NetBSD/sys/arch/x68k/dev/if_ed.c

1563 lines
40 KiB
C
Raw Normal View History

1996-05-05 16:17:03 +04:00
/* $NetBSD: if_ed.c,v 1.1.1.1 1996/05/05 12:17:03 oki Exp $ */
/*
* Device driver for National Semiconductor DS8390/WD83C690 based ethernet
* adapters.
*
* Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved.
*
* Copyright (C) 1993, David Greenman. This software may be used, modified,
* copied, distributed, and sold, in both source and binary form provided that
* the above copyright and these terms are retained. Under no circumstances is
* the author responsible for the proper functioning of this software, nor does
* the author assume any responsibility for damages incurred with its use.
*
* Currently supports the Western Digital/SMC 8003 and 8013 series, the SMC
* Elite Ultra (8216), the 3Com 3c503, the NE1000 and NE2000, and a variety of
* similar clones.
*/
/*
* - NetBSD/x68k -
* Supports only the Neptune-X card based on NE2000.
* modefied by Y.YAMASAKI <yamasaki@ise.eng.osaka-u.ac.jp>
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/syslog.h>
#include <sys/device.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/netisr.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#include <machine/cpu.h>
#include <x68k/x68k/iodevice.h>
#include <x68k/dev/dp8390reg.h>
#include <x68k/dev/if_edreg.h>
/*
* ed_softc: per line info and status
*/
struct ed_softc {
struct device sc_dev;
struct arpcom sc_arpcom; /* ethernet common */
char *type_str; /* pointer to type string */
u_char type; /* interface type code */
caddr_t asic_base; /* Base ASIC I/O port */
caddr_t nic_base; /* Base NIC (DS8390) I/O port */
u_char cr_proto; /* values always set in CR */
u_char isa16bit; /* width of access to card 0=8 or 1=16 */
caddr_t mem_start; /* NIC memory start address */
caddr_t mem_end; /* NIC memory end address */
u_long mem_size; /* total NIC memory size */
caddr_t mem_ring; /* start of RX ring-buffer (in NIC mem) */
u_char txb_cnt; /* number of transmit buffers */
u_char txb_inuse; /* number of transmit buffers active */
u_char txb_new; /* pointer to where new buffer will be added */
u_char txb_next_tx; /* pointer to next buffer ready to xmit */
u_short txb_len[8]; /* buffered xmit buffer lengths */
u_char tx_page_start; /* first page of TX buffer area */
u_char rec_page_start; /* first page of RX ring-buffer */
u_char rec_page_stop; /* last page of RX ring-buffer */
u_char next_packet; /* pointer to next unread RX packet */
};
int edmatch __P((struct device *, void *, void *));
void edattach __P((struct device *, struct device *, void *));
int ed_probe_generic8390 __P((caddr_t));
int ed_find_Novell __P((caddr_t, caddr_t));
int edintr __P((int));
int edioctl __P((struct ifnet *, u_long, caddr_t));
void edstart __P((struct ifnet *));
void edwatchdog __P((int));
void edreset __P((struct ed_softc *));
void edinit __P((struct ed_softc *));
void edstop __P((struct ed_softc *));
/* #define inline /* XXX for debugging porpoises */
void ed_getmcaf __P((struct arpcom *, u_long *));
void edread __P((struct ed_softc *, caddr_t, int));
struct mbuf *edget __P((struct ed_softc *, caddr_t, int));
static inline void ed_rint __P((struct ed_softc *));
static inline void ed_xmit __P((struct ed_softc *));
static inline caddr_t ed_ring_copy __P((struct ed_softc *, caddr_t, caddr_t,
u_short));
void ed_pio_readmem __P((struct ed_softc *, u_short, caddr_t, u_short));
void ed_pio_writemem __P((struct ed_softc *, caddr_t, u_short, u_short));
u_short ed_pio_write_mbufs __P((struct ed_softc *, struct mbuf *, u_short));
struct cfattach ed_ca = {
sizeof(struct ed_softc), edmatch, edattach
};
struct cfdriver ed_cd = {
NULL, "ed", DV_IFNET
};
#define ETHER_MIN_LEN 64
#define ETHER_MAX_LEN 1518
#define ETHER_ADDR_LEN 6
#define outb(addr, val) *(volatile u_char *)(addr) = (val)
#define inb(addr) *(volatile u_char *)(addr)
#define outw(addr, val) *(volatile u_short *)(addr) = (val)
static inline void
insb(void *addr, void *dst, int cnt)
{
cnt--;
asm volatile("1: moveb %4@,%1@+; dbra %0,1b" :
"=d" (cnt), "=a" (dst) :
"0" (cnt), "1" (dst), "a" (addr));
}
static inline void
insw(void *addr, void *dst, int cnt)
{
cnt--;
asm volatile("1: movew %4@,%1@+; dbra %0,1b" :
"=d" (cnt), "=a" (dst) :
"0" (cnt), "1" (dst), "a" (addr));
}
static inline void
outsb(void *addr, void *src, int cnt)
{
cnt--;
asm volatile("1: moveb %1@+,%4@; dbra %0,1b" :
"=d" (cnt), "=a" (src) :
"0" (cnt), "1" (src), "a" (addr));
}
static inline void
outsw(void *addr, void *src, int cnt)
{
cnt--;
asm volatile("1: movew %1@+,%4@; dbra %0,1b" :
"=d" (cnt), "=a" (src) :
"0" (cnt), "1" (src), "a" (addr));
}
#define NIC_PUT(base, off, val) outb((base) + (off), (val))
#define NIC_GET(base, off) inb((base) + (off))
/* XXX fixed address */
#define NEPTUNE_NIC ((caddr_t)IODEVbase->neptune + ED_NOVELL_NIC_OFFSET)
#define NEPTUNE_ASIC ((caddr_t)IODEVbase->neptune + ED_NOVELL_ASIC_OFFSET)
/*
* Determine if the device is present.
