NetBSD/sys/dev/usb/if_cue.c

1291 lines
30 KiB
C
Raw Normal View History

/* $NetBSD: if_cue.c,v 1.80 2018/08/02 06:09:04 riastradh Exp $ */
/*
* Copyright (c) 1997, 1998, 1999, 2000
* Bill Paul <wpaul@ee.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD: src/sys/dev/usb/if_cue.c,v 1.4 2000/01/16 22:45:06 wpaul Exp $
*/
/*
2000-03-24 16:08:28 +03:00
* CATC USB-EL1210A USB to ethernet driver. Used in the CATC Netmate
* adapters and others.
*
* Written by Bill Paul <wpaul@ee.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
2000-03-24 16:08:28 +03:00
* The CATC USB-EL1210A provides USB ethernet support at 10Mbps. The
* RX filter uses a 512-bit multicast hash table, single perfect entry
* for the station address, and promiscuous mode. Unlike the ADMtek
* and KLSI chips, the CATC ASIC supports read and write combining
* mode where multiple packets can be transfered using a single bulk
* transaction, which helps performance a great deal.
*/
/*
* Ported to NetBSD and somewhat rewritten by Lennart Augustsson.
*/
2001-11-13 09:24:53 +03:00
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_cue.c,v 1.80 2018/08/02 06:09:04 riastradh Exp $");
2001-11-13 09:24:53 +03:00
#ifdef _KERNEL_OPT
#include "opt_inet.h"
2016-11-25 15:56:29 +03:00
#include "opt_usb.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/bus.h>
#include <sys/device.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/bpf.h>
2000-03-29 22:24:52 +04:00
#include <net/if_ether.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_inarp.h>
2000-03-29 22:24:52 +04:00
#endif
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usbdevs.h>
#include <dev/usb/if_cuereg.h>
#ifdef CUE_DEBUG
#define DPRINTF(x) if (cuedebug) printf x
#define DPRINTFN(n,x) if (cuedebug >= (n)) printf x
int cuedebug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n,x)
#endif
/*
* Various supported device vendors/products.
*/
Static struct usb_devno cue_devs[] = {
{ USB_VENDOR_CATC, USB_PRODUCT_CATC_NETMATE },
{ USB_VENDOR_CATC, USB_PRODUCT_CATC_NETMATE2 },
{ USB_VENDOR_SMARTBRIDGES, USB_PRODUCT_SMARTBRIDGES_SMARTLINK },
2000-03-24 16:08:28 +03:00
/* Belkin F5U111 adapter covered by NETMATE entry */
};
2001-12-12 18:36:08 +03:00
#define cue_lookup(v, p) (usb_lookup(cue_devs, v, p))
int cue_match(device_t, cfdata_t, void *);
void cue_attach(device_t, device_t, void *);
int cue_detach(device_t, int);
int cue_activate(device_t, enum devact);
extern struct cfdriver cue_cd;
CFATTACH_DECL_NEW(cue, sizeof(struct cue_softc), cue_match, cue_attach,
cue_detach, cue_activate);
Static int cue_open_pipes(struct cue_softc *);
Static int cue_tx_list_init(struct cue_softc *);
Static int cue_rx_list_init(struct cue_softc *);
Static int cue_newbuf(struct cue_softc *, struct cue_chain *, struct mbuf *);
Static int cue_send(struct cue_softc *, struct mbuf *, int);
Static void cue_rxeof(struct usbd_xfer *, void *, usbd_status);
Static void cue_txeof(struct usbd_xfer *, void *, usbd_status);
Static void cue_tick(void *);
Static void cue_tick_task(void *);
Static void cue_start(struct ifnet *);
Static int cue_ioctl(struct ifnet *, u_long, void *);
Static void cue_init(void *);
Static void cue_stop(struct cue_softc *);
Static void cue_watchdog(struct ifnet *);
Static void cue_setmulti(struct cue_softc *);
Static uint32_t cue_crc(const char *);
Static void cue_reset(struct cue_softc *);
Static int cue_csr_read_1(struct cue_softc *, int);
Static int cue_csr_write_1(struct cue_softc *, int, int);
Static int cue_csr_read_2(struct cue_softc *, int);
#if 0
Static int cue_csr_write_2(struct cue_softc *, int, int);
#endif
Static int cue_mem(struct cue_softc *, int, int, void *, int);
Static int cue_getmac(struct cue_softc *, void *);
#define CUE_SETBIT(sc, reg, x) \
2000-03-24 16:08:28 +03:00
cue_csr_write_1(sc, reg, cue_csr_read_1(sc, reg) | (x))
#define CUE_CLRBIT(sc, reg, x) \
2000-03-24 16:08:28 +03:00
cue_csr_write_1(sc, reg, cue_csr_read_1(sc, reg) & ~(x))
Static int
cue_csr_read_1(struct cue_softc *sc, int reg)
{
usb_device_request_t req;
usbd_status err;
uint8_t val = 0;
2000-03-24 16:08:28 +03:00
if (sc->cue_dying)
return 0;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = CUE_CMD_READREG;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, 1);
err = usbd_do_request(sc->cue_udev, &req, &val);
2000-03-24 16:08:28 +03:00
if (err) {
DPRINTF(("%s: cue_csr_read_1: reg=0x%x err=%s\n",
device_xname(sc->cue_dev), reg, usbd_errstr(err)));
return 0;
2000-03-24 16:08:28 +03:00
}
2002-07-12 01:14:24 +04:00
DPRINTFN(10,("%s: cue_csr_read_1 reg=0x%x val=0x%x\n",
device_xname(sc->cue_dev), reg, val));
return val;
}
Static int
cue_csr_read_2(struct cue_softc *sc, int reg)
{
usb_device_request_t req;
usbd_status err;
2000-03-24 16:08:28 +03:00
uWord val;
2000-03-24 16:08:28 +03:00
if (sc->cue_dying)
return 0;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = CUE_CMD_READREG;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, 2);
err = usbd_do_request(sc->cue_udev, &req, &val);
2002-07-12 01:14:24 +04:00
DPRINTFN(10,("%s: cue_csr_read_2 reg=0x%x val=0x%x\n",
device_xname(sc->cue_dev), reg, UGETW(val)));
2000-03-24 16:08:28 +03:00
if (err) {
DPRINTF(("%s: cue_csr_read_2: reg=0x%x err=%s\n",
device_xname(sc->cue_dev), reg, usbd_errstr(err)));
return 0;
2000-03-24 16:08:28 +03:00
}
