847 lines
24 KiB
C
847 lines
24 KiB
C
|
/* Sequent Symmetry host interface, for GDB when running under Unix.
|
|||
|
Copyright 1986, 1987, 1989, 1991, 1992, 1994 Free Software Foundation, Inc.
|
|||
|
|
|||
|
This file is part of GDB.
|
|||
|
|
|||
|
This program is free software; you can redistribute it and/or modify
|
|||
|
it under the terms of the GNU General Public License as published by
|
|||
|
the Free Software Foundation; either version 2 of the License, or
|
|||
|
(at your option) any later version.
|
|||
|
|
|||
|
This program is distributed in the hope that it will be useful,
|
|||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|||
|
GNU General Public License for more details.
|
|||
|
|
|||
|
You should have received a copy of the GNU General Public License
|
|||
|
along with this program; if not, write to the Free Software
|
|||
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
|||
|
|
|||
|
/* FIXME, some 387-specific items of use taken from i387-tdep.c -- ought to be
|
|||
|
merged back in. */
|
|||
|
|
|||
|
#include "defs.h"
|
|||
|
#include "frame.h"
|
|||
|
#include "inferior.h"
|
|||
|
#include "symtab.h"
|
|||
|
#include "target.h"
|
|||
|
|
|||
|
/* FIXME: What is the _INKERNEL define for? */
|
|||
|
#define _INKERNEL
|
|||
|
#include <signal.h>
|
|||
|
#undef _INKERNEL
|
|||
|
#include <sys/wait.h>
|
|||
|
#include <sys/param.h>
|
|||
|
#include <sys/user.h>
|
|||
|
#include <sys/proc.h>
|
|||
|
#include <sys/dir.h>
|
|||
|
#include <sys/ioctl.h>
|
|||
|
#include "gdb_stat.h"
|
|||
|
#ifdef _SEQUENT_
|
|||
|
#include <sys/ptrace.h>
|
|||
|
#else
|
|||
|
/* Dynix has only machine/ptrace.h, which is already included by sys/user.h */
|
|||
|
/* Dynix has no mptrace call */
|
|||
|
#define mptrace ptrace
|
|||
|
#endif
|
|||
|
#include "gdbcore.h"
|
|||
|
#include <fcntl.h>
|
|||
|
#include <sgtty.h>
|
|||
|
#define TERMINAL struct sgttyb
|
|||
|
|
|||
|
#include "gdbcore.h"
|
|||
|
|
|||
|
void
|
|||
|
store_inferior_registers(regno)
|
|||
|
int regno;
|
|||
|
{
|
|||
|
struct pt_regset regs;
|
|||
|
int i;
|
|||
|
extern char registers[];
|
|||
|
|
|||
|
/* FIXME: Fetching the registers is a kludge to initialize all elements
|
|||
|
in the fpu and fpa status. This works for normal debugging, but
|
|||
|
might cause problems when calling functions in the inferior.
|
|||
|
At least fpu_control and fpa_pcr (probably more) should be added
|
|||
|
to the registers array to solve this properly. */
|
|||
|
mptrace (XPT_RREGS, inferior_pid, (PTRACE_ARG3_TYPE) ®s, 0);
|
|||
|
|
|||
|
regs.pr_eax = *(int *)®isters[REGISTER_BYTE(0)];
|
|||
|
regs.pr_ebx = *(int *)®isters[REGISTER_BYTE(5)];
|
|||
|
regs.pr_ecx = *(int *)®isters[REGISTER_BYTE(2)];
|
|||
|
regs.pr_edx = *(int *)®isters[REGISTER_BYTE(1)];
|
|||
|
regs.pr_esi = *(int *)®isters[REGISTER_BYTE(6)];
|
|||
|
regs.pr_edi = *(int *)®isters[REGISTER_BYTE(7)];
|
|||
|
regs.pr_esp = *(int *)®isters[REGISTER_BYTE(14)];
|
|||
|
regs.pr_ebp = *(int *)®isters[REGISTER_BYTE(15)];
|
|||
|
regs.pr_eip = *(int *)®isters[REGISTER_BYTE(16)];
|
|||
|
regs.pr_flags = *(int *)®isters[REGISTER_BYTE(17)];
|
|||
|
for (i = 0; i < 31; i++)
|
|||
|
{
|
|||
|
regs.pr_fpa.fpa_regs[i] =
|
|||
|
*(int *)®isters[REGISTER_BYTE(FP1_REGNUM+i)];
|
|||
|
}
|
|||
|
memcpy (regs.pr_fpu.fpu_stack[0], ®isters[REGISTER_BYTE(ST0_REGNUM)], 10);
|
|||
|
memcpy (regs.pr_fpu.fpu_stack[1], ®isters[REGISTER_BYTE(ST1_REGNUM)], 10);
|
|||
|
memcpy (regs.pr_fpu.fpu_stack[2], ®isters[REGISTER_BYTE(ST2_REGNUM)], 10);
|
|||
