AHA-274xAT
EISA dual channel Fast SCSI adapter
.It
.Tn Adaptec AHA-284x
VL Fast SCSI adapter
.It
.Tn Adaptec AHA-2910
PCI Fast SCSI adapter (no SCSI BIOS)
.It
.Tn Adaptec AHA-2915
PCI Fast SCSI adapter (no SCSI BIOS)
.It
.Tn Adaptec AHA-2920C
PCI Fast SCSI adapter
.Bl -item -offset indent
.It
Note:
Adaptec AHA-2920/A which use the Future Domain's chips are not supported
by this driver.
.El
.It
.Tn Adaptec AHA-2930C
PCI Ultra SCSI adapter
.It
.Tn Adaptec AHA-2930U2
PCI Ultra2 Wide LVD SCSI adapter
.It
.Tn Adaptec AHA-2940
PCI Fast SCSI adapter
.It
.Tn Adaptec AHA-2940U
PCI Ultra SCSI adapter
.It
.Tn Adaptec AHA-2940AU
PCI Ultra SCSI adapter
.It
.Tn Adaptec AHA-2940UW
PCI Ultra Wide SCSI adapter
.It
.Tn Adaptec AHA-2940UW Dual
PCI dual channel Ultra Wide SCSI adapter
.It
.Tn Adaptec AHA-2940UW Pro
PCI Ultra Wide SCSI adapter
.It
.Tn Adaptec AHA-2940U2W
PCI Ultra2 Wide LVD SCSI adapter
.It
.Tn Adaptec AHA-2940U2B
PCI Ultra2 Wide LVD SCSI adapter
.It
.Tn Adaptec AHA-2944W
PCI Fast Wide Differential SCSI adapter
.It
.Tn Adaptec AHA-2944UW
PCI Ultra Wide Differential SCSI adapter
.It
.Tn Adaptec AHA-2950U2W
.It
.Tn Adaptec AHA-2950U2B
64bit PCI Ultra2 Wide LVD SCSI adapter
.It
.Tn Adaptec AHA-19160B
PCI Ultra160 Wide LVD SCSI adapter
.It
.Tn Adaptec AHA-29160N
PCI Ultra160 Wide LVD SCSI adapter
.It
.Tn Adaptec AHA-29160B
64bit PCI Ultra160 Wide LVD SCSI adapter
.It
.Tn Adaptec AHA-3940
PCI dual channel Fast SCSI adapter
.It
.Tn Adaptec AHA-3940U
PCI dual channel Ultra SCSI adapter
.It
.Tn Adaptec AHA-3940AU
PCI dual channel Ultra SCSI adapter
.It
.Tn Adaptec AHA-3940UW
PCI dual channel Ultra Wide SCSI adapter
.It
.Tn Adaptec AHA-3940AUW
PCI dual channel Ultra Wide SCSI adapter
.It
.Tn Adaptec AHA-3940U2W
PCI dual channel Ultra2 Wide LVD SCSI adapter
.It
.Tn Adaptec AHA-3950U2
64bit PCI dual channel Ultra2 Wide LVD SCSI adapter
.It
.Tn Adaptec AHA-3960
64bit PCI dual channel Ultra160 Wide LVD SCSI adapter
.It
.Tn Adaptec AHA-3985
PCI dual channel Fast SCSI RAID adapter
.It
.Tn Adaptec AHA-39160
64bit PCI dual channel Ultra160 Wide LVD SCSI adapter
.It
.Tn Adaptec AHA-4944UW
PCI quad channel PCI Ultra Wide Differential SCSI adapter
.It
Other SCSI controllers based on the
.Tn Adaptec
.Tn AIC7770 ,
.Tn AIC7850 ,
.Tn AIC7860 ,
.Tn AIC7870 ,
.Tn AIC7880 ,
.Tn AIC7890 ,
.Tn AIC7891 ,
.Tn AIC7892 ,
.Tn AIC7895 ,
.Tn AIC7896 ,
.Tn AIC7897
and
.Tn AIC7899
.Tn SCSI
host adapter chips.
.El
.Sh SCSI CONTROL BLOCKS (SCBs)
Every transaction sent to a device on the SCSI bus is assigned a
.Sq SCSI Control Block
(SCB). The SCB contains all of the information required by the
controller to process a transaction. The chip feature table lists
the number of SCBs that can be stored in on-chip memory. All chips
with model numbers greater than or equal to 7870 allow for the on chip
SCB space to be augmented with external SRAM up to a maximum of 255 SCBs.
Very few Adaptec controller configurations have external SRAM.
.Pp
If external SRAM is not available, SCBs are a limited resource.
2001-06-12 18:54:19 +04:00
Using the SCBs in a straight forward manner would only allow the driver to
handle as many concurrent transactions as there are physical SCBs.
To fully use the SCSI bus and the devices on it,
requires much more concurrency.
The solution to this problem is
.Em SCB Paging ,
a concept similar to memory paging. SCB paging takes advantage of
the fact that devices usually disconnect from the SCSI bus for long
periods of time without talking to the controller. The SCBs
for disconnected transactions are only of use to the controller
when the transfer is resumed. When the host queues another transaction
for the controller to execute, the controller firmware will use a
free SCB if one is available. Otherwise, the state of the most recently
disconnected (and therefor most likely to stay disconnected) SCB is
2003-05-03 22:10:37 +04:00
saved, via DMA, to host memory, and the local SCB reused to start
the new transaction. This allows the controller to queue up to
255 transactions regardless of the amount of SCB space. Since the
local SCB space serves as a cache for disconnected transactions, the
more SCB space available, the less host bus traffic consumed saving
and restoring SCB data.
.Sh SEE ALSO
.Xr aha 4 ,
.Xr ahb 4 ,
.Xr cd 4 ,
.Xr ch 4 ,
.Xr intro 4 ,
.Xr scsi 4 ,
.Xr sd 4 ,
.Xr st 4
.Sh HISTORY
The
.Nm
driver appeared in
.Fx 2.0
and
.Nx 1.1 .
.Sh AUTHORS
The
.Nm
driver, the
.Tn AIC7xxx
sequencer-code assembler,
and the firmware running on the aic7xxx chips was written by
.An Justin T. Gibbs .
.Nx
porting is done by Stefan Grefen, Charles M. Hannum,
Michael Graff, Jason R. Thorpe, Pete Bentley,
Frank van der Linden and Noriyuki Soda.
.Sh BUGS
Some
.Tn Quantum
drives (at least the Empire 2100 and 1080s) will not run on an
.Tn AIC7870
Rev B in synchronous mode at 10MHz. Controllers with this problem have a
42 MHz clock crystal on them and run slightly above 10MHz. This confuses
the drive and hangs the bus. Setting a maximum synchronous negotiation rate
of 8MHz in the
.Tn SCSI-Select
utility will allow normal operation.
.Pp
Double Transition clocking is not yet supported for Ultra160 controllers.
This limits these controllers to 40MHz or 80MB/s.
.Pp
.ie 0 \{
Although the Ultra2 and Ultra160 products have sufficient instruction
ram space to support both the initiator and target roles concurrently,
this configuration is disabled in favor of allowing the target role
to respond on multiple target ids. A method for configuring dual
role mode should be provided.
.Pp
Tagged Queuing is not supported in target mode.
.Pp
Reselection in target mode fails to function correctly on all high
voltage differential boards as shipped by Adaptec. Information on
how to modify HVD board to work correctly in target mode is available
from Adaptec.
\}
\{Target mode is not supported on
.Nx
version of this driver.\}