*/
int
edmatch(parent, match, aux)
struct device *parent;
void *match, *aux;
{
struct cfdata *cfp = match;
caddr_t nic_addr = NEPTUNE_NIC;
caddr_t asic_addr = NEPTUNE_ASIC;
if (strcmp(aux, "ed") || cfp->cf_unit > 0)
return 0;
if (badaddr(nic_addr))
return 0;
if (!ed_find_Novell(nic_addr, asic_addr))
return 0;
return 1;
}
/*
* Generic probe routine for testing for the existance of a DS8390. Must be
* called after the NIC has just been reset. This routine works by looking at
* certain register values that are guaranteed to be initialized a certain way
* after power-up or reset. Seems not to currently work on the 83C690.
*
* Specifically:
*
* Register reset bits set bits
* Command Register (CR) TXP, STA RD2, STP
* Interrupt Status (ISR) RST
* Interrupt Mask (IMR) All bits
* Data Control (DCR) LAS
* Transmit Config. (TCR) LB1, LB0
*
* We only look at the CR and ISR registers, however, because looking at the
* others would require changing register pages (which would be intrusive if
* this isn't an 8390).
*
* Return 1 if 8390 was found, 0 if not.
*/
int
ed_probe_generic8390(nicbase)
caddr_t nicbase;
{
if ((NIC_GET(nicbase, ED_P0_CR) &
(ED_CR_RD2 | ED_CR_TXP | ED_CR_STA | ED_CR_STP)) !=
(ED_CR_RD2 | ED_CR_STP))
return (0);
if ((NIC_GET(nicbase, ED_P0_ISR) & ED_ISR_RST) != ED_ISR_RST)
return (0);
return (1);
}
/*
* Probe and vendor-specific initialization routine for NE1000/2000 boards.
*/
int
ed_find_Novell(nicbase, asicbase)
caddr_t nicbase, asicbase;
{
u_char tmp;
/* XXX - do Novell-specific probe here */
/* Reset the board. */
#ifdef GWETHER
outb(asicbase + ED_NOVELL_RESET, 0);
DELAY(2000); /* delay(200); */
#endif /* GWETHER */
tmp = inb(asicbase + ED_NOVELL_RESET);
/*
* I don't know if this is necessary; probably cruft leftover from
* Clarkson packet driver code. Doesn't do a thing on the boards I've
* tested. -DG [note that a outb(0x84, 0) seems to work here, and is
* non-invasive...but some boards don't seem to reset and I don't have
* complete documentation on what the 'right' thing to do is...so we do
* the invasive thing for now. Yuck.]
*/
outb(asicbase + ED_NOVELL_RESET, tmp);
DELAY(50000); /* delay(5000); */
/*
* This is needed because some NE clones apparently don't reset the NIC
* properly (or the NIC chip doesn't reset fully on power-up)
* XXX - this makes the probe invasive! ...Done against my better
* judgement. -DLG
*/
NIC_PUT(nicbase, ED_P0_CR, ED_CR_RD2 | ED_CR_PAGE_0 | ED_CR_STP);
DELAY(50000); /* delay(5000); */
/* Make sure that we really have an 8390 based board. */
if (!ed_probe_generic8390(nicbase))
return (0);
return 1;
}
int
ed_check_type(sc)
struct ed_softc *sc;
{
u_int memsize, n;
u_char romdata[16];
static u_char test_pattern[32] = "THIS is A memory TEST pattern";
u_char test_buffer[32];
caddr_t nicbase = sc->nic_base;
sc->cr_proto = ED_CR_RD2;
/*
* Test the ability to read and write to the NIC memory. This has the
* side affect of determining if this is an NE1000 or an NE2000.
*/
/*
* This prevents packets from being stored in the NIC memory when the
* readmem routine turns on the start bit in the CR.
*/
NIC_PUT(nicbase, ED_P0_RCR, ED_RCR_MON);
/* Temporarily initialize DCR for byte operations. */
NIC_PUT(nicbase, ED_P0_DCR, ED_DCR_FT1 | ED_DCR_LS);
NIC_PUT(nicbase, ED_P0_PSTART, 8192 >> ED_PAGE_SHIFT);
NIC_PUT(nicbase, ED_P0_PSTOP, 16384 >> ED_PAGE_SHIFT);
sc->isa16bit = 0;
/*
* Write a test pattern in byte mode. If this fails, then there
* probably isn't any memory at 8k - which likely means that the board
* is an NE2000.
*/
ed_pio_writemem(sc, test_pattern, 8192, sizeof(test_pattern));
ed_pio_readmem(sc, 8192, test_buffer, sizeof(test_pattern));
if (bcmp(test_pattern, test_buffer, sizeof(test_pattern))) {
/* not an NE1000 - try NE2000 */
NIC_PUT(nicbase, ED_P0_DCR,
ED_DCR_WTS | ED_DCR_FT1 | ED_DCR_LS);
NIC_PUT(nicbase, ED_P0_PSTART, 16384 >> ED_PAGE_SHIFT);
NIC_PUT(nicbase, ED_P0_PSTOP, 32768 >> ED_PAGE_SHIFT);
sc->isa16bit = 1;
/*
* Write a test pattern in word mode. If this also fails, then
* we don't know what this board is.