return UGETW(val);
}
Static int
cue_csr_write_1(struct cue_softc *sc, int reg, int val)
{
usb_device_request_t req;
usbd_status err;
2000-03-24 16:08:28 +03:00
if (sc->cue_dying)
return 0;
2000-03-24 16:08:28 +03:00
2002-07-12 01:14:24 +04:00
DPRINTFN(10,("%s: cue_csr_write_1 reg=0x%x val=0x%x\n",
device_xname(sc->cue_dev), reg, val));
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = CUE_CMD_WRITEREG;
USETW(req.wValue, val);
USETW(req.wIndex, reg);
USETW(req.wLength, 0);
err = usbd_do_request(sc->cue_udev, &req, NULL);
2000-03-24 16:08:28 +03:00
if (err) {
DPRINTF(("%s: cue_csr_write_1: reg=0x%x err=%s\n",
device_xname(sc->cue_dev), reg, usbd_errstr(err)));
return -1;
2000-03-24 16:08:28 +03:00
}
2002-07-12 01:14:24 +04:00
DPRINTFN(20,("%s: cue_csr_write_1, after reg=0x%x val=0x%x\n",
device_xname(sc->cue_dev), reg, cue_csr_read_1(sc, reg)));
return 0;
}
#if 0
Static int
cue_csr_write_2(struct cue_softc *sc, int reg, int aval)
{
usb_device_request_t req;
usbd_status err;
2000-03-24 16:08:28 +03:00
uWord val;
int s;
2000-03-24 16:08:28 +03:00
if (sc->cue_dying)
return 0;
2000-03-24 16:08:28 +03:00
2002-07-12 01:14:24 +04:00
DPRINTFN(10,("%s: cue_csr_write_2 reg=0x%x val=0x%x\n",
device_xname(sc->cue_dev), reg, aval));
2000-03-24 16:08:28 +03:00
USETW(val, aval);
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = CUE_CMD_WRITEREG;
USETW(req.wValue, val);
USETW(req.wIndex, reg);
USETW(req.wLength, 0);
err = usbd_do_request(sc->cue_udev, &req, NULL);
2000-03-24 16:08:28 +03:00
if (err) {
DPRINTF(("%s: cue_csr_write_2: reg=0x%x err=%s\n",
device_xname(sc->cue_dev), reg, usbd_errstr(err)));
return -1;
2000-03-24 16:08:28 +03:00
}
return 0;
}
#endif
Static int
cue_mem(struct cue_softc *sc, int cmd, int addr, void *buf, int len)
{
usb_device_request_t req;
usbd_status err;
2000-03-24 16:08:28 +03:00
DPRINTFN(10,("%s: cue_mem cmd=0x%x addr=0x%x len=%d\n",
device_xname(sc->cue_dev), cmd, addr, len));
if (cmd == CUE_CMD_READSRAM)
req.bmRequestType = UT_READ_VENDOR_DEVICE;
else
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = cmd;
USETW(req.wValue, 0);
USETW(req.wIndex, addr);
USETW(req.wLength, len);
err = usbd_do_request(sc->cue_udev, &req, buf);
2000-03-24 16:08:28 +03:00
if (err) {
DPRINTF(("%s: cue_csr_mem: addr=0x%x err=%s\n",
device_xname(sc->cue_dev), addr, usbd_errstr(err)));
return -1;
2000-03-24 16:08:28 +03:00
}
return 0;
}
Static int
cue_getmac(struct cue_softc *sc, void *buf)
{
usb_device_request_t req;
usbd_status err;
DPRINTFN(10,("%s: cue_getmac\n", device_xname(sc->cue_dev)));
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = CUE_CMD_GET_MACADDR;
USETW(req.wValue, 0);
USETW(req.wIndex, 0);
USETW(req.wLength, ETHER_ADDR_LEN);
err = usbd_do_request(sc->cue_udev, &req, buf);
if (err) {
printf("%s: read MAC address failed\n",
device_xname(sc->cue_dev));
return -1;
}
return 0;
}
#define CUE_POLY 0xEDB88320
#define CUE_BITS 9
Static uint32_t
2005-01-08 06:16:51 +03:00
cue_crc(const char *addr)
{
uint32_t idx, bit, data, crc;
/* Compute CRC for the address value. */
crc = 0xFFFFFFFF; /* initial value */
for (idx = 0; idx < 6; idx++) {
for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
crc = (crc >> 1) ^ (((crc ^ data) & 1) ? CUE_POLY : 0);
}
return crc & ((1 << CUE_BITS) - 1);
}
Static void
cue_setmulti(struct cue_softc *sc)
{
struct ifnet *ifp;
2000-03-24 16:08:28 +03:00
struct ether_multi *enm;
struct ether_multistep step;
uint32_t h, i;
ifp = GET_IFP(sc);
2002-07-12 01:14:24 +04:00
DPRINTFN(2,("%s: cue_setmulti if_flags=0x%x\n",
device_xname(sc->cue_dev), ifp->if_flags));
2000-03-24 16:08:28 +03:00
if (ifp->if_flags & IFF_PROMISC) {
allmulti:
ifp->if_flags |= IFF_ALLMULTI;
for (i = 0; i < CUE_MCAST_TABLE_LEN; i++)
sc->cue_mctab[i] = 0xFF;
2000-03-24 16:08:28 +03:00
cue_mem(sc, CUE_CMD_WRITESRAM, CUE_MCAST_TABLE_ADDR,
&sc->cue_mctab, CUE_MCAST_TABLE_LEN);
return;
}
/* first, zot all the existing hash bits */
for (i = 0; i < CUE_MCAST_TABLE_LEN; i++)
sc->cue_mctab[i] = 0;
/* now program new ones */
2000-03-24 16:08:28 +03:00
ETHER_FIRST_MULTI(step, &sc->cue_ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo,
enm->enm_addrhi, ETHER_ADDR_LEN) != 0)
goto allmulti;
2000-03-24 16:08:28 +03:00
h = cue_crc(enm->enm_addrlo);
2002-07-12 01:14:24 +04:00
sc->cue_mctab[h >> 3] |= 1 << (h & 0x7);
2000-03-24 16:08:28 +03:00
ETHER_NEXT_MULTI(step, enm);
}
ifp->if_flags &= ~IFF_ALLMULTI;
/*
* Also include the broadcast address in the filter
* so we can receive broadcast frames.
*/
if (ifp->if_flags & IFF_BROADCAST) {
h = cue_crc(etherbroadcastaddr);
2002-07-12 01:14:24 +04:00
sc->cue_mctab[h >> 3] |= 1 << (h & 0x7);
}
cue_mem(sc, CUE_CMD_WRITESRAM, CUE_MCAST_TABLE_ADDR,
&sc->cue_mctab, CUE_MCAST_TABLE_LEN);
}
Static void
cue_reset(struct cue_softc *sc)
{
usb_device_request_t req;
usbd_status err;
DPRINTFN(2,("%s: cue_reset\n", device_xname(sc->cue_dev)));
2000-03-24 16:08:28 +03:00
if (sc->cue_dying)
return;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = CUE_CMD_RESET;
USETW(req.wValue, 0);
USETW(req.wIndex, 0);
USETW(req.wLength, 0);
err = usbd_do_request(sc->cue_udev, &req, NULL);
if (err)
printf("%s: reset failed\n", device_xname(sc->cue_dev));
/* Wait a little while for the chip to get its brains in order. */
usbd_delay_ms(sc->cue_udev, 1);
}
/*
* Probe for a CATC chip.