|
memcpy (regs.pr_fpu.fpu_stack[3], ®isters[REGISTER_BYTE(ST3_REGNUM)], 10);
|
|||
|
memcpy (regs.pr_fpu.fpu_stack[4], ®isters[REGISTER_BYTE(ST4_REGNUM)], 10);
|
|||
|
memcpy (regs.pr_fpu.fpu_stack[5], ®isters[REGISTER_BYTE(ST5_REGNUM)], 10);
|
|||
|
memcpy (regs.pr_fpu.fpu_stack[6], ®isters[REGISTER_BYTE(ST6_REGNUM)], 10);
|
|||
|
memcpy (regs.pr_fpu.fpu_stack[7], ®isters[REGISTER_BYTE(ST7_REGNUM)], 10);
|
|||
|
mptrace (XPT_WREGS, inferior_pid, (PTRACE_ARG3_TYPE) ®s, 0);
|
|||
|
}
|
|||
|
|
|||
|
void
|
|||
|
fetch_inferior_registers (regno)
|
|||
|
int regno;
|
|||
|
{
|
|||
|
int i;
|
|||
|
struct pt_regset regs;
|
|||
|
extern char registers[];
|
|||
|
|
|||
|
registers_fetched ();
|
|||
|
|
|||
|
mptrace (XPT_RREGS, inferior_pid, (PTRACE_ARG3_TYPE) ®s, 0);
|
|||
|
*(int *)®isters[REGISTER_BYTE(EAX_REGNUM)] = regs.pr_eax;
|
|||
|
*(int *)®isters[REGISTER_BYTE(EBX_REGNUM)] = regs.pr_ebx;
|
|||
|
*(int *)®isters[REGISTER_BYTE(ECX_REGNUM)] = regs.pr_ecx;
|
|||
|
*(int *)®isters[REGISTER_BYTE(EDX_REGNUM)] = regs.pr_edx;
|
|||
|
*(int *)®isters[REGISTER_BYTE(ESI_REGNUM)] = regs.pr_esi;
|
|||
|
*(int *)®isters[REGISTER_BYTE(EDI_REGNUM)] = regs.pr_edi;
|
|||
|
*(int *)®isters[REGISTER_BYTE(EBP_REGNUM)] = regs.pr_ebp;
|
|||
|
*(int *)®isters[REGISTER_BYTE(ESP_REGNUM)] = regs.pr_esp;
|
|||
|
*(int *)®isters[REGISTER_BYTE(EIP_REGNUM)] = regs.pr_eip;
|
|||
|
*(int *)®isters[REGISTER_BYTE(EFLAGS_REGNUM)] = regs.pr_flags;
|
|||
|
for (i = 0; i < FPA_NREGS; i++)
|
|||
|
{
|
|||
|
*(int *)®isters[REGISTER_BYTE(FP1_REGNUM+i)] =
|
|||
|
regs.pr_fpa.fpa_regs[i];
|
|||
|
}
|
|||
|
memcpy (®isters[REGISTER_BYTE(ST0_REGNUM)], regs.pr_fpu.fpu_stack[0], 10);
|
|||
|
memcpy (®isters[REGISTER_BYTE(ST1_REGNUM)], regs.pr_fpu.fpu_stack[1], 10);
|
|||
|
memcpy (®isters[REGISTER_BYTE(ST2_REGNUM)], regs.pr_fpu.fpu_stack[2], 10);
|
|||
|
memcpy (®isters[REGISTER_BYTE(ST3_REGNUM)], regs.pr_fpu.fpu_stack[3], 10);
|
|||
|
memcpy (®isters[REGISTER_BYTE(ST4_REGNUM)], regs.pr_fpu.fpu_stack[4], 10);
|
|||
|
memcpy (®isters[REGISTER_BYTE(ST5_REGNUM)], regs.pr_fpu.fpu_stack[5], 10);
|
|||
|
memcpy (®isters[REGISTER_BYTE(ST6_REGNUM)], regs.pr_fpu.fpu_stack[6], 10);
|
|||
|
memcpy (®isters[REGISTER_BYTE(ST7_REGNUM)], regs.pr_fpu.fpu_stack[7], 10);
|
|||
|
}
|
|||
|
|
|||
|
/* FIXME: This should be merged with i387-tdep.c as well. */
|
|||
|
static
|
|||
|
print_fpu_status(ep)
|
|||
|
struct pt_regset ep;
|
|||
|
{
|
|||
|
int i;
|
|||
|
int bothstatus;
|
|||
|
int top;
|
|||
|
int fpreg;
|
|||
|
unsigned char *p;
|
|||
|
|
|||
|
printf_unfiltered("80387:");
|
|||
|
if (ep.pr_fpu.fpu_ip == 0) {
|
|||
|
printf_unfiltered(" not in use.\n");
|
|||
|
return;
|
|||
|
} else {
|
|||
|
printf_unfiltered("\n");
|
|||
|
}
|
|||
|
if (ep.pr_fpu.fpu_status != 0) {
|
|||
|
print_387_status_word (ep.pr_fpu.fpu_status);
|
|||
|
}
|
|||
|
print_387_control_word (ep.pr_fpu.fpu_control);
|
|||
|
printf_unfiltered ("last exception: ");
|
|||
|
printf_unfiltered ("opcode 0x%x; ", ep.pr_fpu.fpu_rsvd4);
|
|||
|
printf_unfiltered ("pc 0x%x:0x%x; ", ep.pr_fpu.fpu_cs, ep.pr_fpu.fpu_ip);
|
|||
|
printf_unfiltered ("operand 0x%x:0x%x\n", ep.pr_fpu.fpu_data_offset, ep.pr_fpu.fpu_op_sel);
|
|||
|
|
|||
|
top = (ep.pr_fpu.fpu_status >> 11) & 7;
|
|||
|
|
|||
|
printf_unfiltered ("regno tag msb lsb value\n");
|
|||
|
for (fpreg = 7; fpreg >= 0; fpreg--)
|
|||
|
{
|
|||
|
double val;
|
|||
|
|
|||
|
printf_unfiltered ("%s %d: ", fpreg == top ? "=>" : " ", fpreg);
|
|||
|
|
|||
|
switch ((ep.pr_fpu.fpu_tag >> (fpreg * 2)) & 3)
