286 lines
6.7 KiB
C
286 lines
6.7 KiB
C
|
/*
|
||
|
* Copyright (c) 1983 Regents of the University of California.
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms are permitted
|
||
|
* provided that: (1) source distributions retain this entire copyright
|
||
|
* notice and comment, and (2) distributions including binaries display
|
||
|
* the following acknowledgement: ``This product includes software
|
||
|
* developed by the University of California, Berkeley and its contributors''
|
||
|
* in the documentation or other materials provided with the distribution
|
||
|
* and in all advertising materials mentioning features or use of this
|
||
|
* software. Neither the name of the University nor the names of its
|
||
|
* contributors may be used to endorse or promote products derived
|
||
|
* from this software without specific prior written permission.
|
||
|
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
|
||
|
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
|
||
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
||
|
*/
|
||
|
#include <stdio.h>
|
||
|
#include "libiberty.h"
|
||
|
#include "gprof.h"
|
||
|
#include "cg_arcs.h"
|
||
|
#include "cg_dfn.h"
|
||
|
#include "symtab.h"
|
||
|
#include "utils.h"
|
||
|
|
||
|
#define DFN_INCR_DEPTH (128)
|
||
|
|
||
|
typedef struct
|
||
|
{
|
||
|
Sym *sym;
|
||
|
int cycle_top;
|
||
|
}
|
||
|
DFN_Stack;
|
||
|
|
||
|
DFN_Stack *dfn_stack = NULL;
|
||
|
int dfn_maxdepth = 0;
|
||
|
int dfn_depth = 0;
|
||
|
int dfn_counter = DFN_NAN;
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Is CHILD already numbered?
|
||
|
*/
|
||
|
static bool
|
||
|
DEFUN (is_numbered, (child), Sym * child)
|
||
|
{
|
||
|
return child->cg.top_order != DFN_NAN && child->cg.top_order != DFN_BUSY;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Is CHILD already busy?
|
||
|
*/
|
||
|
static bool
|
||
|
DEFUN (is_busy, (child), Sym * child)
|
||
|
{
|
||
|
if (child->cg.top_order == DFN_NAN)
|
||
|
{
|
||
|
return FALSE;
|
||
|
}
|
||
|
return TRUE;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* CHILD is part of a cycle. Find the top caller into this cycle
|
||
|
* that is not part of the cycle and make all functions in cycle
|
||
|
* members of that cycle (top caller == caller with smallest
|
||
|
* depth-first number).
|
||
|
*/
|
||
|
static void
|
||
|
DEFUN (find_cycle, (child), Sym * child)
|
||
|
{
|
||
|
Sym *head = 0;
|
||
|
Sym *tail;
|
||
|
int cycle_top;
|
||
|
int index;
|
||
|
|
||
|
for (cycle_top = dfn_depth; cycle_top > 0; --cycle_top)
|
||
|
{
|
||
|
head = dfn_stack[cycle_top].sym;
|
||
|
if (child == head)
|
||
|
{
|
||
|
break;
|
||
|
}
|
||
|
if (child->cg.cyc.head != child && child->cg.cyc.head == head)
|
||
|
{
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (cycle_top <= 0)
|
||
|
{
|
||
|
fprintf (stderr, "[find_cycle] couldn't find head of cycle\n");
|
||
|
done (1);
|
||
|
}
|
||
|
#ifdef DEBUG
|
||
|
if (debug_level & DFNDEBUG)
|
||
|
{
|
||
|
printf ("[find_cycle] dfn_depth %d cycle_top %d ",
|
||
|
dfn_depth, cycle_top);
|
||
|
if (head)
|
||
|
{
|
||
|
print_name (head);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
printf ("<unknown>");
|
||
|
}
|
||
|
printf ("\n");
|
||
|
}
|
||
|
#endif
|
||
|
if (cycle_top == dfn_depth)
|
||
|
{
|
||
|
/*
|
||
|
* This is previous function, e.g. this calls itself. Sort of
|
||
|
* boring.
|
||
|
*
|
||
|
* Since we are taking out self-cycles elsewhere no need for
|
||
|
* the special case, here.
|
||
|
*/
|
||
|
DBG (DFNDEBUG,
|
||
|
printf ("[find_cycle] ");
|
||
|
print_name (child);
|
||
|
printf ("\n"));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/*
|
||
|
* Glom intervening functions that aren't already glommed into
|
||
|
* this cycle. Things have been glommed when their cyclehead
|
||
|
* field points to the head of the cycle they are glommed
|
||
|
* into.
|
||
|
*/
|
||
|
for (tail = head; tail->cg.cyc.next; tail = tail->cg.cyc.next)
|
||
|
{
|
||
|
/* void: chase down to tail of things already glommed */
|
||
|
DBG (DFNDEBUG,
|
||
|
printf ("[find_cycle] tail ");
|
||
|
print_name (tail);
|
||
|
printf ("\n"));
|
||
|
}
|
||
|
/*
|
||
|
* If what we think is the top of the cycle has a cyclehead
|
||
|
* field, then it's not really the head of the cycle, which is
|
||
|
* really what we want.
