NetBSD/sys/arch/xen/i386/gdt.c

425 lines
10 KiB
C
Raw Normal View History

/* $NetBSD: gdt.c,v 1.9 2007/04/16 19:12:19 ad Exp $ */
/* NetBSD: gdt.c,v 1.32 2004/02/13 11:36:13 wiz Exp */
/*-
* Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by John T. Kohl and Charles M. Hannum.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: gdt.c,v 1.9 2007/04/16 19:12:19 ad Exp $");
#include "opt_multiprocessor.h"
#include "opt_xen.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/lock.h>
#include <sys/user.h>
#include <uvm/uvm.h>
#include <machine/gdt.h>
int gdt_size[2]; /* total number of GDT entries */
int gdt_count[2]; /* number of GDT entries in use */
int gdt_next[2]; /* next available slot for sweeping */
int gdt_free[2]; /* next free slot; terminated with GNULL_SEL */
struct lock gdt_lock_store;
static inline void gdt_lock(void);
static inline void gdt_unlock(void);
void gdt_init(void);
void gdt_grow(int);
int gdt_get_slot(void);
int gdt_get_slot1(int);
void gdt_put_slot(int);
void gdt_put_slot1(int, int);
/*
* Lock and unlock the GDT, to avoid races in case gdt_{ge,pu}t_slot() sleep
* waiting for memory.
*
* Note that the locking done here is not sufficient for multiprocessor
* systems. A freshly allocated slot will still be of type SDT_SYSNULL for
* some time after the GDT is unlocked, so gdt_compact() could attempt to
* reclaim it.
*/
static inline void
gdt_lock()
{
(void) lockmgr(&gdt_lock_store, LK_EXCLUSIVE, NULL);
}
static inline void
gdt_unlock()
{
(void) lockmgr(&gdt_lock_store, LK_RELEASE, NULL);
}
void
setgdt(int sel, void *base, size_t limit,
int type, int dpl, int def32, int gran)
{
struct segment_descriptor sd;
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
if (type == SDT_SYS386TSS) {
/* printk("XXX TSS descriptor not supported in GDT\n"); */
return;
}
setsegment(&sd, base, limit, type, dpl, def32, gran);
for (CPU_INFO_FOREACH(cii, ci)) {
if (ci->ci_gdt != NULL) {
#ifndef XEN
ci->ci_gdt[sel].sd = sd;
#else
xen_update_descriptor(&ci->ci_gdt[sel],
(union descriptor *)&sd);
#endif
}
}
}
/*
* Initialize the GDT subsystem. Called from autoconf().
*/
void
gdt_init()
{
size_t max_len, min_len;
union descriptor *old_gdt;
struct vm_page *pg;
vaddr_t va;
struct cpu_info *ci = &cpu_info_primary;
lockinit(&gdt_lock_store, PZERO, "gdtlck", 0, 0);
max_len = MAXGDTSIZ * sizeof(gdt[0]);
min_len = MINGDTSIZ * sizeof(gdt[0]);
gdt_size[0] = MINGDTSIZ;
gdt_count[0] = NGDT;
gdt_next[0] = NGDT;
gdt_free[0] = GNULL_SEL;
gdt_size[1] = 0;
gdt_count[1] = MAXGDTSIZ;
gdt_next[1] = MAXGDTSIZ;
gdt_free[1] = GNULL_SEL;
old_gdt = gdt;
gdt = (union descriptor *)uvm_km_alloc(kernel_map, max_len + max_len, 0,
UVM_KMF_VAONLY);
for (va = (vaddr_t)gdt; va < (vaddr_t)gdt + min_len; va += PAGE_SIZE) {
pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
if (pg == NULL) {
panic("gdt_init: no pages");
}
pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg),
VM_PROT_READ | VM_PROT_WRITE);
}
memcpy(gdt, old_gdt, NGDT * sizeof(gdt[0]));
ci->ci_gdt = gdt;
setsegment(&ci->ci_gdt[GCPU_SEL].sd, ci, sizeof(struct cpu_info)-1,
SDT_MEMRWA, SEL_KPL, 1, 1);
gdt_init_cpu(ci);
}
/*
* Allocate shadow GDT for a slave CPU.