|
|||
|
{
|
|||
|
case 0: printf_unfiltered ("valid "); break;
|
|||
|
case 1: printf_unfiltered ("zero "); break;
|
|||
|
case 2: printf_unfiltered ("trap "); break;
|
|||
|
case 3: printf_unfiltered ("empty "); break;
|
|||
|
}
|
|||
|
for (i = 9; i >= 0; i--)
|
|||
|
printf_unfiltered ("%02x", ep.pr_fpu.fpu_stack[fpreg][i]);
|
|||
|
|
|||
|
i387_to_double ((char *)ep.pr_fpu.fpu_stack[fpreg], (char *)&val);
|
|||
|
printf_unfiltered (" %g\n", val);
|
|||
|
}
|
|||
|
if (ep.pr_fpu.fpu_rsvd1)
|
|||
|
warning ("rsvd1 is 0x%x\n", ep.pr_fpu.fpu_rsvd1);
|
|||
|
if (ep.pr_fpu.fpu_rsvd2)
|
|||
|
warning ("rsvd2 is 0x%x\n", ep.pr_fpu.fpu_rsvd2);
|
|||
|
if (ep.pr_fpu.fpu_rsvd3)
|
|||
|
warning ("rsvd3 is 0x%x\n", ep.pr_fpu.fpu_rsvd3);
|
|||
|
if (ep.pr_fpu.fpu_rsvd5)
|
|||
|
warning ("rsvd5 is 0x%x\n", ep.pr_fpu.fpu_rsvd5);
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
print_1167_control_word(pcr)
|
|||
|
unsigned int pcr;
|
|||
|
|
|||
|
{
|
|||
|
int pcr_tmp;
|
|||
|
|
|||
|
pcr_tmp = pcr & FPA_PCR_MODE;
|
|||
|
printf_unfiltered("\tMODE= %#x; RND= %#x ", pcr_tmp, pcr_tmp & 12);
|
|||
|
switch (pcr_tmp & 12) {
|
|||
|
case 0:
|
|||
|
printf_unfiltered("RN (Nearest Value)");
|
|||
|
break;
|
|||
|
case 1:
|
|||
|
printf_unfiltered("RZ (Zero)");
|
|||
|
break;
|
|||
|
case 2:
|
|||
|
printf_unfiltered("RP (Positive Infinity)");
|
|||
|
break;
|
|||
|
case 3:
|
|||
|
printf_unfiltered("RM (Negative Infinity)");
|
|||
|
break;
|
|||
|
}
|
|||
|
printf_unfiltered("; IRND= %d ", pcr_tmp & 2);
|
|||
|
if (0 == pcr_tmp & 2) {
|
|||
|
printf_unfiltered("(same as RND)\n");
|
|||
|
} else {
|
|||
|
printf_unfiltered("(toward zero)\n");
|
|||
|
}
|
|||
|
pcr_tmp = pcr & FPA_PCR_EM;
|
|||
|
printf_unfiltered("\tEM= %#x", pcr_tmp);
|
|||
|
if (pcr_tmp & FPA_PCR_EM_DM) printf_unfiltered(" DM");
|
|||
|
if (pcr_tmp & FPA_PCR_EM_UOM) printf_unfiltered(" UOM");
|
|||
|
if (pcr_tmp & FPA_PCR_EM_PM) printf_unfiltered(" PM");
|
|||
|
if (pcr_tmp & FPA_PCR_EM_UM) printf_unfiltered(" UM");
|
|||
|
if (pcr_tmp & FPA_PCR_EM_OM) printf_unfiltered(" OM");
|
|||
|
if (pcr_tmp & FPA_PCR_EM_ZM) printf_unfiltered(" ZM");
|
|||
|
if (pcr_tmp & FPA_PCR_EM_IM) printf_unfiltered(" IM");
|
|||
|
printf_unfiltered("\n");
|
|||
|
pcr_tmp = FPA_PCR_CC;
|
|||
|
printf_unfiltered("\tCC= %#x", pcr_tmp);
|
|||
|
if (pcr_tmp & FPA_PCR_20MHZ) printf_unfiltered(" 20MHZ");
|
|||
|
if (pcr_tmp & FPA_PCR_CC_Z) printf_unfiltered(" Z");
|
|||
|
if (pcr_tmp & FPA_PCR_CC_C2) printf_unfiltered(" C2");
|
|||
|
|
|||
|
/* Dynix defines FPA_PCR_CC_C0 to 0x100 and ptx defines
|
|||
|
FPA_PCR_CC_C1 to 0x100. Use whichever is defined and assume
|
|||
|
the OS knows what it is doing. */
|
|||
|
#ifdef FPA_PCR_CC_C1
|
|||
|
if (pcr_tmp & FPA_PCR_CC_C1) printf_unfiltered(" C1");
|
|||
|
#else
|
|||
|
if (pcr_tmp & FPA_PCR_CC_C0) printf_unfiltered(" C0");
|
|||
|
#endif
|
|||
|
|
|||
|
switch (pcr_tmp)
|
|||
|
{
|
|||
|
case FPA_PCR_CC_Z:
|
|||
|
printf_unfiltered(" (Equal)");
|
|||
|
break;
|
|||
|
#ifdef FPA_PCR_CC_C1
|
|||
|
case FPA_PCR_CC_C1:
|
|||
|
#else
|
|||
|
case FPA_PCR_CC_C0:
|
|||
|
#endif
|
|||
|
printf_unfiltered(" (Less than)");
|
|||
|
break;
|
|||
|
case 0:
|
|||
|
printf_unfiltered(" (Greater than)");
|
|||
|
break;
|
|||
|
case FPA_PCR_CC_Z |
|
|||
|
#ifdef FPA_PCR_CC_C1
|
|||
|
FPA_PCR_CC_C1
|
|||
|
#else
|
|||
|
FPA_PCR_CC_C0
|
|||
|
#endif
|
|||
|
| FPA_PCR_CC_C2:
|
|||
|
printf_unfiltered(" (Unordered)");
|
|||
|
break;
|
|||
|
default:
|
|||
|
printf_unfiltered(" (Undefined)");
