NetBSD/sys/dev/pci/cmpci.c

1615 lines
40 KiB
C
Raw Normal View History

2000-05-01 02:16:56 +04:00
/* $NetBSD: cmpci.c,v 1.2 2000/04/30 22:16:56 augustss Exp $ */
/*
* Copyright (c) 2000 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Takuya SHIOZAKI <AoiMoe@imou.to> .
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
/*
* C-Media CMI8x38 Audio Chip Support.
*
* TODO:
* - Legacy MPU, OPL and Joystick support (but, I have no interest...)
* - SPDIF support.
*
* ACKNOWLEDGEMENT:
* - Lennart Augustsson : He touched up this code.
*
*/
#undef CMPCI_SPDIF_SUPPORT /* XXX: not working */
#if defined(AUDIO_DEBUG) || defined(DEBUG)
#define DPRINTF(x) printf x
#else
#define DPRINTF(x)
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/device.h>
#include <sys/proc.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/pcivar.h>
#include <sys/audioio.h>
#include <dev/audio_if.h>
#include <dev/midi_if.h>
#include <dev/mulaw.h>
#include <dev/auconv.h>
#include <dev/pci/cmpcireg.h>
#include <dev/pci/cmpcivar.h>
#include <dev/ic/mpuvar.h>
#include <machine/bus.h>
#include <machine/intr.h>
/*
* Low-level HW interface
*/
static __inline uint8_t cmpci_mixerreg_read __P((struct cmpci_softc *,
uint8_t));
static __inline void cmpci_mixerreg_write __P((struct cmpci_softc *,
uint8_t, uint8_t));
static __inline void cmpci_reg_partial_write_4 __P((struct cmpci_softc *,
int, int,
uint32_t, uint32_t));
static __inline void cmpci_reg_set_4 __P((struct cmpci_softc *,
int, uint32_t));
static __inline void cmpci_reg_clear_4 __P((struct cmpci_softc *,
int, uint32_t));
static int cmpci_rate_to_index __P((int));
static __inline int cmpci_index_to_rate __P((int));
static __inline int cmpci_index_to_divider __P((int));
static int cmpci_adjust __P((int, int));
static void cmpci_set_mixer_gain __P((struct cmpci_softc *, int));
static int cmpci_set_in_ports __P((struct cmpci_softc *, int));
/*
* autoconf interface
*/
static int cmpci_match __P((struct device *, struct cfdata *, void *));
static void cmpci_attach __P((struct device *, struct device *, void *));
struct cfattach cmpci_ca = {
sizeof (struct cmpci_softc), cmpci_match, cmpci_attach
};
/* interrupt */
static int cmpci_intr __P((void *));
/*
* DMA stuffs
*/
static int cmpci_alloc_dmamem __P((struct cmpci_softc *,
size_t, int, int, caddr_t *));
static int cmpci_free_dmamem __P((struct cmpci_softc *, caddr_t, int));
static struct cmpci_dmanode * cmpci_find_dmamem __P((struct cmpci_softc *,
caddr_t));
/*
* interface to machine independent layer
*/
static int cmpci_open __P((void *, int));
static void cmpci_close __P((void *));
static int cmpci_query_encoding __P((void *, struct audio_encoding *));
static int cmpci_set_params __P((void *, int, int,
struct audio_params *,
struct audio_params *));
static int cmpci_round_blocksize __P((void *, int));
static int cmpci_halt_output __P((void *));
static int cmpci_halt_input __P((void *));
static int cmpci_getdev __P((void *, struct audio_device *));
static int cmpci_set_port __P((void *, mixer_ctrl_t *));
static int cmpci_get_port __P((void *, mixer_ctrl_t *));
static int cmpci_query_devinfo __P((void *, mixer_devinfo_t *));
static void *cmpci_allocm __P((void *, int, size_t, int, int));
static void cmpci_freem __P((void *, void *, int));
static size_t cmpci_round_buffersize __P((void *, int, size_t));
static int cmpci_mappage __P((void *, void *, int, int));
static int cmpci_get_props __P((void *));
static int cmpci_trigger_output __P((void *, void *, void *, int,
void (*)(void *), void *,
struct audio_params *));
static int cmpci_trigger_input __P((void *, void *, void *, int,
void (*)(void *), void *,
struct audio_params *));
static struct audio_hw_if cmpci_hw_if = {
&cmpci_open, /* open */
&cmpci_close, /* close */
NULL, /* drain */
&cmpci_query_encoding, /* query_encoding */
&cmpci_set_params, /* set_params */
&cmpci_round_blocksize, /* round_blocksize */
NULL, /* commit_settings */
NULL, /* init_output */
NULL, /* init_input */
NULL, /* start_output */
NULL, /* start_input */
&cmpci_halt_output, /* halt_output */
&cmpci_halt_input, /* halt_input */
NULL, /* speaker_ctl */
&cmpci_getdev, /* getdev */
NULL, /* setfd */
&cmpci_set_port, /* set_port */
&cmpci_get_port, /* get_port */
&cmpci_query_devinfo, /* query_devinfo */
&cmpci_allocm, /* allocm */
&cmpci_freem, /* freem */
&cmpci_round_buffersize,/* round_buffersize */
&cmpci_mappage, /* mappage */
&cmpci_get_props, /* get_props */
&cmpci_trigger_output, /* trigger_output */