*/
int
cue_match(device_t parent, cfdata_t match, void *aux)
{
struct usb_attach_arg *uaa = aux;
return cue_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL ?
UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
void
cue_attach(device_t parent, device_t self, void *aux)
{
struct cue_softc *sc = device_private(self);
struct usb_attach_arg *uaa = aux;
char *devinfop;
int s;
u_char eaddr[ETHER_ADDR_LEN];
struct usbd_device * dev = uaa->uaa_device;
struct usbd_interface * iface;
usbd_status err;
struct ifnet *ifp;
usb_interface_descriptor_t *id;
usb_endpoint_descriptor_t *ed;
int i;
DPRINTFN(5,(" : cue_attach: sc=%p, dev=%p", sc, dev));
sc->cue_dev = self;
aprint_naive("\n");
aprint_normal("\n");
devinfop = usbd_devinfo_alloc(dev, 0);
aprint_normal_dev(self, "%s\n", devinfop);
usbd_devinfo_free(devinfop);
err = usbd_set_config_no(dev, CUE_CONFIG_NO, 1);
if (err) {
aprint_error_dev(self, "failed to set configuration"
", err=%s\n", usbd_errstr(err));
return;
}
sc->cue_udev = dev;
sc->cue_product = uaa->uaa_product;
sc->cue_vendor = uaa->uaa_vendor;
usb_init_task(&sc->cue_tick_task, cue_tick_task, sc, 0);
usb_init_task(&sc->cue_stop_task, (void (*)(void *))cue_stop, sc, 0);
err = usbd_device2interface_handle(dev, CUE_IFACE_IDX, &iface);
if (err) {
aprint_error_dev(self, "getting interface handle failed\n");
return;
}
sc->cue_iface = iface;
id = usbd_get_interface_descriptor(iface);
/* Find endpoints. */
for (i = 0; i < id->bNumEndpoints; i++) {
ed = usbd_interface2endpoint_descriptor(iface, i);
if (ed == NULL) {
aprint_error_dev(self, "couldn't get ep %d\n", i);
return;
}
if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
sc->cue_ed[CUE_ENDPT_RX] = ed->bEndpointAddress;
} else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
sc->cue_ed[CUE_ENDPT_TX] = ed->bEndpointAddress;
} else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT) {
sc->cue_ed[CUE_ENDPT_INTR] = ed->bEndpointAddress;
}
}
2000-03-24 16:08:28 +03:00
#if 0
/* Reset the adapter. */
cue_reset(sc);
#endif
/*
* Get station address.
*/
cue_getmac(sc, &eaddr);
s = splnet();
/*
* A CATC chip was detected. Inform the world.
*/
aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
/* Initialize interface info.*/
ifp = GET_IFP(sc);
ifp->if_softc = sc;
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = cue_ioctl;
ifp->if_start = cue_start;
ifp->if_watchdog = cue_watchdog;
strlcpy(ifp->if_xname, device_xname(sc->cue_dev), IFNAMSIZ);
2000-12-14 10:51:36 +03:00
IFQ_SET_READY(&ifp->if_snd);
/* Attach the interface. */
if_attach(ifp);
ether_ifattach(ifp, eaddr);
rnd_attach_source(&sc->rnd_source, device_xname(sc->cue_dev),
RND_TYPE_NET, RND_FLAG_DEFAULT);
callout_init(&(sc->cue_stat_ch), 0);
sc->cue_attached = 1;
splx(s);
usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->cue_udev, sc->cue_dev);
return;
}
int
cue_detach(device_t self, int flags)
{
struct cue_softc *sc = device_private(self);
2000-02-02 14:42:29 +03:00
struct ifnet *ifp = GET_IFP(sc);
int s;
DPRINTFN(2,("%s: %s: enter\n", device_xname(sc->cue_dev), __func__));
2000-03-24 16:08:28 +03:00
2001-01-23 20:04:30 +03:00
/*
* XXX Halting callout guarantees no more tick tasks. What
* guarantees no more stop tasks? What guarantees no more
* calls to cue_send? Don't we need to wait for if_detach or
* something? Should we set sc->cue_dying here? Is device
* deactivation guaranteed to have already happened?
2001-01-23 20:04:30 +03:00
*/
callout_halt(&sc->cue_stat_ch, NULL);
usb_rem_task_wait(sc->cue_udev, &sc->cue_tick_task, USB_TASKQ_DRIVER,
NULL);
usb_rem_task_wait(sc->cue_udev, &sc->cue_stop_task, USB_TASKQ_DRIVER,
NULL);
if (!sc->cue_attached) {
/* Detached before attached finished, so just bail out. */
return 0;
}
s = splusb();
2000-02-02 14:42:29 +03:00
if (ifp->if_flags & IFF_RUNNING)
cue_stop(sc);
rnd_detach_source(&sc->rnd_source);
2000-02-02 14:42:29 +03:00
ether_ifdetach(ifp);
if_detach(ifp);
2000-02-02 14:42:29 +03:00
#ifdef DIAGNOSTIC
if (sc->cue_ep[CUE_ENDPT_TX] != NULL ||
sc->cue_ep[CUE_ENDPT_RX] != NULL ||
sc->cue_ep[CUE_ENDPT_INTR] != NULL)
aprint_debug_dev(self, "detach has active endpoints\n");
2000-02-02 14:42:29 +03:00
#endif
sc->cue_attached = 0;
splx(s);
usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->cue_udev, sc->cue_dev);
return 0;
}
int
cue_activate(device_t self, enum devact act)
{
struct cue_softc *sc = device_private(self);
DPRINTFN(2,("%s: %s: enter\n", device_xname(sc->cue_dev), __func__));
switch (act) {
case DVACT_DEACTIVATE:
2000-02-02 14:42:29 +03:00
/* Deactivate the interface. */
if_deactivate(&sc->cue_ec.ec_if);
sc->cue_dying = 1;
return 0;
default:
return EOPNOTSUPP;
}
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
*/
Static int
cue_newbuf(struct cue_softc *sc, struct cue_chain *c, struct mbuf *m)
{
struct mbuf *m_new = NULL;
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("%s: no memory for rx list "
"-- packet dropped!\n", device_xname(sc->cue_dev));
return ENOBUFS;
}
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
printf("%s: no memory for rx list "
"-- packet dropped!\n", device_xname(sc->cue_dev));