|
|||
|
break;
|
|||
|
}
|
|||
|
printf_unfiltered("\n");
|
|||
|
pcr_tmp = pcr & FPA_PCR_AE;
|
|||
|
printf_unfiltered("\tAE= %#x", pcr_tmp);
|
|||
|
if (pcr_tmp & FPA_PCR_AE_DE) printf_unfiltered(" DE");
|
|||
|
if (pcr_tmp & FPA_PCR_AE_UOE) printf_unfiltered(" UOE");
|
|||
|
if (pcr_tmp & FPA_PCR_AE_PE) printf_unfiltered(" PE");
|
|||
|
if (pcr_tmp & FPA_PCR_AE_UE) printf_unfiltered(" UE");
|
|||
|
if (pcr_tmp & FPA_PCR_AE_OE) printf_unfiltered(" OE");
|
|||
|
if (pcr_tmp & FPA_PCR_AE_ZE) printf_unfiltered(" ZE");
|
|||
|
if (pcr_tmp & FPA_PCR_AE_EE) printf_unfiltered(" EE");
|
|||
|
if (pcr_tmp & FPA_PCR_AE_IE) printf_unfiltered(" IE");
|
|||
|
printf_unfiltered("\n");
|
|||
|
}
|
|||
|
|
|||
|
print_1167_regs(regs)
|
|||
|
long regs[FPA_NREGS];
|
|||
|
|
|||
|
{
|
|||
|
int i;
|
|||
|
|
|||
|
union {
|
|||
|
double d;
|
|||
|
long l[2];
|
|||
|
} xd;
|
|||
|
union {
|
|||
|
float f;
|
|||
|
long l;
|
|||
|
} xf;
|
|||
|
|
|||
|
|
|||
|
for (i = 0; i < FPA_NREGS; i++) {
|
|||
|
xf.l = regs[i];
|
|||
|
printf_unfiltered("%%fp%d: raw= %#x, single= %f", i+1, regs[i], xf.f);
|
|||
|
if (!(i & 1)) {
|
|||
|
printf_unfiltered("\n");
|
|||
|
} else {
|
|||
|
xd.l[1] = regs[i];
|
|||
|
xd.l[0] = regs[i+1];
|
|||
|
printf_unfiltered(", double= %f\n", xd.d);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
print_fpa_status(ep)
|
|||
|
struct pt_regset ep;
|
|||
|
|
|||
|
{
|
|||
|
|
|||
|
printf_unfiltered("WTL 1167:");
|
|||
|
if (ep.pr_fpa.fpa_pcr !=0) {
|
|||
|
printf_unfiltered("\n");
|
|||
|
print_1167_control_word(ep.pr_fpa.fpa_pcr);
|
|||
|
print_1167_regs(ep.pr_fpa.fpa_regs);
|
|||
|
} else {
|
|||
|
printf_unfiltered(" not in use.\n");
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
#if 0 /* disabled because it doesn't go through the target vector. */
|
|||
|
i386_float_info ()
|
|||
|
{
|
|||
|
char ubuf[UPAGES*NBPG];
|
|||
|
struct pt_regset regset;
|
|||
|
|
|||
|
if (have_inferior_p())
|
|||
|
{
|
|||
|
PTRACE_READ_REGS (inferior_pid, (PTRACE_ARG3_TYPE) ®set);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
int corechan = bfd_cache_lookup (core_bfd);
|
|||
|
if (lseek (corechan, 0, 0) < 0)
|
|||
|
{
|
|||
|
perror ("seek on core file");
|
|||
|
}
|
|||
|
if (myread (corechan, ubuf, UPAGES*NBPG) < 0)
|
|||
|
{
|
|||
|
perror ("read on core file");
|
|||
|
}
|
|||
|
/* only interested in the floating point registers */
|
|||
|
regset.pr_fpu = ((struct user *) ubuf)->u_fpusave;
|
|||
|
regset.pr_fpa = ((struct user *) ubuf)->u_fpasave;
|
|||
|
}
|
|||
|
print_fpu_status(regset);
|
|||
|
print_fpa_status(regset);
|
|||
|
}
|
|||
|
#endif
|
|||
|
|
|||
|
static volatile int got_sigchld;
|
|||
|
|
|||
|
/*ARGSUSED*/
|
|||
|
/* This will eventually be more interesting. */
|
|||
|
void
|
|||
|
sigchld_handler(signo)
|
|||
|
int signo;
|
|||
|
{
|
|||
|
got_sigchld++;
|
|||
|
}
|
|||
|
|
|||
|
/*
|
|||
|
* Signals for which the default action does not cause the process
|
|||
|
* to die. See <sys/signal.h> for where this came from (alas, we
|
|||
|
* can't use those macros directly)
|
|||
|
*/
|
|||
|
#ifndef sigmask
|
|||
|
#define sigmask(s) (1 << ((s) - 1))
|
|||
|
#endif
|
|||
|
#define SIGNALS_DFL_SAFE sigmask(SIGSTOP) | sigmask(SIGTSTP) | \
|
|||
|
sigmask(SIGTTIN) | sigmask(SIGTTOU) | sigmask(SIGCHLD) | \
|
|||
|
sigmask(SIGCONT) | sigmask(SIGWINCH) | sigmask(SIGPWR) | \
|
|||
|
sigmask(SIGURG) | sigmask(SIGPOLL)
|
|||
|
|
|||
|
#ifdef ATTACH_DETACH
|
|||
|
/*
|
|||
|
* Thanks to XPT_MPDEBUGGER, we have to mange child_wait().
