NetBSD/sys/arch/arm32/riscpc/rpc_machdep.c

1359 lines
41 KiB
C
Raw Normal View History

/* $NetBSD: rpc_machdep.c,v 1.25 1999/01/03 02:23:27 mark Exp $ */
/*
* Copyright (c) 1994-1998 Mark Brinicombe.
* Copyright (c) 1994 Brini.
* All rights reserved.
*
* This code is derived from software written for Brini by Mark Brinicombe
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Brini.
* 4. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* RiscBSD kernel project
*
* machdep.c
*
* Machine dependant functions for kernel setup
*
* This file needs a lot of work.
*
* Created : 17/09/94
*/
1998-07-07 07:05:15 +04:00
#include "opt_cputypes.h"
1998-07-05 02:18:13 +04:00
#include "opt_ddb.h"
#include "opt_pmap_debug.h"
1998-07-05 02:18:13 +04:00
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/reboot.h>
#include <sys/proc.h>
#include <sys/msgbuf.h>
#include <sys/exec.h>
#include <dev/cons.h>
#include <machine/db_machdep.h>
#include <ddb/db_sym.h>
#include <ddb/db_extern.h>
#include <vm/vm_kern.h>
#include <machine/signal.h>
#include <machine/frame.h>
#include <machine/bootconfig.h>
#include <machine/cpu.h>
#include <machine/io.h>
#include <machine/irqhandler.h>
#include <machine/katelib.h>
#include <machine/pte.h>
#include <machine/vidc.h>
#include <machine/vconsole.h>
#include <machine/undefined.h>
#include <machine/rtc.h>
#include <arm32/iomd/iomdreg.h>
#include "ipkdb.h"
#ifdef HYDRA
#include "hydrabus.h"
#endif /* HYDRA */
/*
* Address to call from cpu_reset() to reset the machine.
* This is machine architecture dependant as it varies depending
* on where the ROM appears when you turn the MMU off.
*/
u_int cpu_reset_address = 0;
/* Define various stack sizes in pages */
#define IRQ_STACK_SIZE 1
#define ABT_STACK_SIZE 1
#if NIPKDB > 0
#define UND_STACK_SIZE 2
#else
#define UND_STACK_SIZE 1
#endif
BootConfig bootconfig; /* Boot config storage */
videomemory_t videomemory; /* Video memory descriptor */
vm_offset_t physical_start;
vm_offset_t physical_freestart;
vm_offset_t physical_freeend;
vm_offset_t physical_end;
int physical_memoryblock;
u_int free_pages;
int physmem = 0;
#ifndef PMAP_STATIC_L1S
int max_processes = 64; /* Default number */
#endif /* !PMAP_STATIC_L1S */
u_int videodram_size = 0; /* Amount of DRAM to reserve for video */
vm_offset_t videodram_start;
/* Physical and virtual addresses for some global pages */
pv_addr_t systempage;
pv_addr_t irqstack;
pv_addr_t undstack;
pv_addr_t abtstack;
pv_addr_t kernelstack;
#if NHYDRABUS > 0
pv_addr_t hydrascratch;
#endif /* NHYDRABUS */
char *boot_args = NULL;
char *boot_file = NULL;
vm_offset_t msgbufphys;
extern u_int data_abort_handler_address;
extern u_int prefetch_abort_handler_address;
extern u_int undefined_handler_address;
#ifdef PMAP_DEBUG
extern int pmap_debug_level;
#endif /* PMAP_DEBUG */
#define KERNEL_PT_VMEM 0 /* Page table for mapping video memory */
#define KERNEL_PT_SYS 1 /* Page table for mapping proc0 zero page */
#define KERNEL_PT_KERNEL 2 /* Page table for mapping kernel */
#define KERNEL_PT_VMDATA 3 /* Page tables for mapping kernel VM */
#define KERNEL_PT_VMDATA_NUM (KERNEL_VM_SIZE >> (PDSHIFT + 2))
#define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
pt_entry_t kernel_pt_table[NUM_KERNEL_PTS];
struct user *proc0paddr;
extern int cold;
/* Prototypes */
void physcon_display_base __P((u_int addr));
extern void consinit __P((void));
void map_section __P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa,
int cacheable));
void map_pagetable __P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa));
void map_entry __P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa));
void map_entry_nc __P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa));
void map_entry_ro __P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa));
vm_size_t map_chunk __P((vm_offset_t pd, vm_offset_t pt, vm_offset_t va,
vm_offset_t pa, vm_size_t size, u_int acc,
u_int flg));
void pmap_bootstrap __P((vm_offset_t kernel_l1pt, pv_addr_t kernel_ptpt));
caddr_t allocsys __P((caddr_t v));
void data_abort_handler __P((trapframe_t *frame));
void prefetch_abort_handler __P((trapframe_t *frame));
void undefinedinstruction_bounce __P((trapframe_t *frame));
void zero_page_readonly __P((void));
void zero_page_readwrite __P((void));
static void process_kernel_args __P((void));
extern void dump_spl_masks __P((void));
extern pt_entry_t *pmap_pte __P((pmap_t pmap, vm_offset_t va));
extern void db_machine_init __P((void));
extern void console_flush __P((void));
extern void vidcconsole_reinit __P((void));
extern int vidcconsole_blank __P((struct vconsole *vc, int type));
void rpc_sa110_cc_setup __P((void));
extern void parse_mi_bootargs __P((char *args));
void parse_rpc_bootargs __P((char *args));
extern void dumpsys __P((void));
extern void hydrastop __P((void));
/*
* void cpu_reboot(int howto, char *bootstr)
*
* Reboots the system
*
* Deal with any syncing, unmounting, dumping and shutdown hooks,
* then reset the CPU.
