NetBSD/sys/dev/usb/if_rum.c

2321 lines
58 KiB
C
Raw Normal View History

2007-12-09 23:27:42 +03:00
/* $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $ */
/* $NetBSD: if_rum.c,v 1.69 2020/03/15 23:04:50 thorpej Exp $ */
/*-
* Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
* Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*-
* Ralink Technology RT2501USB/RT2601USB chipset driver
* http://www.ralinktech.com.tw/
*/
2006-11-01 11:39:25 +03:00
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.69 2020/03/15 23:04:50 thorpej Exp $");
2016-11-25 15:56:29 +03:00
#ifdef _KERNEL_OPT
#include "opt_usb.h"
#endif
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
2011-08-23 16:53:29 +04:00
#include <sys/module.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/bus.h>
#include <machine/endian.h>
#include <sys/intr.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <net80211/ieee80211_netbsd.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_amrr.h>
#include <net80211/ieee80211_radiotap.h>
#include <dev/firmload.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbdevs.h>
#include <dev/usb/if_rumreg.h>
#include <dev/usb/if_rumvar.h>
#ifdef RUM_DEBUG
#define DPRINTF(x) do { if (rum_debug) printf x; } while (0)
#define DPRINTFN(n, x) do { if (rum_debug >= (n)) printf x; } while (0)
int rum_debug = 1;
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
/* various supported device vendors/products */
static const struct usb_devno rum_devs[] = {
{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM },
{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 },
{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 },
{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 },
{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 },
{ USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO },
{ USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_2 },
{ USB_VENDOR_ASUSTEK, USB_PRODUCT_ASUSTEK_WL167G_3 },
{ USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A },
{ USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 },
2012-09-23 05:08:17 +04:00
{ USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050C },
{ USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB200 },
{ USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
{ USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
{ USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_C54RU2 },
2012-09-23 05:08:17 +04:00
{ USB_VENDOR_CONCEPTRONIC, USB_PRODUCT_CONCEPTRONIC_RT2573 },
{ USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL },
2008-10-21 16:20:44 +04:00
{ USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX },
{ USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F },
{ USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 },
{ USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 },
{ USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 },
{ USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA110 },
{ USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111 },
2012-09-23 05:08:17 +04:00
{ USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7318 },
{ USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7618 },
{ USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS },
{ USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS },
{ USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 },
{ USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 },
{ USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
{ USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
{ USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_RT2573 },
{ USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP },
{ USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP },
2012-09-23 05:08:17 +04:00
{ USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HG },
{ USB_VENDOR_MELCO, USB_PRODUCT_MELCO_WLIUCG },
{ USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573 },
{ USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 },
{ USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 },
{ USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 },
{ USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 },
{ USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP },
{ USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 },
{ USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM },
{ USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 },
{ USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 },
{ USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3 },
{ USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 },
{ USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 },
{ USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 },
{ USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 },
2012-09-23 05:08:17 +04:00
{ USB_VENDOR_SPARKLAN, USB_PRODUCT_SPARKLAN_RT2573 },
{ USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 },
{ USB_VENDOR_SYNET, USB_PRODUCT_SYNET_MWP54SS },
2012-09-23 05:08:17 +04:00
{ USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RT2573 }
};
2011-02-22 02:50:42 +03:00
static int rum_attachhook(void *);
static int rum_alloc_tx_list(struct rum_softc *);
static void rum_free_tx_list(struct rum_softc *);
static int rum_alloc_rx_list(struct rum_softc *);
static void rum_free_rx_list(struct rum_softc *);
static int rum_media_change(struct ifnet *);
static void rum_next_scan(void *);
static void rum_task(void *);
static int rum_newstate(struct ieee80211com *,
enum ieee80211_state, int);
static void rum_txeof(struct usbd_xfer *, void *,
usbd_status);
static void rum_rxeof(struct usbd_xfer *, void *,
usbd_status);
2011-02-22 02:50:42 +03:00
static uint8_t rum_rxrate(const struct rum_rx_desc *);
static int rum_ack_rate(struct ieee80211com *, int);
static uint16_t rum_txtime(int, int, uint32_t);
static uint8_t rum_plcp_signal(int);
static void rum_setup_tx_desc(struct rum_softc *,
struct rum_tx_desc *, uint32_t, uint16_t, int,
int);
2011-02-22 02:50:42 +03:00
static int rum_tx_data(struct rum_softc *, struct mbuf *,
struct ieee80211_node *);
2011-02-22 02:50:42 +03:00
static void rum_start(struct ifnet *);
static void rum_watchdog(struct ifnet *);
static int rum_ioctl(struct ifnet *, u_long, void *);
static void rum_eeprom_read(struct rum_softc *, uint16_t, void *,
int);
2011-02-22 02:50:42 +03:00
static uint32_t rum_read(struct rum_softc *, uint16_t);
static void rum_read_multi(struct rum_softc *, uint16_t, void *,
int);
2011-02-22 02:50:42 +03:00
static void rum_write(struct rum_softc *, uint16_t, uint32_t);
static void rum_write_multi(struct rum_softc *, uint16_t, void *,
size_t);
2011-02-22 02:50:42 +03:00
static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
static uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
static void rum_select_antenna(struct rum_softc *);
static void rum_enable_mrr(struct rum_softc *);
static void rum_set_txpreamble(struct rum_softc *);
static void rum_set_basicrates(struct rum_softc *);
static void rum_select_band(struct rum_softc *,
struct ieee80211_channel *);
2011-02-22 02:50:42 +03:00
static void rum_set_chan(struct rum_softc *,
struct ieee80211_channel *);
2011-02-22 02:50:42 +03:00
static void rum_enable_tsf_sync(struct rum_softc *);
static void rum_update_slot(struct rum_softc *);
static void rum_set_bssid(struct rum_softc *, const uint8_t *);
static void rum_set_macaddr(struct rum_softc *, const uint8_t *);
static void rum_update_promisc(struct rum_softc *);
static const char *rum_get_rf(int);
static void rum_read_eeprom(struct rum_softc *);
static int rum_bbp_init(struct rum_softc *);
static int rum_init(struct ifnet *);
static void rum_stop(struct ifnet *, int);
static int rum_load_microcode(struct rum_softc *, const u_char *,
size_t);
2011-02-22 02:50:42 +03:00
static int rum_prepare_beacon(struct rum_softc *);
static void rum_newassoc(struct ieee80211_node *, int);
static void rum_amrr_start(struct rum_softc *,
struct ieee80211_node *);
2011-02-22 02:50:42 +03:00
static void rum_amrr_timeout(void *);
static void rum_amrr_update(struct usbd_xfer *, void *,
usbd_status);
static const struct {
uint32_t reg;
uint32_t val;
} rum_def_mac[] = {
RT2573_DEF_MAC
};
static const struct {
uint8_t reg;
uint8_t val;
} rum_def_bbp[] = {
RT2573_DEF_BBP
};
static const struct rfprog {
uint8_t chan;
uint32_t r1, r2, r3, r4;
} rum_rf5226[] = {
RT2573_RF5226
}, rum_rf5225[] = {
RT2573_RF5225
};
2011-02-22 02:50:42 +03:00
static int rum_match(device_t, cfdata_t, void *);
static void rum_attach(device_t, device_t, void *);
static int rum_detach(device_t, int);
static int rum_activate(device_t, enum devact);
CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach,
rum_detach, rum_activate);
2011-02-22 02:50:42 +03:00
static int
rum_match(device_t parent, cfdata_t match, void *aux)
{
struct usb_attach_arg *uaa = aux;