|
||
|
*/
|
||
|
if (head->cg.cyc.head != head)
|
||
|
{
|
||
|
head = head->cg.cyc.head;
|
||
|
DBG (DFNDEBUG, printf ("[find_cycle] new cyclehead ");
|
||
|
print_name (head);
|
||
|
printf ("\n"));
|
||
|
}
|
||
|
for (index = cycle_top + 1; index <= dfn_depth; ++index)
|
||
|
{
|
||
|
child = dfn_stack[index].sym;
|
||
|
if (child->cg.cyc.head == child)
|
||
|
{
|
||
|
/*
|
||
|
* Not yet glommed anywhere, glom it and fix any
|
||
|
* children it has glommed.
|
||
|
*/
|
||
|
tail->cg.cyc.next = child;
|
||
|
child->cg.cyc.head = head;
|
||
|
DBG (DFNDEBUG, printf ("[find_cycle] glomming ");
|
||
|
print_name (child);
|
||
|
printf (" onto ");
|
||
|
print_name (head);
|
||
|
printf ("\n"));
|
||
|
for (tail = child; tail->cg.cyc.next; tail = tail->cg.cyc.next)
|
||
|
{
|
||
|
tail->cg.cyc.next->cg.cyc.head = head;
|
||
|
DBG (DFNDEBUG, printf ("[find_cycle] and its tail ");
|
||
|
print_name (tail->cg.cyc.next);
|
||
|
printf (" onto ");
|
||
|
print_name (head);
|
||
|
printf ("\n"));
|
||
|
}
|
||
|
}
|
||
|
else if (child->cg.cyc.head != head /* firewall */ )
|
||
|
{
|
||
|
fprintf (stderr, "[find_cycle] glommed, but not to head\n");
|
||
|
done (1);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Prepare for visiting the children of PARENT. Push a parent onto
|
||
|
* the stack and mark it busy.
|
||
|
*/
|
||
|
static void
|
||
|
DEFUN (pre_visit, (parent), Sym * parent)
|
||
|
{
|
||
|
++dfn_depth;
|
||
|
|
||
|
if (dfn_depth >= dfn_maxdepth)
|
||
|
{
|
||
|
dfn_maxdepth += DFN_INCR_DEPTH;
|
||
|
dfn_stack = xrealloc (dfn_stack, dfn_maxdepth * sizeof *dfn_stack);
|
||
|
}
|
||
|
|
||
|
dfn_stack[dfn_depth].sym = parent;
|
||
|
dfn_stack[dfn_depth].cycle_top = dfn_depth;
|
||
|
parent->cg.top_order = DFN_BUSY;
|
||
|
DBG (DFNDEBUG, printf ("[pre_visit]\t\t%d:", dfn_depth);
|
||
|
print_name (parent);
|
||
|
printf ("\n"));
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Done with visiting node PARENT. Pop PARENT off dfn_stack
|
||
|
* and number functions if PARENT is head of a cycle.
|
||
|
*/
|
||
|
static void
|
||
|
DEFUN (post_visit, (parent), Sym * parent)
|
||
|
{
|
||
|
Sym *member;
|
||
|
|
||
|
DBG (DFNDEBUG, printf ("[post_visit]\t%d: ", dfn_depth);
|
||
|
print_name (parent);
|
||
|
printf ("\n"));
|
||
|
/*
|
||
|
* Number functions and things in their cycles unless the function
|
||
|
* is itself part of a cycle:
|
||
|
*/
|
||
|
if (parent->cg.cyc.head == parent)
|
||
|
{
|
||
|
++dfn_counter;
|
||
|
for (member = parent; member; member = member->cg.cyc.next)
|
||
|
{
|
||
|
member->cg.top_order = dfn_counter;
|
||
|
DBG (DFNDEBUG, printf ("[post_visit]\t\tmember ");
|
||
|
print_name (member);
|
||
|
printf ("-> cg.top_order = %d\n", dfn_counter));
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
DBG (DFNDEBUG, printf ("[post_visit]\t\tis part of a cycle\n"));
|
||
|
}
|
||
|
--dfn_depth;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Given this PARENT, depth first number its children.
|
||
|
*/
|
||
|
void
|
||
|
DEFUN (cg_dfn, (parent), Sym * parent)
|
||
|
{
|
||
|
Arc *arc;
|
||
|
|
||
|
DBG (DFNDEBUG, printf ("[dfn] dfn( ");
|
||
|
print_name (parent);
|
||
|
printf (")\n"));
|
||
|
/*
|
||
|
* If we're already numbered, no need to look any further:
|
||
|
*/
|
||
|
if (is_numbered (parent))
|
||
|
{
|
||
|
return;
|
||
|
}
|
||
|
/*
|
||
|
* If we're already busy, must be a cycle:
|
||
|
*/
|
||
|
if (is_busy (parent))
|
||
|
{
|
||
|
find_cycle (parent);
|
||
|
return;
|
||
|
}
|
||
|
pre_visit (parent);
|
||
|
/*
|
||
|
* Recursively visit children:
|
||
|
*/
|
||
|
for (arc = parent->cg.children; arc; arc = arc->next_child)
|
||
|
{
|
||
|
cg_dfn (arc->child);
|
||
|
}
|
||
|
post_visit (parent);
|
||
|
}
|