*/
/* NOTE: These variables will be removed, well some of them */
extern u_int spl_mask;
extern u_int current_mask;
extern u_int arm700bugcount;
void
cpu_reboot(howto, bootstr)
int howto;
char *bootstr;
{
#if NHYDRABUS > 0
/*
* If we are halting the master then we should halt the slaves :-)
* otherwise it can get a bit disconcerting to have 4 other
* processors still tearing away doing things.
*/
hydrastop();
#endif /* NHYDRABUS */
#ifdef DIAGNOSTIC
printf("boot: howto=%08x curproc=%p\n", howto, curproc);
printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_imp=%08x\n",
irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
irqmasks[IPL_IMP]);
printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n",
irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
dump_spl_masks();
/* Did we encounter the ARM700 bug we discovered ? */
if (arm700bugcount > 0)
printf("ARM700 PREFETCH/SWI bug count = %d\n", arm700bugcount);
#endif /* DIAGNOSTIC */
/*
* If we are still cold then hit the air brakes
* and crash to earth fast
*/
if (cold) {
doshutdownhooks();
printf("Halted while still in the ICE age.\n");
printf("The operating system has halted.\n");
printf("Please press any key to reboot.\n\n");
cngetc();
printf("rebooting...\n");
cpu_reset();
/*NOTREACHED*/
}
/* Disable console buffering */
cnpollc(1);
/*
* If RB_NOSYNC was not specified sync the discs.
* Note: Unless cold is set to 1 here, syslogd will die during the unmount.
* It looks like syslogd is getting woken up only to find that it cannot
* page part of the binary in as the filesystem has been unmounted.
*/
if (!(howto & RB_NOSYNC))
bootsync();
/* Say NO to interrupts */
splhigh();
/* Do a dump if requested. */
if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
dumpsys();
/*
* Auto reboot overload protection
*
* This code stops the kernel entering an endless loop of reboot
* - panic cycles. This will have the effect of stopping further
* reboots after it has rebooted 8 times after panics. A clean
* halt or reboot will reset the counter.
*/
/*
* Have we done 8 reboots in a row ? If so halt rather than reboot
* since 8 panics in a row without 1 clean halt means something is
* seriously wrong.
*/
if (cmos_read(RTC_ADDR_REBOOTCNT) > 8)
howto |= RB_HALT;
/*
* If we are rebooting on a panic then up the reboot count
* otherwise reset.
* This will thus be reset if the kernel changes the boot action from
* reboot to halt due to too any reboots.
*/
if (((howto & RB_HALT) == 0) && panicstr)
cmos_write(RTC_ADDR_REBOOTCNT,
cmos_read(RTC_ADDR_REBOOTCNT) + 1);
else
cmos_write(RTC_ADDR_REBOOTCNT, 0);
/*
* If we need a RiscBSD reboot, request it buy setting a bit in
* the CMOS RAM. This can be detected by the RiscBSD boot loader
* during a RISCOS boot. No other way to do this as RISCOS is in ROM.
*/
if ((howto & RB_HALT) == 0)
cmos_write(RTC_ADDR_BOOTOPTS,
cmos_read(RTC_ADDR_BOOTOPTS) | 0x02);
/* Run any shutdown hooks */
doshutdownhooks();
/* Make sure IRQ's are disabled */
IRQdisable;
if (howto & RB_HALT) {
printf("The operating system has halted.\n");
printf("Please press any key to reboot.\n\n");
cngetc();
}
printf("rebooting...\n");
cpu_reset();
/*NOTREACHED*/
}
/*
* u_int initarm(BootConfig *bootconf)
*
* Initial entry point on startup. This gets called before main() is
* entered.
* It should be responcible for setting up everything that must be
* in place when main is called.
* This includes
* Taking a copy of the boot configuration structure.
* Initialising the physical console so characters can be printed.
* Setting up page tables for the kernel
* Relocating the kernel to the bottom of physical memory
*/
/* This routine is frightening mess ! This is what my mind looks like -mark */
/*
* This code is looking even worse these days ...
* This is the problem you get when you are booting from another Operating System
* without a proper boot loader
* Made even worse by the fact that if the machine does not have VRAM
* the video memory tends to be physically sitting where we relocate the
* kernel to.
*/
u_int
initarm(bootconf)
BootConfig *bootconf;
{
int loop;
int loop1;
u_int logical;
u_int kerneldatasize;
u_int l1pagetable;
u_int l2pagetable;
extern char page0[], page0_end[];
struct exec *kernexec = (struct exec *)KERNEL_TEXT_BASE;
int id;
pv_addr_t kernel_l1pt;
pv_addr_t kernel_ptpt;
/*
* Heads up ... Setup the CPU / MMU / TLB functions
*/
set_cpufuncs();
/* Copy the boot configuration structure */
bootconfig = *bootconf;
/*
* Initialise the video memory descriptor
*
* Note: all references to the video memory virtual/physical address
* should go via this structure.
*/
/*
* In the future ...
*
* All console output will be postponed until the primary bootstrap
* has been completed so that we have had a chance to reserve some
* memory for the video system if we do not have separate VRAM.
*/
/* Hardwire it in case we have an old boot loader */
videomemory.vidm_vbase = bootconfig.display_start;
videomemory.vidm_pbase = VRAM_BASE;
videomemory.vidm_type = VIDEOMEM_TYPE_VRAM;
videomemory.vidm_size = bootconfig.display_size;
if (bootconfig.magic == BOOTCONFIG_MAGIC) {
videomemory.vidm_vbase = bootconfig.display_start;
videomemory.vidm_pbase = bootconfig.display_phys;
videomemory.vidm_size = bootconfig.display_size;
if (bootconfig.vram[0].pages)
videomemory.vidm_type = VIDEOMEM_TYPE_VRAM;
else
videomemory.vidm_type = VIDEOMEM_TYPE_DRAM;
}
/*
* Initialise the physical console
* This is done in main() but for the moment we do it here so that
* we can use printf in initarm() before main() has been called.