return (usb_lookup(rum_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
}
2011-02-22 02:50:42 +03:00
static int
rum_attachhook(void *xsc)
{
struct rum_softc *sc = xsc;
firmware_handle_t fwh;
const char *name = "rum-rt2573";
u_char *ucode;
size_t size;
int error;
if ((error = firmware_open("rum", name, &fwh)) != 0) {
printf("%s: failed firmware_open of file %s (error %d)\n",
device_xname(sc->sc_dev), name, error);
return error;
}
size = firmware_get_size(fwh);
ucode = firmware_malloc(size);
if (ucode == NULL) {
printf("%s: failed to allocate firmware memory\n",
device_xname(sc->sc_dev));
firmware_close(fwh);
2009-01-03 06:43:21 +03:00
return ENOMEM;
}
error = firmware_read(fwh, 0, ucode, size);
firmware_close(fwh);
if (error != 0) {
printf("%s: failed to read firmware (error %d)\n",
device_xname(sc->sc_dev), error);
firmware_free(ucode, size);
return error;
}
if (rum_load_microcode(sc, ucode, size) != 0) {
printf("%s: could not load 8051 microcode\n",
device_xname(sc->sc_dev));
firmware_free(ucode, size);
return ENXIO;
}
firmware_free(ucode, size);
sc->sc_flags |= RT2573_FWLOADED;
return 0;
}
2011-02-22 02:50:42 +03:00
static void
rum_attach(device_t parent, device_t self, void *aux)
{
struct rum_softc *sc = device_private(self);
struct usb_attach_arg *uaa = aux;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
usb_interface_descriptor_t *id;
usb_endpoint_descriptor_t *ed;
usbd_status error;
char *devinfop;
int i, ntries;
uint32_t tmp;
sc->sc_dev = self;
sc->sc_udev = uaa->uaa_device;
sc->sc_flags = 0;
aprint_naive("\n");
aprint_normal("\n");
devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
aprint_normal_dev(self, "%s\n", devinfop);
usbd_devinfo_free(devinfop);
error = usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0);
if (error != 0) {
aprint_error_dev(self, "failed to set configuration"
", err=%s\n", usbd_errstr(error));
return;
}
/* get the first interface handle */
error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
&sc->sc_iface);
if (error != 0) {
aprint_error_dev(self, "could not get interface handle\n");
return;
}
/*
* Find endpoints.
*/
id = usbd_get_interface_descriptor(sc->sc_iface);
sc->sc_rx_no = sc->sc_tx_no = -1;
for (i = 0; i < id->bNumEndpoints; i++) {
ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
if (ed == NULL) {
aprint_error_dev(self,
"no endpoint descriptor for iface %d\n", i);
return;
}
if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
sc->sc_rx_no = ed->bEndpointAddress;
else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
sc->sc_tx_no = ed->bEndpointAddress;
}
if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
aprint_error_dev(self, "missing endpoint\n");
return;
}
usb_init_task(&sc->sc_task, rum_task, sc, 0);
callout_init(&sc->sc_scan_ch, 0);
sc->amrr.amrr_min_success_threshold = 1;
sc->amrr.amrr_max_success_threshold = 10;
callout_init(&sc->sc_amrr_ch, 0);
/* retrieve RT2573 rev. no */
for (ntries = 0; ntries < 1000; ntries++) {
if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
break;
DELAY(1000);
}
if (ntries == 1000) {
aprint_error_dev(self, "timeout waiting for chip to settle\n");
return;
}
/* retrieve MAC address and various other things from EEPROM */
rum_read_eeprom(sc);
aprint_normal_dev(self,
"MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
sc->macbbp_rev, tmp,
rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
ic->ic_state = IEEE80211_S_INIT;
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_IBSS | /* IBSS mode supported */
IEEE80211_C_MONITOR | /* monitor mode supported */
IEEE80211_C_HOSTAP | /* HostAp mode supported */
IEEE80211_C_TXPMGT | /* tx power management */
IEEE80211_C_SHPREAMBLE | /* short preamble supported */
IEEE80211_C_SHSLOT | /* short slot time supported */
IEEE80211_C_WPA; /* 802.11i */
if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
/* set supported .11a rates */
ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
/* set supported .11a channels */
for (i = 34; i <= 46; i += 4) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
}
for (i = 36; i <= 64; i += 4) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
}
for (i = 100; i <= 140; i += 4) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
}
for (i = 149; i <= 165; i += 4) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
}
}
/* set supported .11b and .11g rates */
ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
/* set supported .11b and .11g channels (1 through 14) */