*/
ed_pio_writemem(sc, test_pattern, 16384, sizeof(test_pattern));
ed_pio_readmem(sc, 16384, test_buffer, sizeof(test_pattern));
if (bcmp(test_pattern, test_buffer, sizeof(test_pattern))) {
printf(": unknown type\n");
return (0); /* not an NE2000 either */
}
sc->type = ED_TYPE_NE2000;
sc->type_str = "NE2000 based Neptune-X";
} else {
sc->type = ED_TYPE_NE1000;
sc->type_str = "NE1000";
}
/* 8k of memory plus an additional 8k if 16-bit. */
memsize = 8192 + sc->isa16bit * 8192;
/* NIC memory doesn't start at zero on an NE board. */
/* The start address is tied to the bus width. */
sc->mem_start = (caddr_t)(8192 + sc->isa16bit * 8192);
sc->tx_page_start = memsize >> ED_PAGE_SHIFT;
#ifdef GWETHER
{
int x, i, mstart = 0;
char pbuf0[ED_PAGE_SIZE], pbuf[ED_PAGE_SIZE], tbuf[ED_PAGE_SIZE];
for (i = 0; i < ED_PAGE_SIZE; i++)
pbuf0[i] = 0;
/* Search for the start of RAM. */
for (x = 1; x < 256; x++) {
ed_pio_writemem(sc, pbuf0, x << ED_PAGE_SHIFT, ED_PAGE_SIZE);
ed_pio_readmem(sc, x << ED_PAGE_SHIFT, tbuf, ED_PAGE_SIZE);
if (!bcmp(pbuf0, tbuf, ED_PAGE_SIZE)) {
for (i = 0; i < ED_PAGE_SIZE; i++)
pbuf[i] = 255 - x;
ed_pio_writemem(sc, pbuf, x << ED_PAGE_SHIFT, ED_PAGE_SIZE);
ed_pio_readmem(sc, x << ED_PAGE_SHIFT, tbuf, ED_PAGE_SIZE);
if (!bcmp(pbuf, tbuf, ED_PAGE_SIZE)) {
mstart = x << ED_PAGE_SHIFT;
memsize = ED_PAGE_SIZE;
break;
}
}
}
if (mstart == 0) {
printf(": cannot find start of RAM\n");
return (0);
}
/* Search for the end of RAM. */
for (++x; x < 256; x++) {
ed_pio_writemem(sc, pbuf0, x << ED_PAGE_SHIFT, ED_PAGE_SIZE);
ed_pio_readmem(sc, x << ED_PAGE_SHIFT, tbuf, ED_PAGE_SIZE);
if (!bcmp(pbuf0, tbuf, ED_PAGE_SIZE)) {
for (i = 0; i < ED_PAGE_SIZE; i++)
pbuf[i] = 255 - x;
ed_pio_writemem(sc, pbuf, x << ED_PAGE_SHIFT, ED_PAGE_SIZE);
ed_pio_readmem(sc, x << ED_PAGE_SHIFT, tbuf, ED_PAGE_SIZE);
if (!bcmp(pbuf, tbuf, ED_PAGE_SIZE))
memsize += ED_PAGE_SIZE;
else
break;
} else
break;
}
printf("%s: RAM start %x, size %d\n",
sc->sc_dev.dv_xname, mstart, memsize);
sc->mem_start = (caddr_t)mstart;
sc->tx_page_start = mstart >> ED_PAGE_SHIFT;
}
#endif /* GWETHER */
sc->mem_size = memsize;
sc->mem_end = sc->mem_start + memsize;
/*
* Use one xmit buffer if < 16k, two buffers otherwise (if not told
* otherwise).
*/
if ((memsize < 16384) /* || (cf->cf_flags & ED_FLAGS_NO_MULTI_BUFFERING) */)
sc->txb_cnt = 1;
else
sc->txb_cnt = 2;
sc->rec_page_start = sc->tx_page_start + sc->txb_cnt * ED_TXBUF_SIZE;
sc->rec_page_stop = sc->tx_page_start + (memsize >> ED_PAGE_SHIFT);
sc->mem_ring =
sc->mem_start + ((sc->txb_cnt * ED_TXBUF_SIZE) << ED_PAGE_SHIFT);
ed_pio_readmem(sc, 0, romdata, 16);
for (n = 0; n < ETHER_ADDR_LEN; n++)
sc->sc_arpcom.ac_enaddr[n] = romdata[n*(sc->isa16bit+1)];
#ifdef GWETHER
if (sc->arpcom.ac_enaddr[2] == 0x86)
sc->type_str = "Gateway AT";
#endif /* GWETHER */
/* Clear any pending interrupts that might have occurred above. */
NIC_PUT(nicbase, ED_P0_ISR, 0xff);
return (1);
}
/*
* Install interface into kernel networking data structures.
*/
void
edattach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct ed_softc *sc = (void *)self;
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
sc->nic_base = NEPTUNE_NIC;
sc->asic_base = NEPTUNE_ASIC;
if (!ed_check_type(sc))
return; /* attach failed */
/* Set interface to stopped condition (reset). */
edstop(sc);
/* Initialize ifnet structure. */
ifp->if_unit = sc->sc_dev.dv_unit;
ifp->if_name = ed_cd.cd_name;
ifp->if_start = edstart;
ifp->if_ioctl = edioctl;
ifp->if_watchdog = edwatchdog;
ifp->if_flags =
IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
/* Attach the interface. */
if_attach(ifp);
ether_ifattach(ifp);
/* Print additional info when attached. */
printf(": address %s, ", ether_sprintf(sc->sc_arpcom.ac_enaddr));
if (sc->type_str)
printf("type %s ", sc->type_str);
else
printf("type unknown (0x%x) ", sc->type);
printf("%s", sc->isa16bit ? "(16-bit)" : "(8-bit)");
printf("\n");
#if NBPFILTER > 0
bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
}
/*
* Reset interface.
*/
void
edreset(sc)
struct ed_softc *sc;
{
int s;
s = splnet();
edstop(sc);
edinit(sc);
splx(s);
}
/*
* Take interface offline.
*/
void
edstop(sc)
struct ed_softc *sc;
{
caddr_t nicbase = sc->nic_base;
int n = 5000;
/* Stop everything on the interface, and select page 0 registers. */
NIC_PUT(nicbase, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP);
/*
* Wait for interface to enter stopped state, but limit # of checks to
* 'n' (about 5ms). It shouldn't even take 5us on modern DS8390's, but
* just in case it's an old one.
*/
while (((NIC_GET(nicbase, ED_P0_ISR) & ED_ISR_RST) == 0) && --n);
}
/*
* Device timeout/watchdog routine. Entered if the device neglects to generate
* an interrupt after a transmit has been started on it.