&cmpci_trigger_input /* trigger_input */
};
/*
* Low-level HW interface
*/
/* mixer register read/write */
static __inline uint8_t
cmpci_mixerreg_read(sc, no)
struct cmpci_softc *sc;
uint8_t no;
{
uint8_t ret;
bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
delay(10);
ret = bus_space_read_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA);
delay(10);
return ret;
}
static __inline void
cmpci_mixerreg_write(sc, no, val)
struct cmpci_softc *sc;
uint8_t no, val;
{
bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no);
delay(10);
bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA, val);
delay(10);
}
/* register partial write */
static __inline void
cmpci_reg_partial_write_4(sc, no, shift, mask, val)
struct cmpci_softc *sc;
int no, shift;
uint32_t mask, val;
{
bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
(val<<shift) |
(bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~(mask<<shift)));
delay(10);
}
/* register set/clear bit */
static __inline void
cmpci_reg_set_4(sc, no, mask)
struct cmpci_softc *sc;
int no;
uint32_t mask;
{
bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
(bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) | mask));
delay(10);
}
static __inline void
cmpci_reg_clear_4(sc, no, mask)
struct cmpci_softc *sc;
int no;
uint32_t mask;
{
bus_space_write_4(sc->sc_iot, sc->sc_ioh, no,
(bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~mask));
delay(10);
}
/* rate */
static struct {
int rate;
int divider;
} cmpci_rate_table[CMPCI_REG_NUMRATE] = {
#define _RATE(n) { n, CMPCI_REG_RATE_ ## n }
_RATE(5512),
_RATE(8000),
_RATE(11025),
_RATE(16000),
_RATE(22050),
_RATE(32000),
_RATE(44100),
_RATE(48000)
#undef _RATE
};
static int
cmpci_rate_to_index(rate)
int rate;
{
int i;
for (i = 0; i < CMPCI_REG_NUMRATE - 2; i++)
if (rate <=
(cmpci_rate_table[i].rate+cmpci_rate_table[i+1].rate) / 2)
return i;
return i; /* 48000 */
}
static __inline int
cmpci_index_to_rate(index)
int index;
{
return cmpci_rate_table[index].rate;
}
static __inline int
cmpci_index_to_divider(index)
int index;
{
return cmpci_rate_table[index].divider;
}
/*
* interface to configure the device.
*/
static int
cmpci_match(parent, match, aux)
struct device *parent;
struct cfdata *match;
void *aux;
{
struct pci_attach_args *pa = (struct pci_attach_args *)aux;
if ( PCI_VENDOR(pa->pa_id) == PCI_VENDOR_CMEDIA &&
(PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338A ||
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8338B ||
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CMEDIA_CMI8738) )
return 1;
return 0;
}
static void
cmpci_attach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct cmpci_softc *sc = (struct cmpci_softc *)self;
struct pci_attach_args *pa = (struct pci_attach_args *)aux;
pci_intr_handle_t ih;
char const *strintr;
int i, v;
sc->sc_revision = PCI_REVISION(pa->pa_class);
sc->sc_model = PCI_PRODUCT(pa->pa_id);
switch (sc->sc_model) {
case PCI_PRODUCT_CMEDIA_CMI8338A:
printf(": CMI8338A PCI Audio Device\n");
break;
case PCI_PRODUCT_CMEDIA_CMI8338B:
printf(": CMI8338B PCI Audio Device\n");
break;
case PCI_PRODUCT_CMEDIA_CMI8738:
printf(": CMI8738 PCI Audio Device\n");
break;
}
2000-05-01 02:16:56 +04:00
/* map I/O space */
if (pci_mapreg_map(pa, CMPCI_PCI_IOBASEREG, PCI_MAPREG_TYPE_IO, 0,
&sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
printf("%s: failed to map I/O space\n", sc->sc_dev.dv_xname);
return;
}
2000-05-01 02:16:56 +04:00
/* interrupt */
if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin,
pa->pa_intrline, &ih)) {
printf("%s: failed to map interrupt\n", sc->sc_dev.dv_xname);
return;
}
strintr = pci_intr_string(pa->pa_pc, ih);
sc->sc_ih=pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, cmpci_intr, sc);
if (sc->sc_ih == NULL) {
printf("%s: failed to establish interrupt",
sc->sc_dev.dv_xname);
if (strintr != NULL)
printf(" at %s", strintr);
printf("\n");
return;
}
printf("%s: intr at %s\n", sc->sc_dev.dv_xname, strintr);
sc->sc_dmat = pa->pa_dmat;
audio_attach_mi(&cmpci_hw_if, sc, &sc->sc_dev);
cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_RESET, 0);
cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, 0);
cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, 0);
cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX,
CMPCI_SB16_SW_CD|CMPCI_SB16_SW_MIC | CMPCI_SB16_SW_LINE);
for (i = 0; i < CMPCI_NDEVS; i++) {
switch(i) {
case CMPCI_MIC_VOL:
case CMPCI_LINE_IN_VOL:
v = 0;
break;
case CMPCI_BASS:
case CMPCI_TREBLE:
v = CMPCI_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
break;
case CMPCI_CD_IN_MUTE:
case CMPCI_MIC_IN_MUTE:
case CMPCI_LINE_IN_MUTE:
case CMPCI_FM_IN_MUTE:
case CMPCI_CD_SWAP:
case CMPCI_MIC_SWAP:
case CMPCI_LINE_SWAP:
case CMPCI_FM_SWAP:
v = 0;
break;
case CMPCI_CD_OUT_MUTE:
case CMPCI_MIC_OUT_MUTE:
case CMPCI_LINE_OUT_MUTE:
v = 1;
break;
default:
v = CMPCI_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
}
sc->gain[i][CMPCI_LEFT] = sc->gain[i][CMPCI_RIGHT] = v;
cmpci_set_mixer_gain(sc, i);
}
}
static int
cmpci_intr(handle)
void *handle;
{
struct cmpci_softc *sc = handle;
uint32_t intrstat;
intrstat = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
CMPCI_REG_INTR_STATUS);
delay(10);
if (!(intrstat & CMPCI_REG_ANY_INTR))
return 0;
/* disable and reset intr */
if (intrstat & CMPCI_REG_CH0_INTR)
cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
CMPCI_REG_CH0_INTR_ENABLE);
if (intrstat & CMPCI_REG_CH1_INTR)
cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL,
CMPCI_REG_CH1_INTR_ENABLE);
if (intrstat & CMPCI_REG_CH0_INTR) {
if (sc->sc_play.intr != NULL)
(*sc->sc_play.intr)(sc->sc_play.intr_arg);
}
if (intrstat & CMPCI_REG_CH1_INTR) {
if (sc->sc_rec.intr != NULL)
(*sc->sc_rec.intr)(sc->sc_rec.intr_arg);
}
/* enable intr */
if (intrstat & CMPCI_REG_CH0_INTR)
cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
CMPCI_REG_CH0_INTR_ENABLE);
if (intrstat & CMPCI_REG_CH1_INTR)
cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL,
CMPCI_REG_CH1_INTR_ENABLE);
return 0;
}
/* open/close */
static int
cmpci_open(handle, flags)
void *handle;
int flags;
{
#if 0
struct cmpci_softc *sc = handle;
#endif
return 0;
}
static void
cmpci_close(handle)
void *handle;
{
}
static int
cmpci_query_encoding(handle, fp)
void *handle;
struct audio_encoding *fp;
{
#if 0
struct cmpci_softc *sc = handle;
#endif
switch (fp->index) {
case 0:
strcpy(fp->name, AudioEulinear);
fp->encoding = AUDIO_ENCODING_ULINEAR;
fp->precision = 8;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
case 1:
strcpy(fp->name, AudioEmulaw);
fp->encoding = AUDIO_ENCODING_ULAW;
fp->precision = 8;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
case 2:
strcpy(fp->name, AudioEalaw);
fp->encoding = AUDIO_ENCODING_ALAW;
fp->precision = 8;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
case 3:
strcpy(fp->name, AudioEslinear);
fp->encoding = AUDIO_ENCODING_SLINEAR;
fp->precision = 8;
fp->flags = 0;
break;
case 4:
strcpy(fp->name, AudioEslinear_le);
fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
fp->precision = 16;
fp->flags = 0;
break;
case 5:
strcpy(fp->name, AudioEulinear_le);
fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
case 6:
strcpy(fp->name, AudioEslinear_be);
fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
case 7:
strcpy(fp->name, AudioEulinear_be);
fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
default:
return EINVAL;
}
return 0;
}
static int
cmpci_set_params(handle, setmode, usemode, play, rec)
void *handle;
int setmode, usemode;
struct audio_params *play, *rec;
{
int i;
struct cmpci_softc *sc = handle;
for (i = 0; i < 2; i++) {
int md_format;
int md_divide;
int md_index;
int mode;
struct audio_params *p;
switch (i) {
case 0:
mode = AUMODE_PLAY;
p = play;
break;
case 1:
mode = AUMODE_RECORD;
p = rec;
break;
}
if (!(setmode & mode))
continue;
/* format */
p->sw_code = NULL;
switch ( p->channels ) {
case 1:
md_format = CMPCI_REG_FORMAT_MONO;
break;
case 2:
md_format = CMPCI_REG_FORMAT_STEREO;
break;
default:
return (EINVAL);
}
switch (p->encoding) {
case AUDIO_ENCODING_ULAW:
if (p->precision != 8)
return (EINVAL);
if (mode & AUMODE_PLAY) {
p->factor = 2;
p->sw_code = mulaw_to_slinear16_le;
md_format |= CMPCI_REG_FORMAT_16BIT;
} else {
p->sw_code = ulinear8_to_mulaw;
md_format |= CMPCI_REG_FORMAT_8BIT;
}
break;
case AUDIO_ENCODING_ALAW:
if (p->precision != 8)
return (EINVAL);
if (mode & AUMODE_PLAY) {
p->factor = 2;
p->sw_code = alaw_to_slinear16_le;
md_format |= CMPCI_REG_FORMAT_16BIT;
} else {
p->sw_code = ulinear8_to_alaw;
md_format |= CMPCI_REG_FORMAT_8BIT;
}
break;
case AUDIO_ENCODING_SLINEAR_LE:
switch (p->precision) {
case 8:
p->sw_code = change_sign8;
md_format |= CMPCI_REG_FORMAT_8BIT;
break;
case 16:
md_format |= CMPCI_REG_FORMAT_16BIT;
break;
default:
return (EINVAL);
}
break;
case AUDIO_ENCODING_SLINEAR_BE:
switch (p->precision) {
case 8:
md_format |= CMPCI_REG_FORMAT_8BIT;
p->sw_code = change_sign8;
break;
case 16:
md_format |= CMPCI_REG_FORMAT_16BIT;
p->sw_code = swap_bytes;
break;
default:
return (EINVAL);
}
break;
case AUDIO_ENCODING_ULINEAR_LE:
switch (p->precision) {
case 8:
md_format |= CMPCI_REG_FORMAT_8BIT;
break;
case 16:
md_format |= CMPCI_REG_FORMAT_16BIT;
p->sw_code = change_sign16_le;
break;
default:
return (EINVAL);
}
break;
case AUDIO_ENCODING_ULINEAR_BE:
switch (p->precision) {
case 8:
md_format |= CMPCI_REG_FORMAT_8BIT;
break;
case 16:
md_format |= CMPCI_REG_FORMAT_16BIT;
if (mode & AUMODE_PLAY)
p->sw_code =swap_bytes_change_sign16_le;
else
p->sw_code =change_sign16_swap_bytes_le;
break;
default:
return (EINVAL);
}
break;
default:
return (EINVAL);
}
if (mode & AUMODE_PLAY)
cmpci_reg_partial_write_4(sc,
CMPCI_REG_CHANNEL_FORMAT, CMPCI_REG_CH0_FORMAT_SHIFT,
CMPCI_REG_CH0_FORMAT_MASK, md_format);
else
cmpci_reg_partial_write_4(sc,
CMPCI_REG_CHANNEL_FORMAT, CMPCI_REG_CH1_FORMAT_SHIFT,
CMPCI_REG_CH1_FORMAT_MASK, md_format);
/* sample rate */
md_index = cmpci_rate_to_index(p->sample_rate);
md_divide = cmpci_index_to_divider(md_index);
p->sample_rate = cmpci_index_to_rate(md_index);
#if 0
DPRINTF(("%s: sample:%d, divider=%d\n",
sc->sc_dev.dv_xname, (int)p->sample_rate, md_divide));
#endif
if (mode & AUMODE_PLAY) {
cmpci_reg_partial_write_4(sc,
CMPCI_REG_FUNC_1, CMPCI_REG_DAC_FS_SHIFT,
CMPCI_REG_DAC_FS_MASK, md_divide);
#ifdef CMPCI_SPDIF_SUPPORT
switch (md_divide) {
case CMPCI_REG_RATE_44100:
cmpci_reg_clear_4(sc, CMPCI_REG_MISC,
CMPCI_REG_SPDIF_48K);
cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
CMPCI_REG_SPDIF_LOOP);
cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1,
CMPCI_REG_SPDIF0_ENABLE);
break;
case CMPCI_REG_RATE_48000:
cmpci_reg_set_4(sc, CMPCI_REG_MISC,
CMPCI_REG_SPDIF_48K);
cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
CMPCI_REG_SPDIF_LOOP);
cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1,
CMPCI_REG_SPDIF0_ENABLE);
break;
default:
cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1,
CMPCI_REG_SPDIF0_ENABLE);
cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1,
CMPCI_REG_SPDIF_LOOP);
}
#endif
} else {
cmpci_reg_partial_write_4(sc,
CMPCI_REG_FUNC_1, CMPCI_REG_ADC_FS_SHIFT,
CMPCI_REG_ADC_FS_MASK, md_divide);
#ifdef CMPCI_SPDIF_SUPPORT
if (sc->in_mask & CMPCI_SPDIF_IN) {
switch (md_divide) {
case CMPCI_REG_RATE_44100:
cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1,
CMPCI_REG_SPDIF1_ENABLE);
break;
default:
return EINVAL;
}
} else
cmpci_reg_clear_4(sc,
CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF1_ENABLE);
#endif
}
}
return 0;
}
/* ARGSUSED */
static int
cmpci_round_blocksize(handle, block)
void *handle;
int block;
{
return (block & -4);
}
static int
cmpci_halt_output(handle)
void *handle;
{
struct cmpci_softc *sc = handle;
int s;
s = splaudio();
sc->sc_play.intr = NULL;
cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
/* wait for reset DMA */
cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
delay(10);
cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_RESET);
splx(s);
return 0;
}
static int
cmpci_halt_input(handle)
void *handle;
{
struct cmpci_softc *sc = handle;
int s;
s = splaudio();
sc->sc_rec.intr = NULL;
cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
/* wait for reset DMA */
cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
delay(10);
cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET);
splx(s);
return 0;
}
/* get audio device information */
static int
cmpci_getdev(handle, ad)
void *handle;
struct audio_device *ad;
{
struct cmpci_softc *sc = handle;
strncpy(ad->name, "CMI PCI Audio", sizeof(ad->name));
snprintf(ad->version, sizeof(ad->version), "0x%02x", sc->sc_revision);
switch (sc->sc_model) {
case PCI_PRODUCT_CMEDIA_CMI8338A:
strncpy(ad->config, "CMI8338A", sizeof(ad->config));
break;
case PCI_PRODUCT_CMEDIA_CMI8338B:
strncpy(ad->config, "CMI8338B", sizeof(ad->config));
break;
case PCI_PRODUCT_CMEDIA_CMI8738:
strncpy(ad->config, "CMI8738", sizeof(ad->config));
break;
default:
strncpy(ad->config, "unknown", sizeof(ad->config));
}
return 0;
}
/* mixer device information */
int
cmpci_query_devinfo(handle, dip)
void *handle;
mixer_devinfo_t *dip;
{
#if 0
struct cmpci_softc *sc = handle;
#endif
switch (dip->index) {
case CMPCI_MASTER_VOL:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = CMPCI_OUTPUT_CLASS;
dip->prev = dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNmaster);
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return 0;
case CMPCI_FM_VOL:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = CMPCI_INPUT_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = CMPCI_FM_IN_MUTE;