for (i = 1; i <= 14; i++) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
ic->ic_channels[i].ic_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
}
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = rum_init;
ifp->if_ioctl = rum_ioctl;
ifp->if_start = rum_start;
ifp->if_watchdog = rum_watchdog;
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
IFQ_SET_READY(&ifp->if_snd);
memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
if_attach(ifp);
ieee80211_ifattach(ic);
ic->ic_newassoc = rum_newassoc;
/* override state transition machine */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = rum_newstate;
/* XXX media locking needs revisiting */
mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTUSB);
ieee80211_media_init_with_lock(ic,
rum_media_change, ieee80211_media_status, &sc->sc_media_mtx);
bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
&sc->sc_drvbpf);
sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof(sc->sc_txtapu);
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
ieee80211_announce(ic);
usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
2015-04-08 15:38:13 +03:00
if (!pmf_device_register(self, NULL, NULL))
aprint_error_dev(self, "couldn't establish power handler\n");
return;
}
2011-02-22 02:50:42 +03:00
static int
rum_detach(device_t self, int flags)
{
struct rum_softc *sc = device_private(self);
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
int s;
if (!ifp->if_softc)
return 0;
2015-04-08 15:38:13 +03:00
pmf_device_deregister(self);
s = splusb();
rum_stop(ifp, 1);
callout_halt(&sc->sc_scan_ch, NULL);
callout_halt(&sc->sc_amrr_ch, NULL);
usb_rem_task_wait(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER, NULL);
bpf_detach(ifp);
ieee80211_ifdetach(ic); /* free all nodes */
if_detach(ifp);
splx(s);
usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
return 0;
}
2011-02-22 02:50:42 +03:00
static int
rum_alloc_tx_list(struct rum_softc *sc)
{
struct rum_tx_data *data;
int i, error;
2011-02-22 02:50:42 +03:00
sc->tx_cur = sc->tx_queued = 0;
for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
data = &sc->tx_data[i];
data->sc = sc;
error = usbd_create_xfer(sc->sc_tx_pipeh,
RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN,
USBD_FORCE_SHORT_XFER, 0, &data->xfer);
if (error) {
printf("%s: could not allocate tx xfer\n",
device_xname(sc->sc_dev));
goto fail;
}
data->buf = usbd_get_buffer(data->xfer);
/* clean Tx descriptor */
2009-03-18 19:00:08 +03:00
memset(data->buf, 0, RT2573_TX_DESC_SIZE);
}
return 0;
fail: rum_free_tx_list(sc);
return error;
}
2011-02-22 02:50:42 +03:00
static void
rum_free_tx_list(struct rum_softc *sc)
{
struct rum_tx_data *data;
int i;
for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
data = &sc->tx_data[i];
if (data->xfer != NULL) {
usbd_destroy_xfer(data->xfer);
data->xfer = NULL;
}
if (data->ni != NULL) {
ieee80211_free_node(data->ni);
data->ni = NULL;
}
}
}
2011-02-22 02:50:42 +03:00
static int
rum_alloc_rx_list(struct rum_softc *sc)
{
struct rum_rx_data *data;
int i, error;
for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
data = &sc->rx_data[i];
data->sc = sc;
error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
0, 0, &data->xfer);
if (error) {
printf("%s: could not allocate rx xfer\n",
device_xname(sc->sc_dev));
goto fail;
}
MGETHDR(data->m, M_DONTWAIT, MT_DATA);
if (data->m == NULL) {
printf("%s: could not allocate rx mbuf\n",
device_xname(sc->sc_dev));
error = ENOMEM;
goto fail;
}
MCLGET(data->m, M_DONTWAIT);
if (!(data->m->m_flags & M_EXT)) {
printf("%s: could not allocate rx mbuf cluster\n",
device_xname(sc->sc_dev));
error = ENOMEM;
goto fail;
}
data->buf = mtod(data->m, uint8_t *);
}
return 0;
fail: rum_free_rx_list(sc);
return error;
}
2011-02-22 02:50:42 +03:00
static void
rum_free_rx_list(struct rum_softc *sc)
{
struct rum_rx_data *data;
int i;
for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
data = &sc->rx_data[i];
if (data->xfer != NULL) {
usbd_destroy_xfer(data->xfer);
data->xfer = NULL;
}
if (data->m != NULL) {
m_freem(data->m);
data->m = NULL;
}
}
}
2011-02-22 02:50:42 +03:00
static int
rum_media_change(struct ifnet *ifp)
{
int error;
error = ieee80211_media_change(ifp);
if (error != ENETRESET)
return error;
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
rum_init(ifp);
return 0;
}
/*
* This function is called periodically (every 200ms) during scanning to
* switch from one channel to another.