*/
void
edwatchdog(unit)
int unit;
{
struct ed_softc *sc = ed_cd.cd_devs[unit];
log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
++sc->sc_arpcom.ac_if.if_oerrors;
edreset(sc);
}
/*
* Initialize device.
*/
void
edinit(sc)
struct ed_softc *sc;
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
caddr_t nicbase = sc->nic_base;
int i;
u_long mcaf[2];
/*
* Initialize the NIC in the exact order outlined in the NS manual.
* This init procedure is "mandatory"...don't change what or when
* things happen.
*/
/* Reset transmitter flags. */
ifp->if_timer = 0;
sc->txb_inuse = 0;
sc->txb_new = 0;
sc->txb_next_tx = 0;
/* Set interface for page 0, remote DMA complete, stopped. */
NIC_PUT(nicbase, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP);
if (sc->isa16bit) {
/*
* Set FIFO threshold to 8, No auto-init Remote DMA, byte
* order=80x86, word-wide DMA xfers,
*/
NIC_PUT(nicbase, ED_P0_DCR,
ED_DCR_FT1 | ED_DCR_WTS | ED_DCR_LS);
} else {
/* Same as above, but byte-wide DMA xfers. */
NIC_PUT(nicbase, ED_P0_DCR, ED_DCR_FT1 | ED_DCR_LS);
}
/* Clear remote byte count registers. */
NIC_PUT(nicbase, ED_P0_RBCR0, 0);
NIC_PUT(nicbase, ED_P0_RBCR1, 0);
/* Tell RCR to do nothing for now. */
NIC_PUT(nicbase, ED_P0_RCR, ED_RCR_MON);
/* Place NIC in internal loopback mode. */
NIC_PUT(nicbase, ED_P0_TCR, ED_TCR_LB0);
/* Initialize receive buffer ring. */
NIC_PUT(nicbase, ED_P0_BNRY, sc->rec_page_start);
NIC_PUT(nicbase, ED_P0_PSTART, sc->rec_page_start);
NIC_PUT(nicbase, ED_P0_PSTOP, sc->rec_page_stop);
/*
* Clear all interrupts. A '1' in each bit position clears the
* corresponding flag.
*/
NIC_PUT(nicbase, ED_P0_ISR, 0xff);
/*
* Enable the following interrupts: receive/transmit complete,
* receive/transmit error, and Receiver OverWrite.
*
* Counter overflow and Remote DMA complete are *not* enabled.
*/
NIC_PUT(nicbase, ED_P0_IMR,
ED_IMR_PRXE | ED_IMR_PTXE | ED_IMR_RXEE | ED_IMR_TXEE |
ED_IMR_OVWE);
/* Program command register for page 1. */
NIC_PUT(nicbase, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STP);
/* Copy out our station address. */
for (i = 0; i < ETHER_ADDR_LEN; ++i)
NIC_PUT(nicbase, ED_P1_PAR0 + i*2, sc->sc_arpcom.ac_enaddr[i]);
/* Set multicast filter on chip. */
ed_getmcaf(&sc->sc_arpcom, mcaf);
for (i = 0; i < 8; i++)
NIC_PUT(nicbase, ED_P1_MAR0 + i*2, ((u_char *)mcaf)[i]);
/*
* Set current page pointer to one page after the boundary pointer, as
* recommended in the National manual.
*/
sc->next_packet = sc->rec_page_start + 1;
NIC_PUT(nicbase, ED_P1_CURR, sc->next_packet);
/* Program command register for page 0. */
NIC_PUT(nicbase, ED_P1_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP);
i = ED_RCR_AB | ED_RCR_AM;
if (ifp->if_flags & IFF_PROMISC) {
/*
* Set promiscuous mode. Multicast filter was set earlier so
* that we should receive all multicast packets.
*/
i |= ED_RCR_PRO | ED_RCR_AR | ED_RCR_SEP;
}
NIC_PUT(nicbase, ED_P0_RCR, i);
/* Take interface out of loopback. */
NIC_PUT(nicbase, ED_P0_TCR, 0);
/* Fire up the interface. */
NIC_PUT(nicbase, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
/* Set 'running' flag, and clear output active flag. */
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
/* ...and attempt to start output. */
edstart(ifp);
}
/*
* This routine actually starts the transmission on the interface.
*/
static inline void
ed_xmit(sc)
struct ed_softc *sc;
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
caddr_t nicbase = sc->nic_base;
u_short len;
len = sc->txb_len[sc->txb_next_tx];
/* Set NIC for page 0 register access. */
NIC_PUT(nicbase, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
/* Set TX buffer start page. */
NIC_PUT(nicbase, ED_P0_TPSR, sc->tx_page_start +
sc->txb_next_tx * ED_TXBUF_SIZE);
/* Set TX length. */
NIC_PUT(nicbase, ED_P0_TBCR0, len);
NIC_PUT(nicbase, ED_P0_TBCR1, len >> 8);
/* Set page 0, remote DMA complete, transmit packet, and *start*. */
NIC_PUT(nicbase, ED_P0_CR,
sc->cr_proto | ED_CR_PAGE_0 | ED_CR_TXP | ED_CR_STA);
/* Point to next transmit buffer slot and wrap if necessary. */
sc->txb_next_tx++;
if (sc->txb_next_tx == sc->txb_cnt)
sc->txb_next_tx = 0;
/* Set a timer just in case we never hear from the board again. */
ifp->if_timer = 2;
}
/*
* Start output on interface.