strcpy(dip->label.name, AudioNfmsynth);
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return 0;
case CMPCI_CD_VOL:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = CMPCI_INPUT_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = CMPCI_CD_IN_MUTE;
strcpy(dip->label.name, AudioNcd);
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return 0;
case CMPCI_VOICE_VOL:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = CMPCI_OUTPUT_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNdac);
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return 0;
case CMPCI_OUTPUT_CLASS:
dip->type = AUDIO_MIXER_CLASS;
dip->mixer_class = CMPCI_INPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCoutputs);
return 0;
case CMPCI_MIC_VOL:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = CMPCI_INPUT_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = CMPCI_MIC_IN_MUTE;
strcpy(dip->label.name, AudioNmicrophone);
dip->un.v.num_channels = 1;
strcpy(dip->un.v.units.name, AudioNvolume);
return 0;
case CMPCI_LINE_IN_VOL:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = CMPCI_INPUT_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = CMPCI_LINE_IN_MUTE;
strcpy(dip->label.name, AudioNline);
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return 0;
case CMPCI_RECORD_SOURCE:
dip->mixer_class = CMPCI_RECORD_CLASS;
dip->prev = dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNsource);
dip->type = AUDIO_MIXER_SET;
#ifdef CMPCI_SPDIF_SUPPORT
dip->un.s.num_mem = 5;
#else
dip->un.s.num_mem = 4;
#endif
strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
dip->un.s.member[0].mask = 1 << CMPCI_MIC_VOL;
strcpy(dip->un.s.member[1].label.name, AudioNcd);
dip->un.s.member[1].mask = 1 << CMPCI_CD_VOL;
strcpy(dip->un.s.member[2].label.name, AudioNline);
dip->un.s.member[2].mask = 1 << CMPCI_LINE_IN_VOL;
strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
dip->un.s.member[3].mask = 1 << CMPCI_FM_VOL;
#ifdef CMPCI_SPDIF_SUPPORT
strcpy(dip->un.s.member[4].label.name, CmpciNspdif);
dip->un.s.member[4].mask = 1 << CMPCI_SPDIF_IN;
#endif
return 0;
case CMPCI_BASS:
dip->prev = dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNbass);
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = CMPCI_EQUALIZATION_CLASS;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNbass);
return 0;
case CMPCI_TREBLE:
dip->prev = dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNtreble);
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = CMPCI_EQUALIZATION_CLASS;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNtreble);
return 0;
case CMPCI_RECORD_CLASS:
dip->type = AUDIO_MIXER_CLASS;
dip->mixer_class = CMPCI_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCrecord);
return 0;
case CMPCI_INPUT_CLASS:
dip->type = AUDIO_MIXER_CLASS;
dip->mixer_class = CMPCI_INPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCinputs);
return 0;
case CMPCI_PCSPEAKER:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = CMPCI_INPUT_CLASS;
dip->prev = dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, "pc_speaker");
dip->un.v.num_channels = 1;
strcpy(dip->un.v.units.name, AudioNvolume);
return 0;
case CMPCI_INPUT_GAIN:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = CMPCI_INPUT_CLASS;
dip->prev = dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNinput);
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return 0;
case CMPCI_OUTPUT_GAIN:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = CMPCI_OUTPUT_CLASS;
dip->prev = dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNoutput);
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return 0;
case CMPCI_AGC:
dip->type = AUDIO_MIXER_ENUM;
dip->mixer_class = CMPCI_INPUT_CLASS;
dip->prev = dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, "agc");
dip->un.e.num_mem = 2;
strcpy(dip->un.e.member[0].label.name, AudioNoff);
dip->un.e.member[0].ord = 0;
strcpy(dip->un.e.member[1].label.name, AudioNon);
dip->un.e.member[1].ord = 1;
return 0;
case CMPCI_EQUALIZATION_CLASS:
dip->type = AUDIO_MIXER_CLASS;
dip->mixer_class = CMPCI_EQUALIZATION_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCequalization);
return 0;
case CMPCI_CD_IN_MUTE:
dip->prev = CMPCI_CD_VOL;
dip->next = CMPCI_CD_SWAP;
dip->mixer_class = CMPCI_INPUT_CLASS;
goto mute;
case CMPCI_MIC_IN_MUTE:
dip->prev = CMPCI_MIC_VOL;
dip->next = CMPCI_MIC_SWAP;
dip->mixer_class = CMPCI_INPUT_CLASS;
goto mute;
case CMPCI_LINE_IN_MUTE:
dip->prev = CMPCI_LINE_IN_VOL;