*/
consinit();
/* Talk to the user */
printf("initarm...\n");
/* Tell the user if his boot loader is too old */
if (bootconfig.magic != BOOTCONFIG_MAGIC) {
printf("\nNO MAGIC NUMBER IN BOOTCONFIG. PLEASE UPGRADE YOUR BOOT LOADER\n\n");
delay(5000000);
}
printf("Kernel loaded from file %s\n", bootconfig.kernelname);
printf("Kernel arg string %s\n", (char *)bootconfig.argvirtualbase);
printf("\nBoot configuration structure reports the following memory\n");
printf(" DRAM block 0a at %08x size %08x DRAM block 0b at %08x size %08x\n\r",
bootconfig.dram[0].address,
bootconfig.dram[0].pages * bootconfig.pagesize,
bootconfig.dram[1].address,
bootconfig.dram[1].pages * bootconfig.pagesize);
printf(" DRAM block 1a at %08x size %08x DRAM block 1b at %08x size %08x\n\r",
bootconfig.dram[2].address,
bootconfig.dram[2].pages * bootconfig.pagesize,
bootconfig.dram[3].address,
bootconfig.dram[3].pages * bootconfig.pagesize);
printf(" VRAM block 0 at %08x size %08x\n\r",
bootconfig.vram[0].address,
bootconfig.vram[0].pages * bootconfig.pagesize);
/* printf(" videomem: VA=%08x PA=%08x\n", videomemory.vidm_vbase, videomemory.vidm_pbase);*/
/* Check to make sure the page size is correct */
if (NBPG != bootconfig.pagesize)
panic("Page size is not %d bytes\n", NBPG);
/*
* Ok now we have the hard bit.
* We have the kernel allocated up high. The rest of the memory map is
* available. We are still running on RISC OS page tables.
*
* We need to construct new page tables move the kernel in physical
* memory and switch to them.
*
* The booter will have left us 6 pages at the top of memory.
* Two of these are used as L2 page tables and the other 4 form the L1
* page table.
*/
/*
* Ok we must construct own own page table tables.
* Once we have these we can reorganise the memory as required
*/
/*
* We better check to make sure the booter has set up the scratch
* area for us correctly. We use this area to create temporary pagetables
* while we reorganise the memory map.
*/
if ((bootconfig.scratchphysicalbase & 0x3fff) != 0)
panic("initarm: Scratch area not aligned on 16KB boundry\n");
if ((bootconfig.scratchsize < 0xc000) != 0)
panic("initarm: Scratch area too small (need >= 48KB)\n");
/*
* Ok start the primary bootstrap.
* The primary bootstrap basically replaces the booter page tables with
* new ones that it creates in the boot scratch area. These page tables
* map the rest of the physical memory into the virtaul memory map.
* This allows low physical memory to be accessed to create the
* kernels page tables, relocate the kernel code from high physical
* memory to low physical memory etc.
*/
printf("initarm: Primary bootstrap ... ");
kerneldatasize = bootconfig.kernsize + bootconfig.argsize;
l2pagetable = bootconfig.scratchvirtualbase;
l1pagetable = l2pagetable + 0x4000;
if (bootconfig.vram[0].pages > 0) {
/*
* Now we construct a L2 pagetables for the VRAM
*/
for (logical = 0; logical < 0x200000; logical += NBPG) {
map_entry(l2pagetable + 0x1000, logical,
bootconfig.vram[0].address + logical);
map_entry(l2pagetable + 0x1000, logical + 0x200000,
bootconfig.vram[0].address + logical);
}
/*
* Update the videomemory structure to reflect the mapping
* changes
*/
videomemory.vidm_vbase = VMEM_VBASE;
videomemory.vidm_pbase = VRAM_BASE;
videomemory.vidm_type = VIDEOMEM_TYPE_VRAM;
videomemory.vidm_size = bootconfig.vram[0].pages * NBPG;
} else {
if (bootconfig.display_phys != bootconfig.dram[0].address)
panic("video DRAM is being unpredictable\n");
/*
* Now we construct a L2 pagetables for the DRAM
*/
for (logical = 0; logical < bootconfig.display_size;
logical += NBPG) {
map_entry(l2pagetable + 0x1000, logical,
bootconfig.display_phys + logical);
}
/*
* Update the videomemory structure to reflect the mapping
* changes
*/
videomemory.vidm_vbase = VMEM_VBASE;
videomemory.vidm_pbase = bootconfig.display_phys;
videomemory.vidm_type = VIDEOMEM_TYPE_DRAM;
videomemory.vidm_size = bootconfig.display_size;
}
/*
* Now map L2 page tables for the current kernel memory
* and the new kernel memory
*/
for (logical = 0; logical < kerneldatasize + bootconfig.scratchsize;
logical += NBPG) {
map_entry(l2pagetable + 0x3000, logical,
bootconfig.kernphysicalbase + logical);
}
#if NHYDRABUS > 0
/*
* If we have the hydra nick the first physical page for hydra booting
* Needs to be 2MB aligned
*/
for (logical = 0; logical < 0x400000; logical += NBPG) {
map_entry(l2pagetable + 0x2000, logical,
bootconfig.dram[0].address + logical + NBPG);
}
#else /* NHYDRABUS */
for (logical = 0; logical < 0x400000; logical += NBPG) {
map_entry(l2pagetable + 0x2000, logical,
bootconfig.dram[0].address + logical);
}
#endif /* NHYDRABUS */
/*
* Now we construct the L1 pagetable. This only needs the minimum to
* keep us going until we can contruct the proper kernel L1 page table.