m_freem(m_new);
return ENOBUFS;
}
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
} else {
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
m_new->m_data = m_new->m_ext.ext_buf;
}
m_adj(m_new, ETHER_ALIGN);
c->cue_mbuf = m_new;
return 0;
}
Static int
cue_rx_list_init(struct cue_softc *sc)
{
struct cue_cdata *cd;
struct cue_chain *c;
int i;
cd = &sc->cue_cdata;
for (i = 0; i < CUE_RX_LIST_CNT; i++) {
c = &cd->cue_rx_chain[i];
c->cue_sc = sc;
c->cue_idx = i;
if (cue_newbuf(sc, c, NULL) == ENOBUFS)
return ENOBUFS;
if (c->cue_xfer == NULL) {
int error = usbd_create_xfer(sc->cue_ep[CUE_ENDPT_RX],
CUE_BUFSZ, 0, 0, &c->cue_xfer);
if (error)
return error;
c->cue_buf = usbd_get_buffer(c->cue_xfer);
}
}
return 0;
}
Static int
cue_tx_list_init(struct cue_softc *sc)
{
struct cue_cdata *cd;
struct cue_chain *c;
int i;
cd = &sc->cue_cdata;
for (i = 0; i < CUE_TX_LIST_CNT; i++) {
c = &cd->cue_tx_chain[i];
c->cue_sc = sc;
c->cue_idx = i;
c->cue_mbuf = NULL;
if (c->cue_xfer == NULL) {
int error = usbd_create_xfer(sc->cue_ep[CUE_ENDPT_TX],
CUE_BUFSZ, 0, 0, &c->cue_xfer);
if (error)
return error;
c->cue_buf = usbd_get_buffer(c->cue_xfer);
}
}
return 0;
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
Static void
cue_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
{
struct cue_chain *c = priv;
struct cue_softc *sc = c->cue_sc;
struct ifnet *ifp = GET_IFP(sc);
struct mbuf *m;
int total_len = 0;
uint16_t len;
int s;
DPRINTFN(10,("%s: %s: enter status=%d\n", device_xname(sc->cue_dev),
2002-07-08 21:46:23 +04:00
__func__, status));
2000-02-02 14:42:29 +03:00
if (sc->cue_dying)
return;
if (!(ifp->if_flags & IFF_RUNNING))
return;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
return;
sc->cue_rx_errs++;
if (usbd_ratecheck(&sc->cue_rx_notice)) {
printf("%s: %u usb errors on rx: %s\n",
device_xname(sc->cue_dev), sc->cue_rx_errs,
usbd_errstr(status));
sc->cue_rx_errs = 0;
}
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sc->cue_ep[CUE_ENDPT_RX]);
goto done;
}
usbd_get_xfer_status(xfer, NULL, NULL, &total_len, NULL);
memcpy(mtod(c->cue_mbuf, char *), c->cue_buf, total_len);
m = c->cue_mbuf;
len = UGETW(mtod(m, uint8_t *));
/* No errors; receive the packet. */
total_len = len;
if (len < sizeof(struct ether_header)) {
ifp->if_ierrors++;
goto done;
}
m_adj(m, sizeof(uint16_t));
m->m_pkthdr.len = m->m_len = total_len;
m_set_rcvif(m, ifp);
s = splnet();
/* XXX ugly */
if (cue_newbuf(sc, c, NULL) == ENOBUFS) {
ifp->if_ierrors++;
goto done1;
}
DPRINTFN(10,("%s: %s: deliver %d\n", device_xname(sc->cue_dev),
2002-07-08 21:46:23 +04:00
__func__, m->m_len));
if_percpuq_enqueue(ifp->if_percpuq, m);
done1:
splx(s);
done:
/* Setup new transfer. */
usbd_setup_xfer(c->cue_xfer, c, c->cue_buf, CUE_BUFSZ,
USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, cue_rxeof);
usbd_transfer(c->cue_xfer);
DPRINTFN(10,("%s: %s: start rx\n", device_xname(sc->cue_dev),
2002-07-08 21:46:23 +04:00
__func__));
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
Static void
cue_txeof(struct usbd_xfer *xfer, void *priv,
usbd_status status)
{
struct cue_chain *c = priv;
struct cue_softc *sc = c->cue_sc;
struct ifnet *ifp = GET_IFP(sc);
int s;
2000-02-02 14:42:29 +03:00
if (sc->cue_dying)
return;
s = splnet();
DPRINTFN(10,("%s: %s: enter status=%d\n", device_xname(sc->cue_dev),
2002-07-08 21:46:23 +04:00
__func__, status));
ifp->if_timer = 0;
ifp->if_flags &= ~IFF_OACTIVE;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) {
splx(s);
return;
}
ifp->if_oerrors++;
printf("%s: usb error on tx: %s\n", device_xname(sc->cue_dev),
usbd_errstr(status));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sc->cue_ep[CUE_ENDPT_TX]);
splx(s);
return;
}
ifp->if_opackets++;
m_freem(c->cue_mbuf);
c->cue_mbuf = NULL;
2000-12-14 10:51:36 +03:00
if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
cue_start(ifp);
splx(s);
}
Static void
cue_tick(void *xsc)
{
struct cue_softc *sc = xsc;
2000-02-02 14:42:29 +03:00
if (sc == NULL)
return;
2000-02-02 14:42:29 +03:00
if (sc->cue_dying)
return;
2000-02-02 14:42:29 +03:00
DPRINTFN(2,("%s: %s: enter\n", device_xname(sc->cue_dev), __func__));
2000-03-24 16:08:28 +03:00
/* Perform statistics update in process context. */
usb_add_task(sc->cue_udev, &sc->cue_tick_task, USB_TASKQ_DRIVER);
}
Static void
cue_tick_task(void *xsc)
{
struct cue_softc *sc = xsc;
struct ifnet *ifp;
if (sc->cue_dying)
return;
DPRINTFN(2,("%s: %s: enter\n", device_xname(sc->cue_dev), __func__));
ifp = GET_IFP(sc);
2000-03-24 16:08:28 +03:00
ifp->if_collisions += cue_csr_read_2(sc, CUE_TX_SINGLECOLL);
ifp->if_collisions += cue_csr_read_2(sc, CUE_TX_MULTICOLL);
ifp->if_collisions += cue_csr_read_2(sc, CUE_TX_EXCESSCOLL);
2000-03-24 16:08:28 +03:00
if (cue_csr_read_2(sc, CUE_RX_FRAMEERR))
ifp->if_ierrors++;
}
Static int
cue_send(struct cue_softc *sc, struct mbuf *m, int idx)
{
int total_len;
struct cue_chain *c;
usbd_status err;
c = &sc->cue_cdata.cue_tx_chain[idx];
/*
* Copy the mbuf data into a contiguous buffer, leaving two
* bytes at the beginning to hold the frame length.