|
|||
|
*/
|
|||
|
int
|
|||
|
child_wait(pid, status)
|
|||
|
int pid;
|
|||
|
struct target_waitstatus *status;
|
|||
|
{
|
|||
|
int save_errno, rv, xvaloff, saoff, sa_hand;
|
|||
|
struct pt_stop pt;
|
|||
|
struct user u;
|
|||
|
sigset_t set;
|
|||
|
/* Host signal number for a signal which the inferior terminates with, or
|
|||
|
0 if it hasn't terminated due to a signal. */
|
|||
|
static int death_by_signal = 0;
|
|||
|
#ifdef SVR4_SHARED_LIBS /* use this to distinguish ptx 2 vs ptx 4 */
|
|||
|
prstatus_t pstatus;
|
|||
|
#endif
|
|||
|
|
|||
|
do {
|
|||
|
set_sigint_trap(); /* Causes SIGINT to be passed on to the
|
|||
|
attached process. */
|
|||
|
save_errno = errno;
|
|||
|
|
|||
|
got_sigchld = 0;
|
|||
|
|
|||
|
sigemptyset(&set);
|
|||
|
|
|||
|
while (got_sigchld == 0) {
|
|||
|
sigsuspend(&set);
|
|||
|
}
|
|||
|
|
|||
|
clear_sigint_trap();
|
|||
|
|
|||
|
rv = mptrace(XPT_STOPSTAT, 0, (char *)&pt, 0);
|
|||
|
if (-1 == rv) {
|
|||
|
printf("XPT_STOPSTAT: errno %d\n", errno); /* DEBUG */
|
|||
|
continue;
|
|||
|
}
|
|||
|
|
|||
|
pid = pt.ps_pid;
|
|||
|
|
|||
|
if (pid != inferior_pid) {
|
|||
|
/* NOTE: the mystery fork in csh/tcsh needs to be ignored.
|
|||
|
* We should not return new children for the initial run
|
|||
|
* of a process until it has done the exec.
|
|||
|
*/
|
|||
|
/* inferior probably forked; send it on its way */
|
|||
|
rv = mptrace(XPT_UNDEBUG, pid, 0, 0);
|
|||
|
if (-1 == rv) {
|
|||
|
printf("child_wait: XPT_UNDEBUG: pid %d: %s\n", pid,
|
|||
|
safe_strerror(errno));
|
|||
|
}
|
|||
|
continue;
|
|||
|
}
|
|||
|
/* FIXME: Do we deal with fork notification correctly? */
|
|||
|
switch (pt.ps_reason) {
|
|||
|
case PTS_FORK:
|
|||
|
/* multi proc: treat like PTS_EXEC */
|
|||
|
/*
|
|||
|
* Pretend this didn't happen, since gdb isn't set up
|
|||
|
* to deal with stops on fork.
|
|||
|
*/
|
|||
|
rv = ptrace(PT_CONTSIG, pid, 1, 0);
|
|||
|
if (-1 == rv) {
|
|||
|
printf("PTS_FORK: PT_CONTSIG: error %d\n", errno);
|
|||
|
}
|
|||
|
continue;
|
|||
|
case PTS_EXEC:
|
|||
|
/*
|
|||
|
* Pretend this is a SIGTRAP.
|
|||
|
*/
|
|||
|
status->kind = TARGET_WAITKIND_STOPPED;
|
|||
|
status->value.sig = TARGET_SIGNAL_TRAP;
|
|||
|
break;
|
|||
|
case PTS_EXIT:
|
|||
|
/*
|
|||
|
* Note: we stop before the exit actually occurs. Extract
|
|||
|
* the exit code from the uarea. If we're stopped in the
|
|||
|
* exit() system call, the exit code will be in
|
|||
|
* u.u_ap[0]. An exit due to an uncaught signal will have
|
|||
|
* something else in here, see the comment in the default:
|
|||
|
* case, below. Finally,let the process exit.
|
|||
|
*/
|
|||
|
if (death_by_signal)
|
|||
|
{
|
|||
|
status->kind = TARGET_WAITKIND_SIGNALED;
|
|||
|
status->value.sig = target_signal_from_host (death_by_signal);
|
|||
|
death_by_signal = 0;
|
|||
|
break;
|
|||
|
}
|
|||
|
xvaloff = (unsigned long)&u.u_ap[0] - (unsigned long)&u;
|
|||
|
errno = 0;
|
|||
|
rv = ptrace(PT_RUSER, pid, (char *)xvaloff, 0);
|
|||
|
status->kind = TARGET_WAITKIND_EXITED;
|
|||
|
status->value.integer = rv;
|
|||
|
/*
|
|||
|
* addr & data to mptrace() don't matter here, since
|
|||
|
* the process is already dead.