*/
map_section(l1pagetable, VIDC_BASE, VIDC_HW_BASE, 0);
map_section(l1pagetable, IOMD_BASE, IOMD_HW_BASE, 0);
map_pagetable(l1pagetable, 0x00000000,
bootconfig.scratchphysicalbase + 0x2000);
map_pagetable(l1pagetable, KERNEL_BASE,
bootconfig.scratchphysicalbase + 0x3000);
map_pagetable(l1pagetable, VMEM_VBASE,
bootconfig.scratchphysicalbase + 0x1000);
/* Print some debugging info */
/*
printf("page tables look like this ...\n");
printf("V0x00000000 - %08x\n", ReadWord(l1pagetable + 0x0000));
printf("V0x03500000 - %08x\n", ReadWord(l1pagetable + 0x00d4));
printf("V0x00200000 - %08x\n", ReadWord(l1pagetable + 0x0080));
printf("V0xf4000000 - %08x\n", ReadWord(l1pagetable + 0x3d00));
printf("V0xf0000000 - %08x\n", ReadWord(l1pagetable + 0x3c00));
printf("page dir = P%08x\n", bootconfig.scratchphysicalbase + 0x4000);
printf("l1= V%08x\n", l1pagetable);
*/
/* Grind to a halt if no VRAM */
/* if (bootconfig.vram[0].pages == 0) {
printf("Switching to bootstrap pagetables\n");
printf("[Hit a key top continue]\n");
cngetc();
}*/
/* If no VRAM kill the VIDC DAC's until the end of the bootstrap */
if (bootconfig.vram[0].pages == 0)
vidcconsole_blank(vconsole_current, BLANK_OFF);
/* If we don't have VRAM ..
* Ahhhhhhhhhhhhhhhhhhhhhh
* We have just mapped the kernel across the video DRAM from RISCOS.
* Better block all printing until we complete the secondary
* bootstrap and have allocate new video DRAM.
*/
/*
* Pheww right we are ready to switch page tables !!!
* The L1 table is at bootconfig.scratchphysicalbase + 0x4000
*/
/* Switch tables */
setttb(bootconfig.scratchphysicalbase + 0x4000);
/*
* We must now clean the cache again....
* Cleaning may be done by reading new data to displace any
* dirty data in the cache. This will have happened in setttb()
* but since we are boot strapping the addresses used for the read
* may have just been remapped and thus the cache could be out
* of sync. A re-clean after the switch will cure this.
* After booting there are no gross reloations of the kernel thus
* this problem wil not occur after initarm().
*/
cpu_cache_cleanID();
/*
* Since we have mapped the VRAM up into kernel space we must
* now update the the bootconfig and display structures by hand.
*/
if (bootconfig.vram[0].pages != 0) {
bootconfig.display_start = VMEM_VBASE;
physcon_display_base(VMEM_VBASE);
}
if (bootconfig.vram[0].pages != 0)
printf("done.\n");
id = ReadByte(IOMD_BASE + (IOMD_ID0 << 2))
| (ReadByte(IOMD_BASE + (IOMD_ID1 << 2)) << 8);
switch (id) {
case ARM7500_IOC_ID:
#ifndef CPU_ARM7500
panic("Encountered ARM7500 IOMD but no ARM7500 kernel support");
#endif /* CPU_ARM7500 */
break;
case RPC600_IOMD_ID:
#ifdef CPU_ARM7500
panic("Encountered ARM6/7 IOMD and ARM7500 kernel support");
#endif /* CPU_ARM7500 */
break;
}
/*
* Ok we have finished the primary boot strap. All this has done is to
* allow us to access all the physical memory from known virtual
* location. We also now know that all the used pages are at the top
* of the physical memory and where they are in the virtual memory map.
*
* This should be the stage we are at at the end of the bootstrap when
* we have a two stage booter.
*
* The secondary bootstrap has the responcibility to sort locating the
* kernel to the correct address and for creating the kernel page tables.
* It must also set up various memory pointers that are used by pmap etc.
*/
process_kernel_args();
if (bootconfig.vram[0].pages != 0)
printf("initarm: Secondary bootstrap ... ");
/* Zero down the memory we mapped in for the secondary bootstrap */
1998-09-06 08:20:37 +04:00
memset(0x00000000, 0, 0x400000); /* XXX */
/*
* Set up the variables that define the availablilty of physcial
* memory
*/
physical_start = bootconfig.dram[0].address;
physical_freestart = physical_start;
physical_end = bootconfig.dram[bootconfig.dramblocks - 1].address
+ bootconfig.dram[bootconfig.dramblocks - 1].pages * NBPG;
physical_freeend = physical_end;
physical_memoryblock = 0;
free_pages = bootconfig.drampages;
for (loop = 0; loop < bootconfig.dramblocks; ++loop)
physmem += bootconfig.dram[loop].pages;
/*
* Reserve some pages at the top of the memory for later use
*
* This area is not currently used but could be used for the allocation
* of L1 page tables for each process.
* The size of this memory would be determined by the maximum number of
* processes.
*
* For the moment we just reserve a few pages just to make sure the
* system copes.
*/
physical_freeend -= videodram_size;
free_pages -= (videodram_size / NBPG);
videodram_start = physical_freeend;
if (videodram_size) {
videomemory.vidm_vbase = VMEM_VBASE;
videomemory.vidm_pbase = videodram_start;
videomemory.vidm_type = VIDEOMEM_TYPE_DRAM;
videomemory.vidm_size = videodram_size;
}
/*
* Right We have the bottom meg of memory mapped to 0x00000000
* so was can get at it. The kernel will ocupy the start of it.