* We make two assumptions here:
* 1) that the current priority is set to splnet _before_ this code
* is called *and* is returned to the appropriate priority after
* return
* 2) that the IFF_OACTIVE flag is checked before this code is called
* (i.e. that the output part of the interface is idle)
*/
void
edstart(ifp)
struct ifnet *ifp;
{
struct ed_softc *sc = ed_cd.cd_devs[ifp->if_unit];
struct mbuf *m0;
caddr_t buffer;
int len;
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
outloop:
/* See if there is room to put another packet in the buffer. */
if (sc->txb_inuse == sc->txb_cnt) {
/* No room. Indicate this to the outside world and exit. */
ifp->if_flags |= IFF_OACTIVE;
return;
}
IF_DEQUEUE(&ifp->if_snd, m0);
if (m0 == 0)
return;
/* We need to use m->m_pkthdr.len, so require the header */
if ((m0->m_flags & M_PKTHDR) == 0)
panic("edstart: no header mbuf");
#if NBPFILTER > 0
/* Tap off here if there is a BPF listener. */
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m0);
#endif
/* txb_new points to next open buffer slot. */
buffer = sc->mem_start + ((sc->txb_new * ED_TXBUF_SIZE) << ED_PAGE_SHIFT);
len = ed_pio_write_mbufs(sc, m0, (long)buffer);
m_freem(m0);
sc->txb_len[sc->txb_new] = max(len, ETHER_MIN_LEN);
/* Start the first packet transmitting. */
if (sc->txb_inuse == 0)
ed_xmit(sc);
/* Point to next buffer slot and wrap if necessary. */
if (++sc->txb_new == sc->txb_cnt)
sc->txb_new = 0;
sc->txb_inuse++;
/* Loop back to the top to possibly buffer more packets. */
goto outloop;
}
/*
* Ethernet interface receiver interrupt.
*/
static inline void
ed_rint(sc)
struct ed_softc *sc;
{
caddr_t nicbase = sc->nic_base;
u_char boundary, current;
u_short len;
#ifdef DIAGNOSTIC
u_short count;
#endif
u_char nlen;
struct ed_ring packet_hdr;
caddr_t packet_ptr;
loop:
/* Set NIC to page 1 registers to get 'current' pointer. */
NIC_PUT(nicbase, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STA);
/*
* 'sc->next_packet' is the logical beginning of the ring-buffer - i.e.
* it points to where new data has been buffered. The 'CURR' (current)
* register points to the logical end of the ring-buffer - i.e. it
* points to where additional new data will be added. We loop here
* until the logical beginning equals the logical end (or in other
* words, until the ring-buffer is empty).
*/
current = NIC_GET(nicbase, ED_P1_CURR);
if (sc->next_packet == current)
return;
/* Set NIC to page 0 registers to update boundary register. */
NIC_PUT(nicbase, ED_P1_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
do {
/* Get pointer to this buffer's header structure. */
packet_ptr = sc->mem_ring +
((sc->next_packet - sc->rec_page_start) << ED_PAGE_SHIFT);
/*
* The byte count includes a 4 byte header that was added by
* the NIC.
*/
ed_pio_readmem(sc, (long)packet_ptr,
(caddr_t) &packet_hdr, sizeof(packet_hdr));
len = (packet_hdr.count_h << 8) | packet_hdr.count_l;
#ifdef DIAGNOSTIC
count = len;
#endif
/*
* Try do deal with old, buggy chips that sometimes duplicate
* the low byte of the length into the high byte. We do this
* by simply ignoring the high byte of the length and always
* recalculating it.
*
* NOTE: sc->next_packet is pointing at the current packet.
*/
if (packet_hdr.next_packet >= sc->next_packet)
nlen = (packet_hdr.next_packet - sc->next_packet);
else
nlen = ((packet_hdr.next_packet - sc->rec_page_start) +
(sc->rec_page_stop - sc->next_packet));
--nlen;
if ((len & ED_PAGE_MASK) + sizeof(packet_hdr) > ED_PAGE_SIZE)
--nlen;
len = (len & ED_PAGE_MASK) | (nlen << ED_PAGE_SHIFT);
#ifdef DIAGNOSTIC
if (len != count) {
printf("%s: length does not match next packet pointer\n",
sc->sc_dev.dv_xname);
printf("%s: len %04x nlen %04x start %02x first %02x curr %02x next %02x stop %02x\n",
sc->sc_dev.dv_xname, count, len,
sc->rec_page_start, sc->next_packet, current,
packet_hdr.next_packet, sc->rec_page_stop);
}
#endif
/*
* Be fairly liberal about what we allow as a "reasonable"
* length so that a [crufty] packet will make it to BPF (and
* can thus be analyzed). Note that all that is really
* important is that we have a length that will fit into one
* mbuf cluster or less; the upper layer protocols can then
* figure out the length from their own length field(s).
*/
if (len <= MCLBYTES &&
packet_hdr.next_packet >= sc->rec_page_start &&
packet_hdr.next_packet < sc->rec_page_stop) {
/* Go get packet. */
edread(sc, packet_ptr + sizeof(struct ed_ring),
len - sizeof(struct ed_ring));
} else {
/* Really BAD. The ring pointers are corrupted. */
log(LOG_ERR,
"%s: NIC memory corrupt - invalid packet length %d\n",
sc->sc_dev.dv_xname, len);
++sc->sc_arpcom.ac_if.if_ierrors;
edreset(sc);
return;
}
/* Update next packet pointer. */
sc->next_packet = packet_hdr.next_packet;
/*
* Update NIC boundary pointer - being careful to keep it one
* buffer behind (as recommended by NS databook).
*/
boundary = sc->next_packet - 1;
if (boundary < sc->rec_page_start)
boundary = sc->rec_page_stop - 1;
NIC_PUT(nicbase, ED_P0_BNRY, boundary);
} while (sc->next_packet != current);
goto loop;
}
/* Ethernet interface interrupt processor. */
int
edintr(unit)
int unit;
{
struct ed_softc *sc = ed_cd.cd_devs[unit];
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
caddr_t nicbase = sc->nic_base;
u_char isr;
/* Set NIC to page 0 registers. */
NIC_PUT(nicbase, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
isr = NIC_GET(nicbase, ED_P0_ISR);
if (!isr)
return (0);
/* Loop until there are no more new interrupts. */
for (;;) {
/*
* Reset all the bits that we are 'acknowledging' by writing a
* '1' to each bit position that was set.