*/
void
gdt_alloc_cpu(struct cpu_info *ci)
{
int max_len = MAXGDTSIZ * sizeof(gdt[0]);
int min_len = MINGDTSIZ * sizeof(gdt[0]);
struct vm_page *pg;
vaddr_t va;
ci->ci_gdt = (union descriptor *)uvm_km_alloc(kernel_map, max_len, 0,
UVM_KMF_VAONLY);
for (va = (vaddr_t)ci->ci_gdt; va < (vaddr_t)ci->ci_gdt + min_len;
va += PAGE_SIZE) {
while ((pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO))
== NULL) {
uvm_wait("gdt_alloc_cpu");
}
pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg),
VM_PROT_READ | VM_PROT_WRITE);
}
memset(ci->ci_gdt, 0, min_len);
memcpy(ci->ci_gdt, gdt, gdt_count[0] * sizeof(gdt[0]));
setsegment(&ci->ci_gdt[GCPU_SEL].sd, ci, sizeof(struct cpu_info)-1,
SDT_MEMRWA, SEL_KPL, 1, 1);
}
/*
* Load appropriate gdt descriptor; we better be running on *ci
* (for the most part, this is how a CPU knows who it is).
*/
void
gdt_init_cpu(struct cpu_info *ci)
{
#ifndef XEN
struct region_descriptor region;
size_t max_len;
max_len = MAXGDTSIZ * sizeof(gdt[0]);
setregion(&region, ci->ci_gdt, max_len - 1);
lgdt(&region);
#else
size_t len = gdt_size[0] * sizeof(gdt[0]);
unsigned long frames[len >> PAGE_SHIFT];
vaddr_t va;
pt_entry_t *ptp;
pt_entry_t *maptp;
int f;
for (va = (vaddr_t)ci->ci_gdt, f = 0;
va < (vaddr_t)ci->ci_gdt + len;
va += PAGE_SIZE, f++) {
KASSERT(va >= VM_MIN_KERNEL_ADDRESS);
ptp = kvtopte(va);
frames[f] = *ptp >> PAGE_SHIFT;
maptp = (pt_entry_t *)vtomach((vaddr_t)ptp);
PTE_CLEARBITS(ptp, maptp, PG_RW);
}
PTE_UPDATES_FLUSH();
/* printk("loading gdt %x, %d entries, %d pages", */
/* frames[0] << PAGE_SHIFT, gdt_size[0], len >> PAGE_SHIFT); */
if (HYPERVISOR_set_gdt(frames, gdt_size[0]))
panic("HYPERVISOR_set_gdt failed!\n");
lgdt_finish();
#endif
}
#ifdef MULTIPROCESSOR
void
gdt_reload_cpu(struct cpu_info *ci)
{
struct region_descriptor region;
size_t max_len;
max_len = MAXGDTSIZ * sizeof(gdt[0]);
setregion(&region, ci->ci_gdt, max_len - 1);
lgdt(&region);
}
#endif
/*
* Grow the GDT.