*/
m_copydata(m, 0, m->m_pkthdr.len, c->cue_buf + 2);
c->cue_mbuf = m;
total_len = m->m_pkthdr.len + 2;
2000-03-24 16:08:28 +03:00
DPRINTFN(10,("%s: %s: total_len=%d\n",
device_xname(sc->cue_dev), __func__, total_len));
2000-03-24 16:08:28 +03:00
/* The first two bytes are the frame length */
c->cue_buf[0] = (uint8_t)m->m_pkthdr.len;
c->cue_buf[1] = (uint8_t)(m->m_pkthdr.len >> 8);
2000-03-24 16:08:28 +03:00
/* XXX 10000 */
usbd_setup_xfer(c->cue_xfer, c, c->cue_buf, total_len, 0, 10000,
cue_txeof);
/* Transmit */
err = usbd_transfer(c->cue_xfer);
if (err != USBD_IN_PROGRESS) {
printf("%s: cue_send error=%s\n", device_xname(sc->cue_dev),
usbd_errstr(err));
/* Stop the interface from process context. */
usb_add_task(sc->cue_udev, &sc->cue_stop_task,
USB_TASKQ_DRIVER);
return EIO;
}
sc->cue_cdata.cue_tx_cnt++;
return 0;
}
Static void
cue_start(struct ifnet *ifp)
{
struct cue_softc *sc = ifp->if_softc;
struct mbuf *m_head = NULL;
2000-02-02 14:42:29 +03:00
if (sc->cue_dying)
return;
DPRINTFN(10,("%s: %s: enter\n", device_xname(sc->cue_dev),__func__));
2000-03-24 16:08:28 +03:00
if (ifp->if_flags & IFF_OACTIVE)
return;
2000-12-14 10:51:36 +03:00
IFQ_POLL(&ifp->if_snd, m_head);
if (m_head == NULL)
return;
if (cue_send(sc, m_head, 0)) {
ifp->if_flags |= IFF_OACTIVE;
return;
}
2000-12-14 10:51:36 +03:00
IFQ_DEQUEUE(&ifp->if_snd, m_head);
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
bpf_mtap(ifp, m_head, BPF_D_OUT);
ifp->if_flags |= IFF_OACTIVE;
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
}
Static void
cue_init(void *xsc)
{
struct cue_softc *sc = xsc;
struct ifnet *ifp = GET_IFP(sc);
2000-03-24 16:08:28 +03:00
int i, s, ctl;
2007-08-30 02:33:42 +04:00
const u_char *eaddr;
2000-02-02 14:42:29 +03:00
if (sc->cue_dying)
return;
DPRINTFN(10,("%s: %s: enter\n", device_xname(sc->cue_dev),__func__));
2000-03-24 16:08:28 +03:00
if (ifp->if_flags & IFF_RUNNING)
return;
s = splnet();
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
2000-03-24 16:08:28 +03:00
#if 1
cue_reset(sc);
#endif
2000-03-24 16:08:28 +03:00
/* Set advanced operation modes. */
cue_csr_write_1(sc, CUE_ADVANCED_OPMODES,
CUE_AOP_EMBED_RXLEN | 0x03); /* 1 wait state */
2007-08-30 02:33:42 +04:00
eaddr = CLLADDR(ifp->if_sadl);
/* Set MAC address */
for (i = 0; i < ETHER_ADDR_LEN; i++)
2000-03-24 16:08:28 +03:00
cue_csr_write_1(sc, CUE_PAR0 - i, eaddr[i]);
/* Enable RX logic. */
2000-03-24 16:08:28 +03:00
ctl = CUE_ETHCTL_RX_ON | CUE_ETHCTL_MCAST_ON;
if (ifp->if_flags & IFF_PROMISC)
2000-03-24 16:08:28 +03:00
ctl |= CUE_ETHCTL_PROMISC;
cue_csr_write_1(sc, CUE_ETHCTL, ctl);
/* Load the multicast filter. */
cue_setmulti(sc);
/*
* Set the number of RX and TX buffers that we want
* to reserve inside the ASIC.
*/
2000-03-24 16:08:28 +03:00
cue_csr_write_1(sc, CUE_RX_BUFPKTS, CUE_RX_FRAMES);
cue_csr_write_1(sc, CUE_TX_BUFPKTS, CUE_TX_FRAMES);
/* Set advanced operation modes. */
2000-03-24 16:08:28 +03:00
cue_csr_write_1(sc, CUE_ADVANCED_OPMODES,
CUE_AOP_EMBED_RXLEN | 0x01); /* 1 wait state */
/* Program the LED operation. */
2000-03-24 16:08:28 +03:00
cue_csr_write_1(sc, CUE_LEDCTL, CUE_LEDCTL_FOLLOW_LINK);
if (sc->cue_ep[CUE_ENDPT_RX] == NULL) {
2000-03-24 16:08:28 +03:00
if (cue_open_pipes(sc)) {
splx(s);
return;
}
}
/* Init TX ring. */
if (cue_tx_list_init(sc)) {
printf("%s: tx list init failed\n", device_xname(sc->cue_dev));
splx(s);
return;
}
/* Init RX ring. */
if (cue_rx_list_init(sc)) {
printf("%s: rx list init failed\n", device_xname(sc->cue_dev));
splx(s);
return;
}
2000-03-24 16:08:28 +03:00
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
splx(s);
callout_reset(&(sc->cue_stat_ch), (hz), (cue_tick), (sc));
2000-03-24 16:08:28 +03:00
}
Static int
cue_open_pipes(struct cue_softc *sc)
2000-03-24 16:08:28 +03:00
{
struct cue_chain *c;
usbd_status err;
int i;
/* Open RX and TX pipes. */
err = usbd_open_pipe(sc->cue_iface, sc->cue_ed[CUE_ENDPT_RX],
USBD_EXCLUSIVE_USE, &sc->cue_ep[CUE_ENDPT_RX]);
if (err) {
printf("%s: open rx pipe failed: %s\n",
device_xname(sc->cue_dev), usbd_errstr(err));
return EIO;
}
err = usbd_open_pipe(sc->cue_iface, sc->cue_ed[CUE_ENDPT_TX],
USBD_EXCLUSIVE_USE, &sc->cue_ep[CUE_ENDPT_TX]);
if (err) {
printf("%s: open tx pipe failed: %s\n",
device_xname(sc->cue_dev), usbd_errstr(err));
return EIO;
}
/* Start up the receive pipe. */
for (i = 0; i < CUE_RX_LIST_CNT; i++) {
c = &sc->cue_cdata.cue_rx_chain[i];
usbd_setup_xfer(c->cue_xfer, c, c->cue_buf, CUE_BUFSZ,
USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, cue_rxeof);
usbd_transfer(c->cue_xfer);
}
return 0;
}
Static int
cue_ioctl(struct ifnet *ifp, u_long command, void *data)
{
struct cue_softc *sc = ifp->if_softc;
struct ifaddr *ifa = (struct ifaddr *)data;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
2000-02-02 14:42:29 +03:00
if (sc->cue_dying)
return EIO;
2000-02-02 14:42:29 +03:00
s = splnet();
switch(command) {