* After the kernel/args we allocate some the the fixed page tables
* we need to get the system going.
* We allocate one page directory and 8 page tables and store the
* physical addresses in the kernel_pt_table array.
* Must remember that neither the page L1 or L2 page tables are the
* same size as a page !
*
* Ok the next bit of physical allocate may look complex but it is
* simple really. I have done it like this so that no memory gets
* wasted during the allocate of various pages and tables that are
* all different sizes.
* The start address will be page aligned.
* We allocate the kernel page directory on the first free 16KB
* boundry we find.
* We allocate the kernel page tables on the first 1KB boundry we find.
* We allocate 9 PT's. This means that in the process we
* KNOW that we will encounter at least 1 16KB boundry.
*
* Eventually if the top end of the memory gets used for process L1
* page tables the kernel L1 page table may be moved up there.
*/
#ifdef VERBOSE_INIT_ARM
printf("Allocating page tables\n");
#endif
#if NHYDRABUS > 0
/*
* The Simtec Hydra board needs a 2MB aligned page for bootstrapping.
* Simplest thing is to nick the bottom page of physical memory.
*/
hydrascratch.pv_pa = physical_start;
physical_start += NBPG;
--free_pages;
#endif /* NHYDRABUS */
/* Update the address of the first free page of physical memory */
physical_freestart = physical_start + kerneldatasize;
free_pages -= (physical_freestart - physical_start) / NBPG;
/* Define a macro to simplify memory allocation */
#define valloc_pages(var, np) \
alloc_pages((var).pv_pa, (np)); \
(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
#define alloc_pages(var, np) \
(var) = physical_freestart; \
physical_freestart += ((np) * NBPG); \
free_pages -= (np); \
1998-09-06 08:20:37 +04:00
memset((char *)(var) - physical_start, 0, ((np) * NBPG));
loop1 = 0;
kernel_l1pt.pv_pa = 0;
for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
/* Are we 16KB aligned for an L1 ? */
if ((physical_freestart & (PD_SIZE - 1)) == 0
&& kernel_l1pt.pv_pa == 0) {
valloc_pages(kernel_l1pt, PD_SIZE / NBPG);
} else {
alloc_pages(kernel_pt_table[loop1], PT_SIZE / NBPG);
++loop1;
}
}
#ifdef DIAGNOSTIC
/* This should never be able to happen but better confirm that. */
if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (PD_SIZE-1)) != 0)
panic("initarm: Failed to align the kernel page directory\n");
#endif
/*
* Allocate a page for the system page mapped to V0x00000000
* This page will just contain the system vectors and can be
* shared by all processes.
*/
alloc_pages(systempage.pv_pa, 1);
/* Allocate a page for the page table to map kernel page tables*/
valloc_pages(kernel_ptpt, PT_SIZE / NBPG);
/* Allocate stacks for all modes */
valloc_pages(irqstack, IRQ_STACK_SIZE);
valloc_pages(abtstack, ABT_STACK_SIZE);
valloc_pages(undstack, UND_STACK_SIZE);
valloc_pages(kernelstack, UPAGES);
#ifdef VERBOSE_INIT_ARM
printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, irqstack.pv_va);
printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, abtstack.pv_va);
printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, undstack.pv_va);
printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, kernelstack.pv_va);
#endif
alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / NBPG);
/*
* Ok we have allocated physical pages for the primary kernel
* page tables
*/
#ifdef VERBOSE_INIT_ARM
printf("Creating L1 page table\n");
#endif
/*
* Now we start consturction of the L1 page table
* We start by mapping the L2 page tables into the L1.
* This means that we can replace L1 mappings later on if necessary
*/
l1pagetable = kernel_l1pt.pv_pa - physical_start;
/* Map the L2 pages tables in the L1 page table */
map_pagetable(l1pagetable, 0x00000000,
kernel_pt_table[KERNEL_PT_SYS]);
map_pagetable(l1pagetable, KERNEL_BASE,
kernel_pt_table[KERNEL_PT_KERNEL]);
for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop)
map_pagetable(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
kernel_pt_table[KERNEL_PT_VMDATA + loop]);
map_pagetable(l1pagetable, PROCESS_PAGE_TBLS_BASE,
kernel_ptpt.pv_pa);
map_pagetable(l1pagetable, VMEM_VBASE,
kernel_pt_table[KERNEL_PT_VMEM]);
#ifdef VERBOSE_INIT_ARM
printf("Mapping kernel\n");
#endif
/* Now we fill in the L2 pagetable for the kernel code/data */
l2pagetable = kernel_pt_table[KERNEL_PT_KERNEL] - physical_start;
if (N_GETMAGIC(kernexec[0]) == ZMAGIC) {
logical = map_chunk(0, l2pagetable, KERNEL_TEXT_BASE,
physical_start, kernexec->a_text,
AP_KR, PT_CACHEABLE);
logical += map_chunk(0, l2pagetable, KERNEL_TEXT_BASE + logical,
physical_start + logical, kerneldatasize - kernexec->a_text,
AP_KRW, PT_CACHEABLE);
} else
map_chunk(0, l2pagetable, KERNEL_TEXT_BASE,
physical_start, kerneldatasize,
AP_KRW, PT_CACHEABLE);
#ifdef VERBOSE_INIT_ARM
printf("Constructing L2 page tables\n");
#endif
/* Map the stack pages */
map_chunk(0, l2pagetable, irqstack.pv_va, irqstack.pv_pa,
IRQ_STACK_SIZE * NBPG, AP_KRW, PT_CACHEABLE);
map_chunk(0, l2pagetable, abtstack.pv_va, abtstack.pv_pa,
ABT_STACK_SIZE * NBPG, AP_KRW, PT_CACHEABLE);
map_chunk(0, l2pagetable, undstack.pv_va, undstack.pv_pa,
UND_STACK_SIZE * NBPG, AP_KRW, PT_CACHEABLE);
map_chunk(0, l2pagetable, kernelstack.pv_va, kernelstack.pv_pa,
UPAGES * NBPG, AP_KRW, PT_CACHEABLE);
map_chunk(0, l2pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
PD_SIZE, AP_KRW, 0);
/* Map the page table that maps the kernel pages */
map_entry_nc(l2pagetable, kernel_ptpt.pv_pa - physical_start,
kernel_ptpt.pv_pa);
/* Now we fill in the L2 pagetable for the VRAM */
/*
* Current architectures mean that the VRAM is always in 1 continuous
* bank.