|
|||
|
*/
|
|||
|
rv = mptrace(XPT_UNDEBUG, pid, 0, 0);
|
|||
|
if (-1 == rv) {
|
|||
|
printf("child_wait: PTS_EXIT: XPT_UNDEBUG: pid %d error %d\n", pid,
|
|||
|
errno);
|
|||
|
}
|
|||
|
break;
|
|||
|
case PTS_WATCHPT_HIT:
|
|||
|
fatal("PTS_WATCHPT_HIT\n");
|
|||
|
break;
|
|||
|
default:
|
|||
|
/* stopped by signal */
|
|||
|
status->kind = TARGET_WAITKIND_STOPPED;
|
|||
|
status->value.sig = target_signal_from_host (pt.ps_reason);
|
|||
|
death_by_signal = 0;
|
|||
|
|
|||
|
if (0 == (SIGNALS_DFL_SAFE & sigmask(pt.ps_reason))) {
|
|||
|
break;
|
|||
|
}
|
|||
|
/* else default action of signal is to die */
|
|||
|
#ifdef SVR4_SHARED_LIBS
|
|||
|
rv = ptrace(PT_GET_PRSTATUS, pid, (char *)&pstatus, 0);
|
|||
|
if (-1 == rv)
|
|||
|
error("child_wait: signal %d PT_GET_PRSTATUS: %s\n",
|
|||
|
pt.ps_reason, safe_strerror(errno));
|
|||
|
if (pstatus.pr_cursig != pt.ps_reason) {
|
|||
|
printf("pstatus signal %d, pt signal %d\n",
|
|||
|
pstatus.pr_cursig, pt.ps_reason);
|
|||
|
}
|
|||
|
sa_hand = (int)pstatus.pr_action.sa_handler;
|
|||
|
#else
|
|||
|
saoff = (unsigned long)&u.u_sa[0] - (unsigned long)&u;
|
|||
|
saoff += sizeof(struct sigaction) * (pt.ps_reason - 1);
|
|||
|
errno = 0;
|
|||
|
sa_hand = ptrace(PT_RUSER, pid, (char *)saoff, 0);
|
|||
|
if (errno)
|
|||
|
error("child_wait: signal %d: RUSER: %s\n",
|
|||
|
pt.ps_reason, safe_strerror(errno));
|
|||
|
#endif
|
|||
|
if ((int)SIG_DFL == sa_hand) {
|
|||
|
/* we will be dying */
|
|||
|
death_by_signal = pt.ps_reason;
|
|||
|
}
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
} while (pid != inferior_pid); /* Some other child died or stopped */
|
|||
|
|
|||
|
return pid;
|
|||
|
}
|
|||
|
#else /* !ATTACH_DETACH */
|
|||
|
/*
|
|||
|
* Simple child_wait() based on inftarg.c child_wait() for use until
|
|||
|
* the MPDEBUGGER child_wait() works properly. This will go away when
|
|||
|
* that is fixed.
|
|||
|
*/
|
|||
|
child_wait (pid, ourstatus)
|
|||
|
int pid;
|
|||
|
struct target_waitstatus *ourstatus;
|
|||
|
{
|
|||
|
int save_errno;
|
|||
|
int status;
|
|||
|
|
|||
|
do {
|
|||
|
pid = wait (&status);
|
|||
|
save_errno = errno;
|
|||
|
|
|||
|
if (pid == -1)
|
|||
|
{
|
|||
|
if (save_errno == EINTR)
|
|||
|
continue;
|
|||
|
fprintf (stderr, "Child process unexpectedly missing: %s.\n",
|
|||
|
safe_strerror (save_errno));
|
|||
|
ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
|
|||
|
ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN;
|
|||
|
return -1;
|
|||
|
}
|
|||
|
} while (pid != inferior_pid); /* Some other child died or stopped */
|
|||
|
store_waitstatus (ourstatus, status);
|
|||
|
return pid;
|
|||
|
}
|
|||
|
#endif /* ATTACH_DETACH */
|
|||
|
|
|||
|
|
|||
|
|
|||
|
/* This function simply calls ptrace with the given arguments.
|
|||
|
It exists so that all calls to ptrace are isolated in this
|
|||
|
machine-dependent file. */
|
|||
|
int
|
|||
|
call_ptrace (request, pid, addr, data)
|
|||
|
int request, pid;
|
|||
|
PTRACE_ARG3_TYPE addr;
|
|||
|
int data;
|
|||
|
{
|
|||
|
return ptrace (request, pid, addr, data);
|
|||
|
}
|
|||
|
|
|||
|
int
|
|||
|
call_mptrace(request, pid, addr, data)
|
|||
|
int request, pid;
|
|||
|
PTRACE_ARG3_TYPE addr;
|
|||
|
int data;
|
|||
|
{
|
|||
|
return mptrace(request, pid, addr, data);
|
|||
|
}
|
|||
|
|
|||
|
#if defined (DEBUG_PTRACE)
|
|||
|
/* For the rest of the file, use an extra level of indirection */
|
|||
|
/* This lets us breakpoint usefully on call_ptrace. */
|
|||
|
#define ptrace call_ptrace
|
|||
|
#define mptrace call_mptrace
|
|||
|
#endif
|
|||
|
|
|||
|
void
|
|||
|
kill_inferior ()
|
|||
|
{
|
|||
|
if (inferior_pid == 0)
|
|||
|
return;
|
|||
|
|
|||
|
/* For MPDEBUGGER, don't use PT_KILL, since the child will stop
|
|||
|
again with a PTS_EXIT. Just hit him with SIGKILL (so he stops)
|
|||
|
and detach. */
|
|||
|
|
|||
|
kill (inferior_pid, SIGKILL);
|
|||
|
#ifdef ATTACH_DETACH
|
|||
|
detach(SIGKILL);
|
|||
|
#else /* ATTACH_DETACH */
|
|||
|
ptrace(PT_KILL, inferior_pid, 0, 0);
|
|||
|
wait((int *)NULL);
|
|||
|
#endif /* ATTACH_DETACH */
|
|||
|
target_mourn_inferior ();
|
|||
|
}
|
|||
|
|
|||
|
/* Resume execution of the inferior process.