* (Writing a '1' *clears* the bit.)
*/
NIC_PUT(nicbase, ED_P0_ISR, isr);
/*
* Handle transmitter interrupts. Handle these first because
* the receiver will reset the board under some conditions.
*/
if (isr & (ED_ISR_PTX | ED_ISR_TXE)) {
u_char collisions = NIC_GET(nicbase, ED_P0_NCR) & 0x0f;
/*
* Check for transmit error. If a TX completed with an
* error, we end up throwing the packet away. Really
* the only error that is possible is excessive
* collisions, and in this case it is best to allow the
* automatic mechanisms of TCP to backoff the flow. Of
* course, with UDP we're screwed, but this is expected
* when a network is heavily loaded.
*/
(void) NIC_GET(nicbase, ED_P0_TSR);
if (isr & ED_ISR_TXE) {
/*
* Excessive collisions (16).
*/
if ((NIC_GET(nicbase, ED_P0_TSR) & ED_TSR_ABT)
&& (collisions == 0)) {
/*
* When collisions total 16, the P0_NCR
* will indicate 0, and the TSR_ABT is
* set.
*/
collisions = 16;
}
/* Update output errors counter. */
++ifp->if_oerrors;
} else {
/*
* Update total number of successfully
* transmitted packets.
*/
++ifp->if_opackets;
}
/* Done with the buffer. */
sc->txb_inuse--;
/* Clear watchdog timer. */
ifp->if_timer = 0;
ifp->if_flags &= ~IFF_OACTIVE;
/*
* Add in total number of collisions on last
* transmission.
*/
ifp->if_collisions += collisions;
/*
* Decrement buffer in-use count if not zero (can only
* be zero if a transmitter interrupt occured while not
* actually transmitting).
* If data is ready to transmit, start it transmitting,
* otherwise defer until after handling receiver.
*/
if (sc->txb_inuse > 0)
ed_xmit(sc);
}
/* Handle receiver interrupts. */
if (isr & (ED_ISR_PRX | ED_ISR_RXE | ED_ISR_OVW)) {
/*
* Overwrite warning. In order to make sure that a
* lockup of the local DMA hasn't occurred, we reset
* and re-init the NIC. The NSC manual suggests only a
* partial reset/re-init is necessary - but some chips
* seem to want more. The DMA lockup has been seen
* only with early rev chips - Methinks this bug was
* fixed in later revs. -DG
*/
if (isr & ED_ISR_OVW) {
++ifp->if_ierrors;
#ifdef DIAGNOSTIC
log(LOG_WARNING,
"%s: warning - receiver ring buffer overrun\n",
sc->sc_dev.dv_xname);
#endif
/* Stop/reset/re-init NIC. */
edreset(sc);
} else {
/*
* Receiver Error. One or more of: CRC error,
* frame alignment error FIFO overrun, or
* missed packet.
*/
if (isr & ED_ISR_RXE) {
++ifp->if_ierrors;
#ifdef ED_DEBUG
printf("%s: receive error %x\n",
sc->sc_dev.dv_xname,
NIC_GET(nicbase, ED_P0_RSR));
#endif
}
/*
* Go get the packet(s).
* XXX - Doing this on an error is dubious
* because there shouldn't be any data to get
* (we've configured the interface to not
* accept packets with errors).
*/
ed_rint(sc);
}
}
/*
* If it looks like the transmitter can take more data, attempt
* to start output on the interface. This is done after
* handling the receiver to give the receiver priority.
*/
edstart(ifp);
/*
* Return NIC CR to standard state: page 0, remote DMA
* complete, start (toggling the TXP bit off, even if was just
* set in the transmit routine, is *okay* - it is 'edge'
* triggered from low to high).
*/
NIC_PUT(nicbase, ED_P0_CR,
sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
/*
* If the Network Talley Counters overflow, read them to reset
* them. It appears that old 8390's won't clear the ISR flag
* otherwise - resulting in an infinite loop.
*/
if (isr & ED_ISR_CNT) {
(void) NIC_GET(nicbase, ED_P0_CNTR0);
(void) NIC_GET(nicbase, ED_P0_CNTR1);
(void) NIC_GET(nicbase, ED_P0_CNTR2);
}
isr = NIC_GET(nicbase, ED_P0_ISR);
if (!isr)
return (1);
}
}
/*
* Process an ioctl request. This code needs some work - it looks pretty ugly.
*/
int
edioctl(ifp, cmd, data)
register struct ifnet *ifp;
u_long cmd;
caddr_t data;
{
struct ed_softc *sc = ed_cd.cd_devs[ifp->if_unit];
register struct ifaddr *ifa = (struct ifaddr *)data;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
edinit(sc);
arp_ifinit(&sc->sc_arpcom, ifa);
break;
#endif
#ifdef NS
/* XXX - This code is probably wrong. */
case AF_NS:
{
register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
if (ns_nullhost(*ina))
ina->x_host =
*(union ns_host *)(sc->sc_arpcom.ac_enaddr);
else
bcopy(ina->x_host.c_host,
sc->sc_arpcom.ac_enaddr,
sizeof(sc->sc_arpcom.ac_enaddr));
/* Set new address. */
edinit(sc);
break;
}
#endif
default:
edinit(sc);
break;
}
break;
case SIOCSIFFLAGS:
if ((ifp->if_flags & IFF_UP) == 0 &&
(ifp->if_flags & IFF_RUNNING) != 0) {
/*
* If interface is marked down and it is running, then
* stop it.
*/
edstop(sc);
ifp->if_flags &= ~IFF_RUNNING;
} else if ((ifp->if_flags & IFF_UP) != 0 &&
(ifp->if_flags & IFF_RUNNING) == 0) {
/*
* If interface is marked up and it is stopped, then
* start it.
*/
edinit(sc);
} else {
/*
* Reset the interface to pick up changes in any other
* flags that affect hardware registers.