* This means that we can just map the 2 meg that the VRAM would occupy.
* In theory we don't need a page table for VRAM, we could section map
* it but we would need the page tables if DRAM was in use.
*/
l2pagetable = kernel_pt_table[KERNEL_PT_VMEM] - physical_start;
map_chunk(0, l2pagetable, VMEM_VBASE, videomemory.vidm_pbase,
videomemory.vidm_size, AP_KRW, PT_CACHEABLE);
map_chunk(0, l2pagetable, VMEM_VBASE + videomemory.vidm_size,
videomemory.vidm_pbase, videomemory.vidm_size,
AP_KRW, PT_CACHEABLE);
/*
* Map entries in the page table used to map PTE's
* Basically every kernel page table gets mapped here
*/
/* The -2 is slightly bogus, it should be -log2(sizeof(pt_entry_t)) */
l2pagetable = kernel_ptpt.pv_pa - physical_start;
map_entry_nc(l2pagetable, (KERNEL_BASE >> (PGSHIFT-2)),
kernel_pt_table[KERNEL_PT_KERNEL]);
map_entry_nc(l2pagetable, (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT-2)),
kernel_ptpt.pv_pa);
map_entry_nc(l2pagetable, (VMEM_VBASE >> (PGSHIFT-2)),
kernel_pt_table[KERNEL_PT_VMEM]);
map_entry_nc(l2pagetable, (0x00000000 >> (PGSHIFT-2)),
kernel_pt_table[KERNEL_PT_SYS]);
for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop) {
map_entry_nc(l2pagetable, ((KERNEL_VM_BASE +
(loop * 0x00400000)) >> (PGSHIFT-2)),
kernel_pt_table[KERNEL_PT_VMDATA + loop]);
}
/*
* Map the system page in the kernel page table for the bottom 1Meg
* of the virtual memory map.
*/
l2pagetable = kernel_pt_table[KERNEL_PT_SYS] - physical_start;
map_entry(l2pagetable, 0x0000000, systempage.pv_pa);
/* Map the VIDC20, IOMD, COMBO and podules */
/* Map the VIDC20 */
map_section(l1pagetable, VIDC_BASE, VIDC_HW_BASE, 0);
/* Map the IOMD (and SLOW and MEDIUM simple podules) */
map_section(l1pagetable, IOMD_BASE, IOMD_HW_BASE, 0);
/* Map the COMBO (and module space) */
map_section(l1pagetable, IO_BASE, IO_HW_BASE, 0);
/* Bit more debugging info */
/* printf("page tables look like this ...\n");
printf("V0x00000000 - %08x\n", ReadWord(l1pagetable + 0x0000));
printf("V0x03200000 - %08x\n", ReadWord(l1pagetable + 0x00c8));
printf("V0x03500000 - %08x\n", ReadWord(l1pagetable + 0x00d4));
printf("V0xf0000000 - %08x\n", ReadWord(l1pagetable + 0x3c00));
printf("V0xf1000000 - %08x\n", ReadWord(l1pagetable + 0x3c40));
printf("V0xf2000000 - %08x\n", ReadWord(l1pagetable + 0x3c80));
printf("V0xf3000000 - %08x\n", ReadWord(l1pagetable + 0x3cc0));
printf("V0xf3300000 - %08x\n", ReadWord(l1pagetable + 0x3ccc));
printf("V0xf4000000 - %08x\n", ReadWord(l1pagetable + 0x3d00));
printf("V0xf6000000 - %08x\n", ReadWord(l1pagetable + 0x3d80));
*/
/* printf("V0xefc00000 - %08x\n", ReadWord(l1pagetable + 0x3bf8));
printf("V0xef800000 - %08x\n", ReadWord(l1pagetable + 0x3bfc));*/
/*
* Now we have the real page tables in place so we can switch to them.
* Once this is done we will be running with the REAL kernel page
* tables.
*/
/*
* The last thing we must do is copy the kernel down to the new memory.
* This copies all our kernel data structures and variables as well
* which is why it is left to the last moment.
*/
if (bootconfig.vram[0].pages != 0)
printf("mapping ... ");
1998-09-06 08:20:37 +04:00
memcpy((char *)0x00000000, (char *)KERNEL_TEXT_BASE, kerneldatasize);
/* Switch tables */
#ifdef VERBOSE_INIT_ARM
printf("switching to new L1 page table\n");
#endif
setttb(kernel_l1pt.pv_pa);
/*
* We must now clean the cache again....
* Cleaning may be done by reading new data to displace any
* dirty data in the cache. This will have happened in setttb()
* but since we are boot strapping the addresses used for the read
* may have just been remapped and thus the cache could be out
* of sync. A re-clean after the switch will cure this.
* After booting there are no gross reloations of the kernel thus
* this problem wil not occur after initarm().