dip->next = CMPCI_LINE_SWAP;
dip->mixer_class = CMPCI_INPUT_CLASS;
goto mute;
case CMPCI_FM_IN_MUTE:
dip->prev = CMPCI_FM_VOL;
dip->next = CMPCI_FM_SWAP;
dip->mixer_class = CMPCI_INPUT_CLASS;
goto mute;
case CMPCI_CD_SWAP:
dip->prev = CMPCI_CD_IN_MUTE;
dip->next = CMPCI_CD_OUT_MUTE;
goto swap;
case CMPCI_MIC_SWAP:
dip->prev = CMPCI_MIC_IN_MUTE;
dip->next = CMPCI_MIC_OUT_MUTE;
goto swap;
case CMPCI_LINE_SWAP:
dip->prev = CMPCI_LINE_IN_MUTE;
dip->next = CMPCI_LINE_OUT_MUTE;
goto swap;
case CMPCI_FM_SWAP:
dip->prev = CMPCI_FM_IN_MUTE;
dip->next = AUDIO_MIXER_LAST;
swap:
dip->mixer_class = CMPCI_INPUT_CLASS;
strcpy(dip->label.name, AudioNswap);
goto mute1;
case CMPCI_CD_OUT_MUTE:
dip->prev = CMPCI_CD_SWAP;
dip->next = AUDIO_MIXER_LAST;
dip->mixer_class = CMPCI_OUTPUT_CLASS;
goto mute;
case CMPCI_MIC_OUT_MUTE:
dip->prev = CMPCI_MIC_SWAP;
dip->next = AUDIO_MIXER_LAST;
dip->mixer_class = CMPCI_OUTPUT_CLASS;
goto mute;
case CMPCI_LINE_OUT_MUTE:
dip->prev = CMPCI_LINE_SWAP;
dip->next = AUDIO_MIXER_LAST;
dip->mixer_class = CMPCI_OUTPUT_CLASS;
mute:
strcpy(dip->label.name, AudioNmute);
mute1:
dip->type = AUDIO_MIXER_ENUM;
dip->un.e.num_mem = 2;
strcpy(dip->un.e.member[0].label.name, AudioNoff);
dip->un.e.member[0].ord = 0;
strcpy(dip->un.e.member[1].label.name, AudioNon);
dip->un.e.member[1].ord = 1;
return 0;
}
return ENXIO;
}
static int
cmpci_alloc_dmamem(sc, size, type, flags, r_addr)
struct cmpci_softc *sc;
size_t size;
int type, flags;
caddr_t *r_addr;
{
int error = 0;
struct cmpci_dmanode *n;
int w;
n = malloc(sizeof(struct cmpci_dmanode), type, flags);
if (n == NULL) {
error = ENOMEM;
goto quit;
}
w = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
#define CMPCI_DMABUF_ALIGN 0x4
#define CMPCI_DMABUF_BOUNDARY 0x0
n->cd_tag = sc->sc_dmat;
n->cd_size = size;
error = bus_dmamem_alloc(n->cd_tag, n->cd_size,
CMPCI_DMABUF_ALIGN, CMPCI_DMABUF_BOUNDARY, n->cd_segs,
sizeof(n->cd_segs)/sizeof(n->cd_segs[0]), &n->cd_nsegs, w);
if (error)
goto mfree;
error = bus_dmamem_map(n->cd_tag, n->cd_segs, n->cd_nsegs, n->cd_size,
&n->cd_addr, w | BUS_DMA_COHERENT);
if (error)
goto dmafree;
error = bus_dmamap_create(n->cd_tag, n->cd_size, 1, n->cd_size, 0,
w, &n->cd_map);
if (error)
goto unmap;
error = bus_dmamap_load(n->cd_tag, n->cd_map, n->cd_addr, n->cd_size,
NULL, w);
if (error)
goto destroy;
n->cd_next = sc->sc_dmap;
sc->sc_dmap = n;
*r_addr = KVADDR(n);
return 0;
destroy:
bus_dmamap_destroy(n->cd_tag, n->cd_map);
unmap:
bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
dmafree:
bus_dmamem_free(n->cd_tag,
n->cd_segs, sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
mfree:
free(n, type);
quit:
return error;
}
static int
cmpci_free_dmamem(sc, addr, type)
struct cmpci_softc *sc;
caddr_t addr;
int type;
{
struct cmpci_dmanode **nnp;
for (nnp = &sc->sc_dmap; *nnp; nnp= &(*nnp)->cd_next) {
if ((*nnp)->cd_addr == addr) {
struct cmpci_dmanode *n = *nnp;
bus_dmamap_unload(n->cd_tag, n->cd_map);
bus_dmamap_destroy(n->cd_tag, n->cd_map);
bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size);
bus_dmamem_free(n->cd_tag, n->cd_segs,
sizeof(n->cd_segs)/sizeof(n->cd_segs[0]));
free(n, type);
return 0;
}
}
return -1;
}
static struct cmpci_dmanode *
cmpci_find_dmamem(sc, addr)
struct cmpci_softc *sc;
caddr_t addr;
{
struct cmpci_dmanode *p;
for (p=sc->sc_dmap; p; p=p->cd_next)
if ( KVADDR(p) == (void *)addr )
break;
return p;
}
#if 0
static void
cmpci_print_dmamem __P((struct cmpci_dmanode *p));
static void
cmpci_print_dmamem(p)
struct cmpci_dmanode *p;
{
DPRINTF(("DMA at virt:%p, dmaseg:%p, mapseg:%p, size:%p\n",
(void *)p->cd_addr, (void *)p->cd_segs[0].ds_addr,
(void *)DMAADDR(p), (void *)p->cd_size));
}
#endif /* DEBUG */
static void *
cmpci_allocm(handle, direction, size, type, flags)
void *handle;
int direction;
size_t size;
int type, flags;
{
struct cmpci_softc *sc = handle;
caddr_t addr;
if (cmpci_alloc_dmamem(sc, size, type, flags, &addr))
return NULL;
return addr;
}
static void
cmpci_freem(handle, addr, type)
void *handle;
void *addr;
int type;
{
struct cmpci_softc *sc = handle;
cmpci_free_dmamem(sc, addr, type);
}
#define MAXVAL 256
static int
cmpci_adjust(val, mask)
int val, mask;
{
val += (MAXVAL - mask) >> 1;
if (val >= MAXVAL)
val = MAXVAL-1;
return val & mask;
}
static void
cmpci_set_mixer_gain(sc, port)
struct cmpci_softc *sc;
int port;
{
int src;
switch (port) {
case CMPCI_MIC_VOL:
src = CMPCI_SB16_MIXER_MIC;
break;
case CMPCI_MASTER_VOL:
src = CMPCI_SB16_MIXER_MASTER_L;
break;
case CMPCI_LINE_IN_VOL:
src = CMPCI_SB16_MIXER_LINE_L;
break;
case CMPCI_VOICE_VOL:
src = CMPCI_SB16_MIXER_VOICE_L;
break;
case CMPCI_FM_VOL:
src = CMPCI_SB16_MIXER_FM_L;
break;
case CMPCI_CD_VOL:
src = CMPCI_SB16_MIXER_CDDA_L;
break;
case CMPCI_INPUT_GAIN:
src = CMPCI_SB16_MIXER_INGAIN_L;
break;
case CMPCI_OUTPUT_GAIN:
src = CMPCI_SB16_MIXER_OUTGAIN_L;
break;
case CMPCI_TREBLE:
src = CMPCI_SB16_MIXER_TREBLE_L;
break;
case CMPCI_BASS:
src = CMPCI_SB16_MIXER_BASS_L;
break;
case CMPCI_PCSPEAKER:
cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_SPEAKER,
sc->gain[port][CMPCI_LEFT]);
return;
default:
return;
}
cmpci_mixerreg_write(sc, src, sc->gain[port][CMPCI_LEFT]);
cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_L_TO_R(src),
sc->gain[port][CMPCI_RIGHT]);
}
static int
cmpci_set_in_ports(sc, mask)
struct cmpci_softc *sc;
int mask;
{
int bitsl, bitsr;
if (mask & ~((1<<CMPCI_FM_VOL) | (1<<CMPCI_LINE_IN_VOL) |
(1<<CMPCI_CD_VOL) | (1<<CMPCI_MIC_VOL)
#ifdef CMPCI_SPDIF_SUPPORT
| (1<<CMPCI_SPDIF_IN)
#endif
))
return EINVAL;
bitsr = 0;
if (mask & (1<<CMPCI_FM_VOL)) bitsr |= CMPCI_SB16_MIXER_FM_SRC_R;
if (mask & (1<<CMPCI_LINE_IN_VOL)) bitsr |= CMPCI_SB16_MIXER_LINE_SRC_R;
if (mask & (1<<CMPCI_CD_VOL)) bitsr |= CMPCI_SB16_MIXER_CD_SRC_R;
bitsl = CMPCI_SB16_MIXER_SRC_R_TO_L(bitsr);
if (mask & (1<<CMPCI_MIC_VOL)) {
bitsl |= CMPCI_SB16_MIXER_MIC_SRC;
bitsr |= CMPCI_SB16_MIXER_MIC_SRC;
}
cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, bitsl);
cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, bitsr);
sc->in_mask = mask;
return 0;
}
static int
cmpci_set_port(handle, cp)
void *handle;
mixer_ctrl_t *cp;
{
struct cmpci_softc *sc = handle;
int lgain, rgain;
int mask, bits;
int lmask, rmask, lbits, rbits;
int mute, swap;
switch (cp->dev) {
case CMPCI_TREBLE:
case CMPCI_BASS:
case CMPCI_PCSPEAKER:
case CMPCI_INPUT_GAIN:
case CMPCI_OUTPUT_GAIN:
case CMPCI_MIC_VOL:
case CMPCI_LINE_IN_VOL:
case CMPCI_VOICE_VOL:
case CMPCI_FM_VOL:
case CMPCI_CD_VOL:
case CMPCI_MASTER_VOL:
if (cp->type != AUDIO_MIXER_VALUE)
return EINVAL;
switch (cp->dev) {
case CMPCI_MIC_VOL:
if (cp->un.value.num_channels != 1)
return EINVAL;
lgain = rgain =
CMPCI_ADJUST_MIC_GAIN(sc,
cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
break;
case CMPCI_PCSPEAKER:
if (cp->un.value.num_channels != 1)
return EINVAL;
/* fall into */
case CMPCI_INPUT_GAIN:
case CMPCI_OUTPUT_GAIN:
lgain = rgain = CMPCI_ADJUST_2_GAIN(sc,
cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
break;
default:
switch (cp->un.value.num_channels) {
case 1:
lgain = rgain = CMPCI_ADJUST_GAIN(sc,
cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
break;
case 2:
lgain = CMPCI_ADJUST_GAIN(sc,
cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
rgain = CMPCI_ADJUST_GAIN(sc,
cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
break;
default:
return EINVAL;
}
break;
}
sc->gain[cp->dev][CMPCI_LEFT] = lgain;
sc->gain[cp->dev][CMPCI_RIGHT] = rgain;
cmpci_set_mixer_gain(sc, cp->dev);
break;
case CMPCI_RECORD_SOURCE:
if (cp->type != AUDIO_MIXER_SET)
return EINVAL;
#ifdef CMPCI_SPDIF_SUPPORT
if (cp->un.mask & (1<<CMPCI_SPDIF_IN))
cp->un.mask = 1<<CMPCI_SPDIF_IN;
#endif
return cmpci_set_in_ports(sc, cp->un.mask);
case CMPCI_AGC:
cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_AGC, cp->un.ord & 1);
break;
case CMPCI_CD_OUT_MUTE:
mask = CMPCI_SB16_SW_CD;
goto omute;
case CMPCI_MIC_OUT_MUTE:
mask = CMPCI_SB16_SW_MIC;
goto omute;
case CMPCI_LINE_OUT_MUTE:
mask = CMPCI_SB16_SW_LINE;
omute:
if (cp->type != AUDIO_MIXER_ENUM)
return EINVAL;
bits = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_OUTMIX);
sc->gain[cp->dev][CMPCI_LR] = cp->un.ord != 0;
if (cp->un.ord)
bits = bits & ~mask;
else
bits = bits | mask;
cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX, bits);
break;
case CMPCI_MIC_IN_MUTE:
case CMPCI_MIC_SWAP:
lmask = rmask = CMPCI_SB16_SW_MIC;
goto imute;
case CMPCI_CD_IN_MUTE:
case CMPCI_CD_SWAP:
lmask = CMPCI_SB16_SW_CD_L;
rmask = CMPCI_SB16_SW_CD_R;
goto imute;
case CMPCI_LINE_IN_MUTE:
case CMPCI_LINE_SWAP:
lmask = CMPCI_SB16_SW_LINE_L;
rmask = CMPCI_SB16_SW_LINE_R;
goto imute;
case CMPCI_FM_IN_MUTE:
case CMPCI_FM_SWAP:
lmask = CMPCI_SB16_SW_FM_L;
rmask = CMPCI_SB16_SW_FM_R;
imute:
if (cp->type != AUDIO_MIXER_ENUM)
return EINVAL;
mask = lmask | rmask;
lbits = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_ADCMIX_L)
& ~mask;
rbits = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_ADCMIX_R)
& ~mask;
sc->gain[cp->dev][CMPCI_LR] = cp->un.ord != 0;
if (CMPCI_IS_IN_MUTE(cp->dev)) {