*/
edstop(sc);
edinit(sc);
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/* Update our multicast list. */
error = (cmd == SIOCADDMULTI) ?
ether_addmulti(ifr, &sc->sc_arpcom) :
ether_delmulti(ifr, &sc->sc_arpcom);
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
edstop(sc); /* XXX for ds_setmcaf? */
edinit(sc);
error = 0;
}
break;
default:
error = EINVAL;
break;
}
splx(s);
return (error);
}
/*
* Retreive packet from shared memory and send to the next level up via
* ether_input(). If there is a BPF listener, give a copy to BPF, too.
*/
void
edread(sc, buf, len)
struct ed_softc *sc;
caddr_t buf;
int len;
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
struct mbuf *m;
struct ether_header *eh;
/* Pull packet off interface. */
m = edget(sc, buf, len);
if (m == 0) {
ifp->if_ierrors++;
return;
}
ifp->if_ipackets++;
/* We assume that the header fit entirely in one mbuf. */
eh = mtod(m, struct ether_header *);
#if NBPFILTER > 0
/*
* Check if there's a BPF listener on this interface.
* If so, hand off the raw packet to BPF.
*/
if (ifp->if_bpf) {
bpf_mtap(ifp->if_bpf, m);
/*
* Note that the interface cannot be in promiscuous mode if
* there are no BPF listeners. And if we are in promiscuous
* mode, we have to check if this packet is really ours.
*/
if ((ifp->if_flags & IFF_PROMISC) &&
(eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
bcmp(eh->ether_dhost, sc->sc_arpcom.ac_enaddr,
sizeof(eh->ether_dhost)) != 0) {
m_freem(m);
return;
}
}
#endif
/* We assume that the header fit entirely in one mbuf. */
m_adj(m, sizeof(struct ether_header));
ether_input(ifp, eh, m);
}
/*
* Supporting routines.
*/
/*
* Given a NIC memory source address and a host memory destination address,
* copy 'amount' from NIC to host using Programmed I/O. The 'amount' is
* rounded up to a word - okay as long as mbufs are word sized.
* This routine is currently Novell-specific.
*/
void
ed_pio_readmem(sc, src, dst, amount)
struct ed_softc *sc;
u_short src;
caddr_t dst;
u_short amount;
{
caddr_t nicbase = sc->nic_base;
/* Select page 0 registers. */
NIC_PUT(nicbase, ED_P0_CR, ED_CR_RD2 | ED_CR_PAGE_0 | ED_CR_STA);
/* Round up to a word. */
if (amount & 1)
++amount;
/* Set up DMA byte count. */
NIC_PUT(nicbase, ED_P0_RBCR0, amount);
NIC_PUT(nicbase, ED_P0_RBCR1, amount >> 8);
/* Set up source address in NIC mem. */
NIC_PUT(nicbase, ED_P0_RSAR0, src);
NIC_PUT(nicbase, ED_P0_RSAR1, src >> 8);
NIC_PUT(nicbase, ED_P0_CR, ED_CR_RD0 | ED_CR_PAGE_0 | ED_CR_STA);
if (sc->isa16bit)
insw(sc->asic_base + ED_NOVELL_DATA, dst, amount / 2);
else
insb(sc->asic_base + ED_NOVELL_DATA, dst, amount);
}
/*
* Stripped down routine for writing a linear buffer to NIC memory. Only used
* in the probe routine to test the memory. 'len' must be even.
*/
void
ed_pio_writemem(sc, src, dst, len)
struct ed_softc *sc;
caddr_t src;
u_short dst;
u_short len;
{
caddr_t nicbase = sc->nic_base;
int maxwait = 100; /* about 120us */
/* Select page 0 registers. */
NIC_PUT(nicbase, ED_P0_CR, ED_CR_RD2 | ED_CR_PAGE_0 | ED_CR_STA);
/* Reset remote DMA complete flag. */
NIC_PUT(nicbase, ED_P0_ISR, ED_ISR_RDC);
/* Set up DMA byte count. */
NIC_PUT(nicbase, ED_P0_RBCR0, len);
NIC_PUT(nicbase, ED_P0_RBCR1, len >> 8);
/* Set up destination address in NIC mem. */
NIC_PUT(nicbase, ED_P0_RSAR0, dst);
NIC_PUT(nicbase, ED_P0_RSAR1, dst >> 8);
/* Set remote DMA write. */
NIC_PUT(nicbase, ED_P0_CR, ED_CR_RD1 | ED_CR_PAGE_0 | ED_CR_STA);
if (sc->isa16bit)
outsw(sc->asic_base + ED_NOVELL_DATA, src, len / 2);
else
outsb(sc->asic_base + ED_NOVELL_DATA, src, len);
/*
* Wait for remote DMA complete. This is necessary because on the
* transmit side, data is handled internally by the NIC in bursts and
* we can't start another remote DMA until this one completes. Not
* waiting causes really bad things to happen - like the NIC
* irrecoverably jamming the ISA bus.
*/
while (((NIC_GET(nicbase, ED_P0_ISR) & ED_ISR_RDC) != ED_ISR_RDC) &&
--maxwait);
}
/*
* Write an mbuf chain to the destination NIC memory address using programmed
* I/O.
*/
u_short
ed_pio_write_mbufs(sc, m, dst)
struct ed_softc *sc;
struct mbuf *m;
u_short dst;
{
caddr_t nicbase = sc->nic_base, asicbase = sc->asic_base;
u_short len;
int maxwait = 100; /* about 120us */
len = m->m_pkthdr.len;
/* Select page 0 registers. */
NIC_PUT(nicbase, ED_P0_CR, ED_CR_RD2 | ED_CR_PAGE_0 | ED_CR_STA);
/* Reset remote DMA complete flag. */
NIC_PUT(nicbase, ED_P0_ISR, ED_ISR_RDC);
/* Set up DMA byte count. */
NIC_PUT(nicbase, ED_P0_RBCR0, len);
NIC_PUT(nicbase, ED_P0_RBCR1, len >> 8);
/* Set up destination address in NIC mem. */
NIC_PUT(nicbase, ED_P0_RSAR0, dst);
NIC_PUT(nicbase, ED_P0_RSAR1, dst >> 8);
/* Set remote DMA write. */
NIC_PUT(nicbase, ED_P0_CR, ED_CR_RD1 | ED_CR_PAGE_0 | ED_CR_STA);
/*
* Transfer the mbuf chain to the NIC memory.