*/
cpu_cache_cleanID();
if (videodram_size != 0) {
bootconfig.display_start = VMEM_VBASE;
physcon_display_base(VMEM_VBASE);
vidcconsole_reinit();
/* Turn the VIDC DAC's on again. */
vidcconsole_blank(vconsole_current, BLANK_NONE);
printf("\x0cSecondary bootstrap: ");
}
printf("done.\n");
/* Right set up the vectors at the bottom of page 0 */
1998-09-06 08:20:37 +04:00
memcpy((char *)0x00000000, page0, page0_end - page0);
/* We have modified a text page so sync the icache */
cpu_cache_syncI_rng(0, page0_end - page0);
/*
* Pages were allocated during the secondary bootstrap for the
* stacks for different CPU modes.
* We must now set the r13 registers in the different CPU modes to
* point to these stacks.
* Since the ARM stacks use STMFD etc. we must set r13 to the top end
* of the stack memory.
*/
printf("init subsystems: stacks ");
console_flush();
set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * NBPG);
set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * NBPG);
set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * NBPG);
#ifdef PMAP_DEBUG
if (pmap_debug_level >= 0)
printf("kstack V%08lx P%08lx\n", kernelstack.pv_va,
kernelstack.pv_pa);
#endif /* PMAP_DEBUG */
/*
* Well we should set a data abort handler.
* Once things get going this will change as we will need a proper
* handler. Until then we will use a handler that just panics but
* tells us why.
* Initialisation of the vectors will just panic on a data abort.
* This just fills in a slighly better one.
*/
printf("vectors ");
data_abort_handler_address = (u_int)data_abort_handler;
prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
undefined_handler_address = (u_int)undefinedinstruction_bounce;
console_flush();
#if 0
/* Diagnostic stuff. while writing the boot code */
for (loop = 0x0; loop < 0x1000; ++loop) {
if (ReadWord(PAGE_DIRS_BASE + loop * 4) != 0)
printf("Pagetable for V%08x = %08x\n", loop << 20,
ReadWord(0xf2000000 + loop * 4));
}
for (loop = 0x0; loop < 0x400; ++loop) {
if (ReadWord(kernel_pt_table[KERNEL_PT_PTE] + loop * 4) != 0)
printf("Pagetable for V%08x P%08x = %08x\n",
loop << 22, kernel_pt_table[KERNEL_PT_PTE]+loop*4,
ReadWord(kernel_pt_table[KERNEL_PT_PTE]+loop * 4));
}
#endif
/* At last !
* We now have the kernel in physical memory from the bottom upwards.
* Kernel page tables are physically above this.
* The kernel is mapped to 0xf0000000
* The kernel data PTs will handle the mapping of 0xf1000000-0xf1ffffff
* 2Meg of VRAM is mapped to 0xf4000000
* The page tables are mapped to 0xefc00000
* The IOMD is mapped to 0xf6000000
* The VIDC is mapped to 0xf6100000
*/
/* Initialise the undefined instruction handlers */
printf("undefined ");
undefined_init();
console_flush();
/* Boot strap pmap telling it where the kernel page table is */
printf("pmap ");
pmap_bootstrap(kernel_l1pt.pv_va, kernel_ptpt);
console_flush();
/* Setup the IRQ system */
printf("irq ");
console_flush();
irq_init();
printf("done.\n");
if (cmos_read(RTC_ADDR_REBOOTCNT) > 0)
printf("Warning: REBOOTCNT = %d\n",
cmos_read(RTC_ADDR_REBOOTCNT));
#ifdef CPU_SA110
if (cputype == ID_SA110)
rpc_sa110_cc_setup();
#endif /* CPU_SA110 */
#if NIPKDB > 0
/* Initialise ipkdb */
ipkdb_init();
if (boothowto & RB_KDB)
ipkdb_connect(0);
#endif /* NIPKDB */
#ifdef DDB
printf("ddb: ");
db_machine_init();
{
extern int end;
extern int *esym;
ddb_init(*(int *)&end, ((int *)&end) + 1, esym);
}
if (boothowto & RB_KDB)
Debugger();
#endif /* DDB */
/* We return the new stack pointer address */
return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
}
static void
process_kernel_args(void)
{
char *args;
/* Ok now we will check the arguments for interesting parameters. */
args = (char *)bootconfig.argvirtualbase;
boothowto = 0;
/* Skip the first parameter (the boot loader filename) */
while (*args != ' ' && *args != 0)
++args;
while (*args == ' ')
++args;
/* Skip the kernel image filename */
while (*args != ' ' && *args != 0)
++args;
while (*args == ' ')
++args;
boot_args = args;
parse_mi_bootargs(boot_args);
parse_rpc_bootargs(boot_args);
}
void
parse_rpc_bootargs(args)
char *args;
{
int integer;
if (get_bootconf_option(args, "videodram", BOOTOPT_TYPE_INT, &integer)) {
videodram_size = integer;
/* Round to 4K page */
videodram_size *= 1024;
videodram_size = round_page(videodram_size);
if (videodram_size > 1024*1024)
videodram_size = 1024*1024;
}
}
/*
* Ok these are some development functions. They map blocks of memory
* into the video ram virtual memory.
* The idea is to follow this with a call to the vidc device to
* reinitialise the vidc20 for the new video ram.
* Only meaning full if was support VRAM.