*/
void
gdt_grow(int which)
{
size_t old_len, new_len, max_len;
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
struct vm_page *pg;
vaddr_t va;
old_len = gdt_size[which] * sizeof(gdt[0]);
gdt_size[which] <<= 1;
new_len = old_len << 1;
if (which != 0) {
max_len = MAXGDTSIZ * sizeof(gdt[0]);
if (old_len == 0) {
gdt_size[which] = MINGDTSIZ;
new_len = gdt_size[which] * sizeof(gdt[0]);
}
for (va = (vaddr_t)(cpu_info_primary.ci_gdt) + old_len + max_len;
va < (vaddr_t)(cpu_info_primary.ci_gdt) + new_len + max_len;
va += PAGE_SIZE) {
while ((pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO)) ==
NULL) {
uvm_wait("gdt_grow");
}
pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg),
VM_PROT_READ | VM_PROT_WRITE);
}
return;
}
for (CPU_INFO_FOREACH(cii, ci)) {
for (va = (vaddr_t)(ci->ci_gdt) + old_len;
va < (vaddr_t)(ci->ci_gdt) + new_len;
va += PAGE_SIZE) {
while ((pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO)) ==
NULL) {
uvm_wait("gdt_grow");
}
pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg),
VM_PROT_READ | VM_PROT_WRITE);
}
}
}
/*
* Allocate a GDT slot as follows:
* 1) If there are entries on the free list, use those.
* 2) If there are fewer than gdt_size entries in use, there are free slots
* near the end that we can sweep through.
* 3) As a last resort, we increase the size of the GDT, and sweep through
* the new slots.
*/
int
gdt_get_slot()
{
return gdt_get_slot1(0);
}
int
gdt_get_slot1(int which)
{
size_t offset;
int slot;
gdt_lock();
if (gdt_free[which] != GNULL_SEL) {
slot = gdt_free[which];
gdt_free[which] = gdt[slot].gd.gd_selector;
} else {
offset = which * MAXGDTSIZ * sizeof(gdt[0]);
if (gdt_next[which] != gdt_count[which] + offset)
panic("gdt_get_slot botch 1");
if (gdt_next[which] - offset >= gdt_size[which]) {
if (gdt_size[which] >= MAXGDTSIZ)
panic("gdt_get_slot botch 2");
gdt_grow(which);
}
slot = gdt_next[which]++;
}
gdt_count[which]++;
gdt_unlock();
return (slot);
}
/*
* Deallocate a GDT slot, putting it on the free list.
*/
void
gdt_put_slot(int slot)
{
gdt_put_slot1(slot, 0);
}
void
gdt_put_slot1(int slot, int which)
{
union descriptor d;
d.raw[0] = 0;
d.raw[1] = 0;
gdt_lock();
gdt_count[which]--;
d.gd.gd_type = SDT_SYSNULL;
d.gd.gd_selector = gdt_free[which];
xen_update_descriptor(&gdt[slot], &d);
gdt_free[which] = slot;
gdt_unlock();
}
int
tss_alloc(struct pcb *pcb)
{
#ifndef XEN
int slot;
slot = gdt_get_slot();
setgdt(slot, &pcb->pcb_tss, sizeof(struct pcb) - 1,
SDT_SYS386TSS, SEL_KPL, 0, 0);
return GSEL(slot, SEL_KPL);
#else
return GSEL(GNULL_SEL, SEL_KPL);
#endif
}
void
tss_free(int sel)
{
#ifndef XEN
gdt_put_slot(IDXSEL(sel));
#else
KASSERT(sel == GSEL(GNULL_SEL, SEL_KPL));
#endif
}
/*
* Caller must have pmap locked for both of these functions.
*/
int
ldt_alloc(union descriptor *ldtp, size_t len)
{
int slot;
slot = gdt_get_slot1(1);
#ifndef XEN
2005-05-31 17:53:15 +04:00
setgdt(slot, ldtp, len - 1, SDT_SYSLDT, SEL_KPL, 0, 0);
#else
2005-05-31 17:53:15 +04:00
cpu_info_primary.ci_gdt[slot].ld.ld_base = (uint32_t)ldtp;
cpu_info_primary.ci_gdt[slot].ld.ld_entries =
len / sizeof(union descriptor);
#endif
return GSEL(slot, SEL_KPL);
}
void
ldt_free(int sel)
{
int slot;
slot = IDXSEL(sel);
gdt_put_slot1(slot, 1);
}