*/
2011-02-22 02:50:42 +03:00
static void
rum_next_scan(void *arg)
{
struct rum_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
2011-02-22 02:50:42 +03:00
int s;
2011-02-22 02:50:42 +03:00
s = splnet();
if (ic->ic_state == IEEE80211_S_SCAN)
ieee80211_next_scan(ic);
2011-02-22 02:50:42 +03:00
splx(s);
}
2011-02-22 02:50:42 +03:00
static void
rum_task(void *arg)
{
struct rum_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
enum ieee80211_state ostate;
struct ieee80211_node *ni;
uint32_t tmp;
ostate = ic->ic_state;
switch (sc->sc_state) {
case IEEE80211_S_INIT:
if (ostate == IEEE80211_S_RUN) {
/* abort TSF synchronization */
tmp = rum_read(sc, RT2573_TXRX_CSR9);
rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
}
break;
case IEEE80211_S_SCAN:
rum_set_chan(sc, ic->ic_curchan);
callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
break;
case IEEE80211_S_AUTH:
rum_set_chan(sc, ic->ic_curchan);
break;
case IEEE80211_S_ASSOC:
rum_set_chan(sc, ic->ic_curchan);
break;
case IEEE80211_S_RUN:
rum_set_chan(sc, ic->ic_curchan);
ni = ic->ic_bss;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
rum_update_slot(sc);
rum_enable_mrr(sc);
rum_set_txpreamble(sc);
rum_set_basicrates(sc);
rum_set_bssid(sc, ni->ni_bssid);
}
if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
ic->ic_opmode == IEEE80211_M_IBSS)
rum_prepare_beacon(sc);
if (ic->ic_opmode != IEEE80211_M_MONITOR)
rum_enable_tsf_sync(sc);
if (ic->ic_opmode == IEEE80211_M_STA) {
/* fake a join to init the tx rate */
rum_newassoc(ic->ic_bss, 1);
/* enable automatic rate adaptation in STA mode */
if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
rum_amrr_start(sc, ni);
}
break;
}
2011-02-22 02:50:42 +03:00
sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
}
2011-02-22 02:50:42 +03:00
static int
rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct rum_softc *sc = ic->ic_ifp->if_softc;
/*
* XXXSMP: This does not wait for the task, if it is in flight,
* to complete. If this code works at all, it must rely on the
* kernel lock to serialize with the USB task thread.
*/
usb_rem_task(sc->sc_udev, &sc->sc_task);
callout_stop(&sc->sc_scan_ch);
callout_stop(&sc->sc_amrr_ch);
/* do it in a process context */
sc->sc_state = nstate;
2011-02-22 02:50:42 +03:00
sc->sc_arg = arg;
usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
return 0;
}
/* quickly determine if a given rate is CCK or OFDM */
#define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
#define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */
#define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */
2011-02-22 02:50:42 +03:00
static void
rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
{
struct rum_tx_data *data = priv;
struct rum_softc *sc = data->sc;
struct ifnet *ifp = &sc->sc_if;
int s;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
return;
printf("%s: could not transmit buffer: %s\n",
device_xname(sc->sc_dev), usbd_errstr(status));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
2020-01-29 09:35:28 +03:00
if_statinc(ifp, if_oerrors);
return;
}
s = splnet();
ieee80211_free_node(data->ni);
data->ni = NULL;
sc->tx_queued--;
2020-01-29 09:35:28 +03:00
if_statinc(ifp, if_opackets);
DPRINTFN(10, ("tx done\n"));
sc->sc_tx_timer = 0;
ifp->if_flags &= ~IFF_OACTIVE;
rum_start(ifp);
splx(s);
}
2011-02-22 02:50:42 +03:00
static void
rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
{
struct rum_rx_data *data = priv;
struct rum_softc *sc = data->sc;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct rum_rx_desc *desc;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct mbuf *mnew, *m;
int s, len;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
return;
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
goto skip;
}
usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
if (len < (int)(RT2573_RX_DESC_SIZE +
sizeof(struct ieee80211_frame_min))) {
DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
len));
2020-01-29 09:35:28 +03:00
if_statinc(ifp, if_ierrors);
goto skip;
}
desc = (struct rum_rx_desc *)data->buf;
if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
/*
* This should not happen since we did not request to receive
* those frames when we filled RT2573_TXRX_CSR0.