*** Summary *** When a link-layer address changes (e.g., ifconfig ex0 link 02:de:ad:be:ef:02 active), send a gratuitous ARP and/or a Neighbor Advertisement to update the network-/link-layer address bindings on our LAN peers. Refuse a change of ethernet address to the address 00:00:00:00:00:00 or to any multicast/broadcast address. (Thanks matt@.) Reorder ifnet ioctl operations so that driver ioctls may inherit the functions of their "class"---ether_ioctl(), fddi_ioctl(), et cetera---and the class ioctls may inherit from the generic ioctl, ifioctl_common(), but both driver- and class-ioctls may override the generic behavior. Make network drivers share more code. Distinguish a "factory" link-layer address from others for the purposes of both protecting that address from deletion and computing EUI64. Return consistent, appropriate error codes from network drivers. Improve readability. KNF. *** Details *** In if_attach(), always initialize the interface ioctl routine, ifnet->if_ioctl, if the driver has not already initialized it. Delete if_ioctl == NULL tests everywhere else, because it cannot happen. In the ioctl routines of network interfaces, inherit common ioctl behaviors by calling either ifioctl_common() or whichever ioctl routine is appropriate for the class of interface---e.g., ether_ioctl() for ethernets. Stop (ab)using SIOCSIFADDR and start to use SIOCINITIFADDR. In the user->kernel interface, SIOCSIFADDR's argument was an ifreq, but on the protocol->ifnet interface, SIOCSIFADDR's argument was an ifaddr. That was confusing, and it would work against me as I make it possible for a network interface to overload most ioctls. On the protocol->ifnet interface, replace SIOCSIFADDR with SIOCINITIFADDR. In ifioctl(), return EPERM if userland tries to invoke SIOCINITIFADDR. In ifioctl(), give the interface the first shot at handling most interface ioctls, and give the protocol the second shot, instead of the other way around. Finally, let compatibility code (COMPAT_OSOCK) take a shot. Pull device initialization out of switch statements under SIOCINITIFADDR. For example, pull ..._init() out of any switch statement that looks like this: switch (...->sa_family) { case ...: ..._init(); ... break; ... default: ..._init(); ... break; } Rewrite many if-else clauses that handle all permutations of IFF_UP and IFF_RUNNING to use a switch statement, switch (x & (IFF_UP|IFF_RUNNING)) { case 0: ... break; case IFF_RUNNING: ... break; case IFF_UP: ... break; case IFF_UP|IFF_RUNNING: ... break; } unifdef lots of code containing #ifdef FreeBSD, #ifdef NetBSD, and #ifdef SIOCSIFMTU, especially in fwip(4) and in ndis(4). In ipw(4), remove an if_set_sadl() call that is out of place. In nfe(4), reuse the jumbo MTU logic in ether_ioctl(). Let ethernets register a callback for setting h/w state such as promiscuous mode and the multicast filter in accord with a change in the if_flags: ether_set_ifflags_cb() registers a callback that returns ENETRESET if the caller should reset the ethernet by calling if_init(), 0 on success, != 0 on failure. Pull common code from ex(4), gem(4), nfe(4), sip(4), tlp(4), vge(4) into ether_ioctl(), and register if_flags callbacks for those drivers. Return ENOTTY instead of EINVAL for inappropriate ioctls. In zyd(4), use ENXIO instead of ENOTTY to indicate that the device is not any longer attached. Add to if_set_sadl() a boolean 'factory' argument that indicates whether a link-layer address was assigned by the factory or some other source. In a comment, recommend using the factory address for generating an EUI64, and update in6_get_hw_ifid() to prefer a factory address to any other link-layer address. Add a routing message, RTM_LLINFO_UPD, that tells protocols to update the binding of network-layer addresses to link-layer addresses. Implement this message in IPv4 and IPv6 by sending a gratuitous ARP or a neighbor advertisement, respectively. Generate RTM_LLINFO_UPD messages on a change of an interface's link-layer address. In ether_ioctl(), do not let SIOCALIFADDR set a link-layer address that is broadcast/multicast or equal to 00:00:00:00:00:00. Make ether_ioctl() call ifioctl_common() to handle ioctls that it does not understand. In gif(4), initialize if_softc and use it, instead of assuming that the gif_softc and ifp overlap. Let ifioctl_common() handle SIOCGIFADDR. Sprinkle rtcache_invariants(), which checks on DIAGNOSTIC kernels that certain invariants on a struct route are satisfied. In agr(4), rewrite agr_ioctl_filter() to be a bit more explicit about the ioctls that we do not allow on an agr(4) member interface. bzero -> memset. Delete unnecessary casts to void *. Use sockaddr_in_init() and sockaddr_in6_init(). Compare pointers with NULL instead of "testing truth". Replace some instances of (type *)0 with NULL. Change some K&R prototypes to ANSI C, and join lines.