mute = cp->dev;
swap = mute - CMPCI_CD_IN_MUTE + CMPCI_CD_SWAP;
} else {
swap = cp->dev;
mute = swap + CMPCI_CD_IN_MUTE - CMPCI_CD_SWAP;
}
if (sc->gain[swap][CMPCI_LR]) {
mask = lmask;
lmask = rmask;
rmask = mask;
}
if (!sc->gain[mute][CMPCI_LR]) {
lbits = lbits | lmask;
rbits = rbits | rmask;
}
cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, lbits);
cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, rbits);
break;
default:
return EINVAL;
}
return 0;
}
static int
cmpci_get_port(handle, cp)
void *handle;
mixer_ctrl_t *cp;
{
struct cmpci_softc *sc = handle;
switch (cp->dev) {
case CMPCI_MIC_VOL:
case CMPCI_LINE_IN_VOL:
if (cp->un.value.num_channels != 1)
return EINVAL;
/* fall into */
case CMPCI_TREBLE:
case CMPCI_BASS:
case CMPCI_PCSPEAKER:
case CMPCI_INPUT_GAIN:
case CMPCI_OUTPUT_GAIN:
case CMPCI_VOICE_VOL:
case CMPCI_FM_VOL:
case CMPCI_CD_VOL:
case CMPCI_MASTER_VOL:
switch (cp->un.value.num_channels) {
case 1:
cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
sc->gain[cp->dev][CMPCI_LEFT];
break;
case 2:
cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
sc->gain[cp->dev][CMPCI_LEFT];
cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
sc->gain[cp->dev][CMPCI_RIGHT];
break;
default:
return EINVAL;
}
break;
case CMPCI_RECORD_SOURCE:
cp->un.mask = sc->in_mask;
break;
case CMPCI_AGC:
cp->un.ord = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_AGC);
break;
case CMPCI_CD_IN_MUTE:
case CMPCI_MIC_IN_MUTE:
case CMPCI_LINE_IN_MUTE:
case CMPCI_FM_IN_MUTE:
case CMPCI_CD_SWAP:
case CMPCI_MIC_SWAP:
case CMPCI_LINE_SWAP:
case CMPCI_FM_SWAP:
case CMPCI_CD_OUT_MUTE:
case CMPCI_MIC_OUT_MUTE:
case CMPCI_LINE_OUT_MUTE:
cp->un.ord = sc->gain[cp->dev][CMPCI_LR];
break;
default:
return EINVAL;
}
return 0;
}
/* ARGSUSED */
static size_t
cmpci_round_buffersize(handle, direction, bufsize)
void *handle;
int direction;
size_t bufsize;
{
if (bufsize > 0x10000)
bufsize = 0x10000;
return bufsize;
}
static int
cmpci_mappage(handle, addr, offset, prot)
void *handle;
void *addr;
int offset;
int prot;
{
struct cmpci_softc *sc = handle;
struct cmpci_dmanode *p;
if (offset < 0 || NULL == (p = cmpci_find_dmamem(sc, addr)))
return -1;
return bus_dmamem_mmap(p->cd_tag, p->cd_segs,
sizeof(p->cd_segs)/sizeof(p->cd_segs[0]),
offset, prot, BUS_DMA_WAITOK);
}
/* ARGSUSED */
static int
cmpci_get_props(handle)
void *handle;
{
return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
}
static int
cmpci_trigger_output(handle, start, end, blksize, intr, arg, param)
void *handle;
void *start, *end;
int blksize;
void (*intr) __P((void *));
void *arg;
struct audio_params *param;
{
struct cmpci_softc *sc = handle;
struct cmpci_dmanode *p;
int bps;
sc->sc_play.intr = intr;
sc->sc_play.intr_arg = arg;
bps = param->channels*param->precision*param->factor / 8;
if (!bps)
return EINVAL;
/* set DMA frame */
if (!(p = cmpci_find_dmamem(sc, start)))
return EINVAL;
bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BASE,
DMAADDR(p));
delay(10);
bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_BYTES,
((caddr_t)end - (caddr_t)start + 1) / bps - 1);
delay(10);
/* set interrupt count */
bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA0_SAMPLES,
(blksize + bps - 1) / bps - 1);
delay(10);
/* start DMA */
cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_DIR); /* PLAY */
cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE);
cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH0_ENABLE);
return 0;
}
static int
cmpci_trigger_input(handle, start, end, blksize, intr, arg, param)
void *handle;
void *start, *end;
int blksize;
void (*intr) __P((void *));
void *arg;
struct audio_params *param;
{
struct cmpci_softc *sc = handle;
struct cmpci_dmanode *p;
int bps;
sc->sc_rec.intr = intr;
sc->sc_rec.intr_arg = arg;
bps = param->channels*param->precision*param->factor/8;
if (!bps)
return EINVAL;
/* set DMA frame */
if (!(p=cmpci_find_dmamem(sc, start)))
return EINVAL;
bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BASE,
DMAADDR(p));
delay(10);
bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BYTES,
((caddr_t)end - (caddr_t)start + 1) / bps - 1);
delay(10);
/* set interrupt count */
bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_SAMPLES,
(blksize + bps - 1) / bps - 1);
delay(10);
/* start DMA */
cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_DIR); /* REC */
cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE);
cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE);
return 0;
}
/* end of file */