*/
DPRINTFN(5, ("CRC error\n"));
2020-01-29 09:35:28 +03:00
if_statinc(ifp, if_ierrors);
goto skip;
}
MGETHDR(mnew, M_DONTWAIT, MT_DATA);
if (mnew == NULL) {
printf("%s: could not allocate rx mbuf\n",
device_xname(sc->sc_dev));
2020-01-29 09:35:28 +03:00
if_statinc(ifp, if_ierrors);
goto skip;
}
MCLGET(mnew, M_DONTWAIT);
if (!(mnew->m_flags & M_EXT)) {
printf("%s: could not allocate rx mbuf cluster\n",
device_xname(sc->sc_dev));
m_freem(mnew);
2020-01-29 09:35:28 +03:00
if_statinc(ifp, if_ierrors);
goto skip;
}
m = data->m;
data->m = mnew;
data->buf = mtod(data->m, uint8_t *);
/* finalize mbuf */
m_set_rcvif(m, ifp);
m->m_data = (void *)(desc + 1);
m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
s = splnet();
if (sc->sc_drvbpf != NULL) {
struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
tap->wr_rate = rum_rxrate(desc);
tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
tap->wr_antenna = sc->rx_ant;
tap->wr_antsignal = desc->rssi;
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
}
wh = mtod(m, struct ieee80211_frame *);
ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
/* send the frame to the 802.11 layer */
ieee80211_input(ic, m, ni, desc->rssi, 0);
/* node is no longer needed */
ieee80211_free_node(ni);
splx(s);
DPRINTFN(15, ("rx done\n"));
skip: /* setup a new transfer */
usbd_setup_xfer(xfer, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK,
USBD_NO_TIMEOUT, rum_rxeof);
usbd_transfer(xfer);
}
/*
* This function is only used by the Rx radiotap code. It returns the rate at
* which a given frame was received.
*/
2011-02-22 02:50:42 +03:00
static uint8_t
rum_rxrate(const struct rum_rx_desc *desc)
{
if (le32toh(desc->flags) & RT2573_RX_OFDM) {
/* reverse function of rum_plcp_signal */
switch (desc->rate) {
case 0xb: return 12;
case 0xf: return 18;
case 0xa: return 24;
case 0xe: return 36;
case 0x9: return 48;
case 0xd: return 72;
case 0x8: return 96;
case 0xc: return 108;
}
} else {
if (desc->rate == 10)
return 2;
if (desc->rate == 20)
return 4;
if (desc->rate == 55)
return 11;
if (desc->rate == 110)
return 22;
}
return 2; /* should not get there */
}
/*
* Return the expected ack rate for a frame transmitted at rate `rate'.
* XXX: this should depend on the destination node basic rate set.
*/
2011-02-22 02:50:42 +03:00
static int
rum_ack_rate(struct ieee80211com *ic, int rate)
{
switch (rate) {
/* CCK rates */
case 2:
return 2;
case 4:
case 11:
case 22:
return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
/* OFDM rates */
case 12:
case 18:
return 12;
case 24:
case 36:
return 24;
case 48:
case 72:
case 96:
case 108:
return 48;
}
/* default to 1Mbps */
return 2;
}
/*
* Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
* The function automatically determines the operating mode depending on the
* given rate. `flags' indicates whether short preamble is in use or not.