2008-11-07 03:20:01 +03:00
case SIOCINITIFADDR:
ifp->if_flags |= IFF_UP;
cue_init(sc);
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
arp_ifinit(ifp, ifa);
break;
#endif /* INET */
}
break;
case SIOCSIFMTU:
if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU)
error = EINVAL;
else if ((error = ifioctl_common(ifp, command, data)) == ENETRESET)
error = 0;
break;
case SIOCSIFFLAGS:
*** Summary *** When a link-layer address changes (e.g., ifconfig ex0 link 02:de:ad:be:ef:02 active), send a gratuitous ARP and/or a Neighbor Advertisement to update the network-/link-layer address bindings on our LAN peers. Refuse a change of ethernet address to the address 00:00:00:00:00:00 or to any multicast/broadcast address. (Thanks matt@.) Reorder ifnet ioctl operations so that driver ioctls may inherit the functions of their "class"---ether_ioctl(), fddi_ioctl(), et cetera---and the class ioctls may inherit from the generic ioctl, ifioctl_common(), but both driver- and class-ioctls may override the generic behavior. Make network drivers share more code. Distinguish a "factory" link-layer address from others for the purposes of both protecting that address from deletion and computing EUI64. Return consistent, appropriate error codes from network drivers. Improve readability. KNF. *** Details *** In if_attach(), always initialize the interface ioctl routine, ifnet->if_ioctl, if the driver has not already initialized it. Delete if_ioctl == NULL tests everywhere else, because it cannot happen. In the ioctl routines of network interfaces, inherit common ioctl behaviors by calling either ifioctl_common() or whichever ioctl routine is appropriate for the class of interface---e.g., ether_ioctl() for ethernets. Stop (ab)using SIOCSIFADDR and start to use SIOCINITIFADDR. In the user->kernel interface, SIOCSIFADDR's argument was an ifreq, but on the protocol->ifnet interface, SIOCSIFADDR's argument was an ifaddr. That was confusing, and it would work against me as I make it possible for a network interface to overload most ioctls. On the protocol->ifnet interface, replace SIOCSIFADDR with SIOCINITIFADDR. In ifioctl(), return EPERM if userland tries to invoke SIOCINITIFADDR. In ifioctl(), give the interface the first shot at handling most interface ioctls, and give the protocol the second shot, instead of the other way around. Finally, let compatibility code (COMPAT_OSOCK) take a shot. Pull device initialization out of switch statements under SIOCINITIFADDR. For example, pull ..._init() out of any switch statement that looks like this: switch (...->sa_family) { case ...: ..._init(); ... break; ... default: ..._init(); ... break; } Rewrite many if-else clauses that handle all permutations of IFF_UP and IFF_RUNNING to use a switch statement, switch (x & (IFF_UP|IFF_RUNNING)) { case 0: ... break; case IFF_RUNNING: ... break; case IFF_UP: ... break; case IFF_UP|IFF_RUNNING: ... break; } unifdef lots of code containing #ifdef FreeBSD, #ifdef NetBSD, and #ifdef SIOCSIFMTU, especially in fwip(4) and in ndis(4). In ipw(4), remove an if_set_sadl() call that is out of place. In nfe(4), reuse the jumbo MTU logic in ether_ioctl(). Let ethernets register a callback for setting h/w state such as promiscuous mode and the multicast filter in accord with a change in the if_flags: ether_set_ifflags_cb() registers a callback that returns ENETRESET if the caller should reset the ethernet by calling if_init(), 0 on success, != 0 on failure. Pull common code from ex(4), gem(4), nfe(4), sip(4), tlp(4), vge(4) into ether_ioctl(), and register if_flags callbacks for those drivers. Return ENOTTY instead of EINVAL for inappropriate ioctls. In zyd(4), use ENXIO instead of ENOTTY to indicate that the device is not any longer attached. Add to if_set_sadl() a boolean 'factory' argument that indicates whether a link-layer address was assigned by the factory or some other source. In a comment, recommend using the factory address for generating an EUI64, and update in6_get_hw_ifid() to prefer a factory address to any other link-layer address. Add a routing message, RTM_LLINFO_UPD, that tells protocols to update the binding of network-layer addresses to link-layer addresses. Implement this message in IPv4 and IPv6 by sending a gratuitous ARP or a neighbor advertisement, respectively. Generate RTM_LLINFO_UPD messages on a change of an interface's link-layer address. In ether_ioctl(), do not let SIOCALIFADDR set a link-layer address that is broadcast/multicast or equal to 00:00:00:00:00:00. Make ether_ioctl() call ifioctl_common() to handle ioctls that it does not understand. In gif(4), initialize if_softc and use it, instead of assuming that the gif_softc and ifp overlap. Let ifioctl_common() handle SIOCGIFADDR. Sprinkle rtcache_invariants(), which checks on DIAGNOSTIC kernels that certain invariants on a struct route are satisfied. In agr(4), rewrite agr_ioctl_filter() to be a bit more explicit about the ioctls that we do not allow on an agr(4) member interface. bzero -> memset. Delete unnecessary casts to void *. Use sockaddr_in_init() and sockaddr_in6_init(). Compare pointers with NULL instead of "testing truth". Replace some instances of (type *)0 with NULL. Change some K&R prototypes to ANSI C, and join lines.
2008-11-07 03:20:01 +03:00
if ((error = ifioctl_common(ifp, command, data)) != 0)
break;
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc->cue_if_flags & IFF_PROMISC)) {
CUE_SETBIT(sc, CUE_ETHCTL, CUE_ETHCTL_PROMISC);
cue_setmulti(sc);
} else if (ifp->if_flags & IFF_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc->cue_if_flags & IFF_PROMISC) {
CUE_CLRBIT(sc, CUE_ETHCTL, CUE_ETHCTL_PROMISC);
cue_setmulti(sc);
} else if (!(ifp->if_flags & IFF_RUNNING))
cue_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
cue_stop(sc);
}
sc->cue_if_flags = ifp->if_flags;
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
cue_setmulti(sc);
error = 0;
break;
default:
*** Summary *** When a link-layer address changes (e.g., ifconfig ex0 link 02:de:ad:be:ef:02 active), send a gratuitous ARP and/or a Neighbor Advertisement to update the network-/link-layer address bindings on our LAN peers. Refuse a change of ethernet address to the address 00:00:00:00:00:00 or to any multicast/broadcast address. (Thanks matt@.) Reorder ifnet ioctl operations so that driver ioctls may inherit the functions of their "class"---ether_ioctl(), fddi_ioctl(), et cetera---and the class ioctls may inherit from the generic ioctl, ifioctl_common(), but both driver- and class-ioctls may override the generic behavior. Make network drivers share more code. Distinguish a "factory" link-layer address from others for the purposes of both protecting that address from deletion and computing EUI64. Return consistent, appropriate error codes from network drivers. Improve readability. KNF. *** Details *** In if_attach(), always initialize the interface ioctl routine, ifnet->if_ioctl, if the driver has not already initialized it. Delete if_ioctl == NULL tests everywhere else, because it cannot happen. In the ioctl routines of network interfaces, inherit common ioctl behaviors by calling either ifioctl_common() or whichever ioctl routine is appropriate for the class of interface---e.g., ether_ioctl() for ethernets. Stop (ab)using SIOCSIFADDR and start to use SIOCINITIFADDR. In the user->kernel interface, SIOCSIFADDR's argument was an ifreq, but on the protocol->ifnet interface, SIOCSIFADDR's argument was an ifaddr. That was confusing, and it would work against me as I make it possible for a network interface to overload most ioctls. On the protocol->ifnet interface, replace SIOCSIFADDR with SIOCINITIFADDR. In ifioctl(), return EPERM if userland tries to invoke SIOCINITIFADDR. In ifioctl(), give the interface the first shot at handling most interface ioctls, and give the protocol the second shot, instead of the other way around. Finally, let compatibility code (COMPAT_OSOCK) take a shot. Pull device initialization out of switch statements under SIOCINITIFADDR. For example, pull ..._init() out of any switch statement that looks like this: switch (...->sa_family) { case ...: ..._init(); ... break; ... default: ..._init(); ... break; } Rewrite many if-else clauses that handle all permutations of IFF_UP and IFF_RUNNING to use a switch statement, switch (x & (IFF_UP|IFF_RUNNING)) { case 0: ... break; case IFF_RUNNING: ... break; case IFF_UP: ... break; case IFF_UP|IFF_RUNNING: ... break; } unifdef lots of code containing #ifdef FreeBSD, #ifdef NetBSD, and #ifdef SIOCSIFMTU, especially in fwip(4) and in ndis(4). In ipw(4), remove an if_set_sadl() call that is out of place. In nfe(4), reuse the jumbo MTU logic in ether_ioctl(). Let ethernets register a callback for setting h/w state such as promiscuous mode and the multicast filter in accord with a change in the if_flags: ether_set_ifflags_cb() registers a callback that returns ENETRESET if the caller should reset the ethernet by calling if_init(), 0 on success, != 0 on failure. Pull common code from ex(4), gem(4), nfe(4), sip(4), tlp(4), vge(4) into ether_ioctl(), and register if_flags callbacks for those drivers. Return ENOTTY instead of EINVAL for inappropriate ioctls. In zyd(4), use ENXIO instead of ENOTTY to indicate that the device is not any longer attached. Add to if_set_sadl() a boolean 'factory' argument that indicates whether a link-layer address was assigned by the factory or some other source. In a comment, recommend using the factory address for generating an EUI64, and update in6_get_hw_ifid() to prefer a factory address to any other link-layer address. Add a routing message, RTM_LLINFO_UPD, that tells protocols to update the binding of network-layer addresses to link-layer addresses. Implement this message in IPv4 and IPv6 by sending a gratuitous ARP or a neighbor advertisement, respectively. Generate RTM_LLINFO_UPD messages on a change of an interface's link-layer address. In ether_ioctl(), do not let SIOCALIFADDR set a link-layer address that is broadcast/multicast or equal to 00:00:00:00:00:00. Make ether_ioctl() call ifioctl_common() to handle ioctls that it does not understand. In gif(4), initialize if_softc and use it, instead of assuming that the gif_softc and ifp overlap. Let ifioctl_common() handle SIOCGIFADDR. Sprinkle rtcache_invariants(), which checks on DIAGNOSTIC kernels that certain invariants on a struct route are satisfied. In agr(4), rewrite agr_ioctl_filter() to be a bit more explicit about the ioctls that we do not allow on an agr(4) member interface. bzero -> memset. Delete unnecessary casts to void *. Use sockaddr_in_init() and sockaddr_in6_init(). Compare pointers with NULL instead of "testing truth". Replace some instances of (type *)0 with NULL. Change some K&R prototypes to ANSI C, and join lines.
2008-11-07 03:20:01 +03:00
error = ether_ioctl(ifp, command, data);
break;
}
splx(s);
return error;
}
Static void
cue_watchdog(struct ifnet *ifp)
{
struct cue_softc *sc = ifp->if_softc;
2001-01-21 19:06:48 +03:00
struct cue_chain *c;
usbd_status stat;
int s;
DPRINTFN(5,("%s: %s: enter\n", device_xname(sc->cue_dev), __func__));
2000-02-02 14:42:29 +03:00
if (sc->cue_dying)
return;
ifp->if_oerrors++;
printf("%s: watchdog timeout\n", device_xname(sc->cue_dev));
2001-01-21 19:06:48 +03:00
s = splusb();
c = &sc->cue_cdata.cue_tx_chain[0];
usbd_get_xfer_status(c->cue_xfer, NULL, NULL, NULL, &stat);
cue_txeof(c->cue_xfer, c, stat);
2000-12-14 10:51:36 +03:00
if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
cue_start(ifp);
2001-01-21 19:06:48 +03:00
splx(s);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
Static void
cue_stop(struct cue_softc *sc)
{
usbd_status err;
struct ifnet *ifp;
int i;
DPRINTFN(10,("%s: %s: enter\n", device_xname(sc->cue_dev),__func__));
2000-03-24 16:08:28 +03:00
ifp = GET_IFP(sc);
ifp->if_timer = 0;
2000-03-24 16:08:28 +03:00
cue_csr_write_1(sc, CUE_ETHCTL, 0);
cue_reset(sc);
callout_stop(&sc->cue_stat_ch);
/* Stop transfers. */
if (sc->cue_ep[CUE_ENDPT_RX] != NULL) {
err = usbd_abort_pipe(sc->cue_ep[CUE_ENDPT_RX]);
if (err) {
printf("%s: abort rx pipe failed: %s\n",
device_xname(sc->cue_dev), usbd_errstr(err));
}
}
if (sc->cue_ep[CUE_ENDPT_TX] != NULL) {
err = usbd_abort_pipe(sc->cue_ep[CUE_ENDPT_TX]);
if (err) {
printf("%s: abort tx pipe failed: %s\n",
device_xname(sc->cue_dev), usbd_errstr(err));
}
}
if (sc->cue_ep[CUE_ENDPT_INTR] != NULL) {
err = usbd_abort_pipe(sc->cue_ep[CUE_ENDPT_INTR]);
if (err) {
printf("%s: abort intr pipe failed: %s\n",
device_xname(sc->cue_dev), usbd_errstr(err));
}
}
/* Free RX resources. */
for (i = 0; i < CUE_RX_LIST_CNT; i++) {
if (sc->cue_cdata.cue_rx_chain[i].cue_xfer != NULL) {
usbd_destroy_xfer(sc->cue_cdata.cue_rx_chain[i].cue_xfer);
sc->cue_cdata.cue_rx_chain[i].cue_xfer = NULL;
}
}
/* Free TX resources. */
for (i = 0; i < CUE_TX_LIST_CNT; i++) {
if (sc->cue_cdata.cue_tx_chain[i].cue_mbuf != NULL) {
m_freem(sc->cue_cdata.cue_tx_chain[i].cue_mbuf);
sc->cue_cdata.cue_tx_chain[i].cue_mbuf = NULL;
}
if (sc->cue_cdata.cue_tx_chain[i].cue_xfer != NULL) {
usbd_destroy_xfer(sc->cue_cdata.cue_tx_chain[i].cue_xfer);
sc->cue_cdata.cue_tx_chain[i].cue_xfer = NULL;
}
}
/* Stop transfers. */
if (sc->cue_ep[CUE_ENDPT_RX] != NULL) {
err = usbd_close_pipe(sc->cue_ep[CUE_ENDPT_RX]);
if (err) {
printf("%s: close rx pipe failed: %s\n",
device_xname(sc->cue_dev), usbd_errstr(err));
}
sc->cue_ep[CUE_ENDPT_RX] = NULL;
}
if (sc->cue_ep[CUE_ENDPT_TX] != NULL) {
err = usbd_close_pipe(sc->cue_ep[CUE_ENDPT_TX]);
if (err) {
printf("%s: close tx pipe failed: %s\n",
device_xname(sc->cue_dev), usbd_errstr(err));
}
sc->cue_ep[CUE_ENDPT_TX] = NULL;
}
if (sc->cue_ep[CUE_ENDPT_INTR] != NULL) {
err = usbd_close_pipe(sc->cue_ep[CUE_ENDPT_INTR]);
if (err) {
printf("%s: close intr pipe failed: %s\n",
device_xname(sc->cue_dev), usbd_errstr(err));
}
sc->cue_ep[CUE_ENDPT_INTR] = NULL;
}
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
}