|
|||
|
If STEP is nonzero, single-step it.
|
|||
|
If SIGNAL is nonzero, give it that signal. */
|
|||
|
|
|||
|
void
|
|||
|
child_resume (pid, step, signal)
|
|||
|
int pid;
|
|||
|
int step;
|
|||
|
enum target_signal signal;
|
|||
|
{
|
|||
|
errno = 0;
|
|||
|
|
|||
|
if (pid == -1)
|
|||
|
pid = inferior_pid;
|
|||
|
|
|||
|
/* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
|
|||
|
it was. (If GDB wanted it to start some other way, we have already
|
|||
|
written a new PC value to the child.)
|
|||
|
|
|||
|
If this system does not support PT_SSTEP, a higher level function will
|
|||
|
have called single_step() to transmute the step request into a
|
|||
|
continue request (by setting breakpoints on all possible successor
|
|||
|
instructions), so we don't have to worry about that here. */
|
|||
|
|
|||
|
if (step)
|
|||
|
ptrace (PT_SSTEP, pid, (PTRACE_ARG3_TYPE) 1, signal);
|
|||
|
else
|
|||
|
ptrace (PT_CONTSIG, pid, (PTRACE_ARG3_TYPE) 1, signal);
|
|||
|
|
|||
|
if (errno)
|
|||
|
perror_with_name ("ptrace");
|
|||
|
}
|
|||
|
|
|||
|
#ifdef ATTACH_DETACH
|
|||
|
/* Start debugging the process whose number is PID. */
|
|||
|
int
|
|||
|
attach (pid)
|
|||
|
int pid;
|
|||
|
{
|
|||
|
sigset_t set;
|
|||
|
int rv;
|
|||
|
|
|||
|
rv = mptrace(XPT_DEBUG, pid, 0, 0);
|
|||
|
if (-1 == rv) {
|
|||
|
error("mptrace(XPT_DEBUG): %s", safe_strerror(errno));
|
|||
|
}
|
|||
|
rv = mptrace(XPT_SIGNAL, pid, 0, SIGSTOP);
|
|||
|
if (-1 == rv) {
|
|||
|
error("mptrace(XPT_SIGNAL): %s", safe_strerror(errno));
|
|||
|
}
|
|||
|
attach_flag = 1;
|
|||
|
return pid;
|
|||
|
}
|
|||
|
|
|||
|
void
|
|||
|
detach (signo)
|
|||
|
int signo;
|
|||
|
{
|
|||
|
int rv;
|
|||
|
|
|||
|
rv = mptrace(XPT_UNDEBUG, inferior_pid, 1, signo);
|
|||
|
if (-1 == rv) {
|
|||
|
error("mptrace(XPT_UNDEBUG): %s", safe_strerror(errno));
|
|||
|
}
|
|||
|
attach_flag = 0;
|
|||
|
}
|
|||
|
|
|||
|
#endif /* ATTACH_DETACH */
|
|||
|
|
|||
|
/* Default the type of the ptrace transfer to int. */
|
|||
|
#ifndef PTRACE_XFER_TYPE
|
|||
|
#define PTRACE_XFER_TYPE int
|
|||
|
#endif
|
|||
|
|
|||
|
|
|||
|
/* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
|
|||
|
in the NEW_SUN_PTRACE case.
|
|||
|
It ought to be straightforward. But it appears that writing did
|
|||
|
not write the data that I specified. I cannot understand where
|
|||
|
it got the data that it actually did write. */
|
|||
|
|
|||
|
/* Copy LEN bytes to or from inferior's memory starting at MEMADDR
|
|||
|
to debugger memory starting at MYADDR. Copy to inferior if
|
|||
|
WRITE is nonzero.
|
|||
|
|
|||
|
Returns the length copied, which is either the LEN argument or zero.