* 16-bit cards require that data be transferred as words, and only
* words, so that case requires some extra code to patch over
* odd-length mbufs.
*/
if (!sc->isa16bit) {
/* NE1000s are easy. */
for (; m != 0; m = m->m_next) {
if (m->m_len) {
outsb(asicbase + ED_NOVELL_DATA,
mtod(m, u_char *), m->m_len);
}
}
} else {
/* NE2000s are a bit trickier. */
u_char *data, savebyte[2];
int len, wantbyte;
wantbyte = 0;
for (; m != 0; m = m->m_next) {
len = m->m_len;
if (len == 0)
continue;
data = mtod(m, u_char *);
/* Finish the last word. */
if (wantbyte) {
savebyte[1] = *data;
outw(asicbase + ED_NOVELL_DATA,
*(u_short *)savebyte);
data++;
len--;
wantbyte = 0;
}
/* Output contiguous words. */
if (len > 1)
outsw(asicbase + ED_NOVELL_DATA,
data, len >> 1);
/* Save last byte, if necessary. */
if (len & 1) {
data += len & ~1;
savebyte[0] = *data;
wantbyte = 1;
}
}
if (wantbyte) {
savebyte[1] = 0;
outw(asicbase + ED_NOVELL_DATA, *(u_short *)savebyte);
}
}
/*
* Wait for remote DMA complete. This is necessary because on the
* transmit side, data is handled internally by the NIC in bursts and
* we can't start another remote DMA until this one completes. Not
* waiting causes really bad things to happen - like the NIC
* irrecoverably jamming the ISA bus.
*/
while (((NIC_GET(nicbase, ED_P0_ISR) & ED_ISR_RDC) != ED_ISR_RDC) &&
--maxwait);
if (!maxwait) {
log(LOG_WARNING,
"%s: remote transmit DMA failed to complete\n",
sc->sc_dev.dv_xname);
edreset(sc);
}
return (len);
}
/*
* Given a source and destination address, copy 'amount' of a packet from the
* ring buffer into a linear destination buffer. Takes into account ring-wrap.
*/
static inline caddr_t
ed_ring_copy(sc, src, dst, amount)
struct ed_softc *sc;
caddr_t src, dst;
u_short amount;
{
u_short tmp_amount;
/* Does copy wrap to lower addr in ring buffer? */
if (src + amount > sc->mem_end) {
tmp_amount = sc->mem_end - src;
/* Copy amount up to end of NIC memory. */
ed_pio_readmem(sc, (long)src, dst, tmp_amount);
amount -= tmp_amount;
src = sc->mem_ring;
dst += tmp_amount;
}
ed_pio_readmem(sc, (long)src, dst, amount);
return (src + amount);
}
/*
* Copy data from receive buffer to end of mbuf chain allocate additional mbufs
* as needed. Return pointer to last mbuf in chain.
* sc = ed info (softc)
* src = pointer in ed ring buffer
* amount = amount of data to copy
*/
struct mbuf *
edget(sc, src, total_len)
struct ed_softc *sc;
caddr_t src;
u_short total_len;
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
struct mbuf *top, **mp, *m;
int len;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == 0)
return 0;
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = total_len;
len = MHLEN;
top = 0;
mp = &top;
while (total_len > 0) {
if (top) {
MGET(m, M_DONTWAIT, MT_DATA);
if (m == 0) {
m_freem(top);
return 0;
}
len = MLEN;
}
if (total_len >= MINCLSIZE) {
MCLGET(m, M_DONTWAIT);
if (m->m_flags & M_EXT)
len = MCLBYTES;
}
m->m_len = len = min(total_len, len);
src = ed_ring_copy(sc, src, mtod(m, caddr_t), len);
total_len -= len;
*mp = m;
mp = &m->m_next;
}
return top;
}
/*
* Compute the multicast address filter from the list of multicast addresses we
* need to listen to.
*/
void
ed_getmcaf(ac, af)
struct arpcom *ac;
u_long *af;
{
struct ifnet *ifp = &ac->ac_if;
struct ether_multi *enm;
register u_char *cp, c;
register u_long crc;
register int i, len;
struct ether_multistep step;
/*
* Set up multicast address filter by passing all multicast addresses
* through a crc generator, and then using the high order 6 bits as an
* index into the 64 bit logical address filter. The high order bit
* selects the word, while the rest of the bits select the bit within
* the word.
*/
if (ifp->if_flags & IFF_PROMISC) {
ifp->if_flags |= IFF_ALLMULTI;
af[0] = af[1] = 0xffffffff;
return;
}
af[0] = af[1] = 0;
ETHER_FIRST_MULTI(step, ac, enm);
while (enm != NULL) {
if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
sizeof(enm->enm_addrlo)) != 0) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
*/
ifp->if_flags |= IFF_ALLMULTI;
af[0] = af[1] = 0xffffffff;
return;
}
cp = enm->enm_addrlo;
crc = 0xffffffff;
for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
c = *cp++;
for (i = 8; --i >= 0;) {
if (((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01)) {
crc <<= 1;
crc ^= 0x04c11db6 | 1;
} else
crc <<= 1;
c >>= 1;
}
}
/* Just want the 6 most significant bits. */
crc >>= 26;
/* Turn on the corresponding bit in the filter. */
af[crc >> 5] |= 1 << ((crc & 0x1f) ^ 0);
ETHER_NEXT_MULTI(step, enm);
}
ifp->if_flags &= ~IFF_ALLMULTI;
}