*/
/* Map DRAM into the video memory */
int
vmem_mapdram()
{
u_int l2pagetable;
u_int logical;
if (videodram_start == 0 || videodram_size == 0)
return(ENOMEM);
/* flush existing video data */
cpu_cache_purgeD();
/* Get the level 2 pagetable for the video memory */
l2pagetable = (u_int)pmap_pte(kernel_pmap,
(vm_offset_t)videomemory.vidm_vbase);
/* Map a block of DRAM into the video memory area */
for (logical = 0; logical < 0x200000; logical += NBPG) {
map_entry(l2pagetable, logical, videodram_start
+ logical);
map_entry(l2pagetable, logical + 0x200000,
videodram_start + logical);
}
/* Flush the TLB so we pick up the new mappings */
cpu_tlb_flushD();
/* Rebuild the video memory descriptor */
videomemory.vidm_vbase = VMEM_VBASE;
videomemory.vidm_pbase = videodram_start;
videomemory.vidm_type = VIDEOMEM_TYPE_DRAM;
videomemory.vidm_size = videodram_size;
/* Reinitialise the video system */
/* video_reinit();*/
return(0);
}
/* Map VRAM into the video memory */
int
vmem_mapvram()
{
u_int l2pagetable;
u_int logical;
if (bootconfig.vram[0].address == 0 || bootconfig.vram[0].pages == 0)
return(ENOMEM);
/* flush existing video data */
cpu_cache_purgeD();
/* Get the level 2 pagetable for the video memory */
l2pagetable = (u_int)pmap_pte(kernel_pmap,
(vm_offset_t)videomemory.vidm_vbase);
/* Map the VRAM into the video memory area */
for (logical = 0; logical < 0x200000; logical += NBPG) {
map_entry(l2pagetable, logical, bootconfig.vram[0].address
+ logical);
map_entry(l2pagetable, logical + 0x200000,
bootconfig.vram[0].address + logical);
}
/* Flush the TLB so we pick up the new mappings */
cpu_tlb_flushD();
/* Rebuild the video memory descriptor */
videomemory.vidm_vbase = VMEM_VBASE;
videomemory.vidm_pbase = VRAM_BASE;
videomemory.vidm_type = VIDEOMEM_TYPE_VRAM;
videomemory.vidm_size = bootconfig.vram[0].pages * NBPG;
/* Reinitialise the video system */
/* video_reinit();*/
return(0);
}
/* Set the cache behaviour for the video memory */
int
vmem_cachectl(flag)
int flag;
{
u_int l2pagetable;
u_int logical;
u_int pa;
if (bootconfig.vram[0].address == 0 || bootconfig.vram[0].pages == 0)
return(ENOMEM);
/* Get the level 2 pagetable for the video memory */
l2pagetable = (u_int)pmap_pte(kernel_pmap,
(vm_offset_t)videomemory.vidm_vbase);
/* Map the VRAM into the video memory area */
if (flag == 0) {
printf("Disabling caching and buffering of VRAM\n");
for (logical = 0; logical < 0x200000; logical += NBPG) {
map_entry_nc(l2pagetable, logical,
bootconfig.vram[0].address + logical);
map_entry_nc(l2pagetable, logical + 0x200000,
bootconfig.vram[0].address + logical);
}
} else if (flag == 1) {
printf("Disabling caching of VRAM\n");
for (logical = 0; logical < 0x200000; logical += NBPG) {
pa = bootconfig.vram[0].address + logical;
WriteWord(l2pagetable + ((logical >> 10) & 0x00000ffc),
L2_PTE_NC((pa & PG_FRAME), AP_KRW));
WriteWord(l2pagetable + (((logical+0x200000) >> 10) & 0x00000ffc),
L2_PTE_NC((pa & PG_FRAME), AP_KRW));
}
} else if (flag == 2) {
printf("Disabling buffering of VRAM\n");
for (logical = 0; logical < 0x200000; logical += NBPG) {
pa = bootconfig.vram[0].address + logical;
WriteWord(l2pagetable + ((logical >> 10) & 0x00000ffc),
L2_PTE_NC_NB((pa & PG_FRAME), AP_KRW)|PT_C);
WriteWord(l2pagetable + (((logical+0x200000) >> 10) & 0x00000ffc),
L2_PTE_NC_NB((pa & PG_FRAME), AP_KRW)|PT_C);
}
} else {
printf("Enabling caching and buffering of VRAM\n");
for (logical = 0; logical < 0x200000; logical += NBPG) {
map_entry(l2pagetable, logical,
bootconfig.vram[0].address + logical);
map_entry(l2pagetable, logical + 0x200000,
bootconfig.vram[0].address + logical);
}
}
/* clean out any existing cached video data */
cpu_cache_purgeD();
/* Flush the TLB so we pick up the new mappings */
cpu_tlb_flushD();
return(0);
}
#ifdef CPU_SA110
/*
* For optimal cache cleaning we need two 16K banks of
* virtual address space that NOTHING else will access
* and then we alternate the cache cleaning between the
* two banks.
* The cache cleaning code requires requires 2 banks aligned
* on total size boundry so the banks can be alternated by
* eorring the size bit (assumes the bank size is a power of 2)
*/
extern unsigned int sa110_cache_clean_addr;
extern unsigned int sa110_cache_clean_size;
void
rpc_sa110_cc_setup(void)
{
vm_offset_t addr;
int cleanarea;
int loop;
vm_offset_t kaddr;
pt_entry_t *pte;
extern vm_offset_t virtual_start;
cleanarea = 0x4000 * 2;
addr = (virtual_start + (cleanarea - 1)) & ~(cleanarea - 1);
virtual_start = addr + cleanarea;
kaddr = pmap_extract(kernel_pmap, 0xf0000000);
for (loop = 0; loop < cleanarea; loop += NBPG) {
pte = pmap_pte(kernel_pmap, (addr + loop));
*pte = L2_PTE(kaddr, AP_KR);
}
sa110_cache_clean_addr = addr;
sa110_cache_clean_size = cleanarea / 2;
}
#endif /* CPU_SA110 */
/* End of machdep.c */