|
|||
|
This xfer function does not do partial moves, since child_ops
|
|||
|
doesn't allow memory operations to cross below us in the target stack
|
|||
|
anyway. */
|
|||
|
|
|||
|
int
|
|||
|
child_xfer_memory (memaddr, myaddr, len, write, target)
|
|||
|
CORE_ADDR memaddr;
|
|||
|
char *myaddr;
|
|||
|
int len;
|
|||
|
int write;
|
|||
|
struct target_ops *target; /* ignored */
|
|||
|
{
|
|||
|
register int i;
|
|||
|
/* Round starting address down to longword boundary. */
|
|||
|
register CORE_ADDR addr = memaddr & - sizeof (PTRACE_XFER_TYPE);
|
|||
|
/* Round ending address up; get number of longwords that makes. */
|
|||
|
register int count
|
|||
|
= (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
|
|||
|
/ sizeof (PTRACE_XFER_TYPE);
|
|||
|
/* Allocate buffer of that many longwords. */
|
|||
|
register PTRACE_XFER_TYPE *buffer
|
|||
|
= (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
|
|||
|
|
|||
|
if (write)
|
|||
|
{
|
|||
|
/* Fill start and end extra bytes of buffer with existing memory data. */
|
|||
|
|
|||
|
if (addr != memaddr || len < (int) sizeof (PTRACE_XFER_TYPE)) {
|
|||
|
/* Need part of initial word -- fetch it. */
|
|||
|
buffer[0] = ptrace (PT_RTEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr,
|
|||
|
0);
|
|||
|
}
|
|||
|
|
|||
|
if (count > 1) /* FIXME, avoid if even boundary */
|
|||
|
{
|
|||
|
buffer[count - 1]
|
|||
|
= ptrace (PT_RTEXT, inferior_pid,
|
|||
|
((PTRACE_ARG3_TYPE)
|
|||
|
(addr + (count - 1) * sizeof (PTRACE_XFER_TYPE))),
|
|||
|
0);
|
|||
|
}
|
|||
|
|
|||
|
/* Copy data to be written over corresponding part of buffer */
|
|||
|
|
|||
|
memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
|
|||
|
myaddr,
|
|||
|
len);
|
|||
|
|
|||
|
/* Write the entire buffer. */
|
|||
|
|
|||
|
for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
|
|||
|
{
|
|||
|
errno = 0;
|
|||
|
ptrace (PT_WDATA, inferior_pid, (PTRACE_ARG3_TYPE) addr,
|
|||
|
buffer[i]);
|
|||
|
if (errno)
|
|||
|
{
|
|||
|
/* Using the appropriate one (I or D) is necessary for
|
|||
|
Gould NP1, at least. */
|
|||
|
errno = 0;
|
|||
|
ptrace (PT_WTEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr,
|
|||
|
buffer[i]);
|
|||
|
}
|
|||
|
if (errno)
|
|||
|
return 0;
|
|||
|
}
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
/* Read all the longwords */
|
|||
|
for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
|
|||
|
{
|
|||
|
errno = 0;
|
|||
|
buffer[i] = ptrace (PT_RTEXT, inferior_pid,
|
|||
|
(PTRACE_ARG3_TYPE) addr, 0);
|
|||
|
if (errno)
|
|||
|
return 0;
|
|||
|
QUIT;
|
|||
|
}
|
|||
|
|
|||
|
/* Copy appropriate bytes out of the buffer. */
|
|||
|
memcpy (myaddr,
|
|||
|
(char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
|
|||
|
len);
|
|||
|
}
|
|||
|
return len;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
void
|
|||
|
_initialize_symm_nat ()
|
|||
|
{
|
|||
|
#ifdef ATTACH_DETACH
|
|||
|
/*
|
|||
|
* the MPDEBUGGER is necessary for process tree debugging and attach
|
|||
|
* to work, but it alters the behavior of debugged processes, so other
|
|||
|
* things (at least child_wait()) will have to change to accomodate
|
|||
|
* that.
|
|||
|
*
|
|||
|
* Note that attach is not implemented in dynix 3, and not in ptx
|
|||
|
* until version 2.1 of the OS.
|
|||
|
*/
|
|||
|
int rv;
|
|||
|
sigset_t set;
|
|||
|
struct sigaction sact;
|
|||
|
|
|||
|
rv = mptrace(XPT_MPDEBUGGER, 0, 0, 0);
|
|||
|
if (-1 == rv) {
|
|||
|
fatal("_initialize_symm_nat(): mptrace(XPT_MPDEBUGGER): %s",
|
|||
|
safe_strerror(errno));
|
|||
|
}
|
|||
|
|
|||
|
/*
|
|||
|
* Under MPDEBUGGER, we get SIGCLHD when a traced process does
|
|||
|
* anything of interest.
|
|||
|
*/
|
|||
|
|
|||
|
/*
|
|||
|
* Block SIGCHLD. We leave it blocked all the time, and then
|
|||
|
* call sigsuspend() in child_wait() to wait for the child
|
|||
|
* to do something. None of these ought to fail, but check anyway.
|
|||
|
*/
|
|||
|
sigemptyset(&set);
|
|||
|
rv = sigaddset(&set, SIGCHLD);
|
|||
|
if (-1 == rv) {
|
|||
|
fatal("_initialize_symm_nat(): sigaddset(SIGCHLD): %s",
|
|||
|
safe_strerror(errno));
|
|||
|
}
|
|||
|
rv = sigprocmask(SIG_BLOCK, &set, (sigset_t *)NULL);
|
|||
|
if (-1 == rv) {
|
|||
|
fatal("_initialize_symm_nat(): sigprocmask(SIG_BLOCK): %s",
|
|||
|
safe_strerror(errno));
|
|||
|
}
|
|||
|
|
|||
|
sact.sa_handler = sigchld_handler;
|
|||
|
sigemptyset(&sact.sa_mask);
|
|||
|
sact.sa_flags = SA_NOCLDWAIT; /* keep the zombies away */
|
|||
|
rv = sigaction(SIGCHLD, &sact, (struct sigaction *)NULL);
|
|||
|
if (-1 == rv) {
|
|||
|
fatal("_initialize_symm_nat(): sigaction(SIGCHLD): %s",
|
|||
|
safe_strerror(errno));
|
|||
|
}
|
|||
|
#endif
|
|||
|
}
|