*/
2011-02-22 02:50:42 +03:00
static uint16_t
rum_txtime(int len, int rate, uint32_t flags)
{
uint16_t txtime;
if (RUM_RATE_IS_OFDM(rate)) {
/* IEEE Std 802.11a-1999, pp. 37 */
txtime = (8 + 4 * len + 3 + rate - 1) / rate;
txtime = 16 + 4 + 4 * txtime + 6;
} else {
/* IEEE Std 802.11b-1999, pp. 28 */
txtime = (16 * len + rate - 1) / rate;
if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
txtime += 72 + 24;
else
txtime += 144 + 48;
}
return txtime;
}
2011-02-22 02:50:42 +03:00
static uint8_t
rum_plcp_signal(int rate)
{
switch (rate) {
/* CCK rates (returned values are device-dependent) */
case 2: return 0x0;
case 4: return 0x1;
case 11: return 0x2;
case 22: return 0x3;
/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
case 12: return 0xb;
case 18: return 0xf;
case 24: return 0xa;
case 36: return 0xe;
case 48: return 0x9;
case 72: return 0xd;
case 96: return 0x8;
case 108: return 0xc;
/* unsupported rates (should not get there) */
default: return 0xff;
}
}
2011-02-22 02:50:42 +03:00
static void
rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
uint32_t flags, uint16_t xflags, int len, int rate)
{
struct ieee80211com *ic = &sc->sc_ic;
uint16_t plcp_length;
int remainder;
desc->flags = htole32(flags);
desc->flags |= htole32(RT2573_TX_VALID);
desc->flags |= htole32(len << 16);
desc->xflags = htole16(xflags);
desc->wme = htole16(
RT2573_QID(0) |
RT2573_AIFSN(2) |
RT2573_LOGCWMIN(4) |
RT2573_LOGCWMAX(10));
/* setup PLCP fields */
desc->plcp_signal = rum_plcp_signal(rate);
desc->plcp_service = 4;
len += IEEE80211_CRC_LEN;
if (RUM_RATE_IS_OFDM(rate)) {
desc->flags |= htole32(RT2573_TX_OFDM);
plcp_length = len & 0xfff;
desc->plcp_length_hi = plcp_length >> 6;
desc->plcp_length_lo = plcp_length & 0x3f;
} else {
plcp_length = (16 * len + rate - 1) / rate;
if (rate == 22) {
remainder = (16 * len) % 22;
if (remainder != 0 && remainder < 7)
desc->plcp_service |= RT2573_PLCP_LENGEXT;
}
desc->plcp_length_hi = plcp_length >> 8;
desc->plcp_length_lo = plcp_length & 0xff;
if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
desc->plcp_signal |= 0x08;
}
}
#define RUM_TX_TIMEOUT 5000
2011-02-22 02:50:42 +03:00
static int
rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct rum_tx_desc *desc;
struct rum_tx_data *data;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
uint32_t flags = 0;
uint16_t dur;
usbd_status error;
2011-02-22 02:50:42 +03:00
int rate, xferlen, pktlen, needrts = 0, needcts = 0;
wh = mtod(m0, struct ieee80211_frame *);
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ic, ni, m0);
if (k == NULL) {
m_freem(m0);
return ENOBUFS;
}
2011-02-22 02:50:42 +03:00
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
2011-02-22 02:50:42 +03:00
/* compute actual packet length (including CRC and crypto overhead) */
pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2011-02-22 02:50:42 +03:00
/* pickup a rate */
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_MGT)) {
/* mgmt/multicast frames are sent at the lowest avail. rate */
rate = ni->ni_rates.rs_rates[0];
} else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
} else
rate = ni->ni_rates.rs_rates[ni->ni_txrate];
if (rate == 0)
rate = 2; /* XXX should not happen */
rate &= IEEE80211_RATE_VAL;
2011-02-22 02:50:42 +03:00
/* check if RTS/CTS or CTS-to-self protection must be used */
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
/* multicast frames are not sent at OFDM rates in 802.11b/g */
if (pktlen > ic->ic_rtsthreshold) {
needrts = 1; /* RTS/CTS based on frame length */
} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
RUM_RATE_IS_OFDM(rate)) {
if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
needcts = 1; /* CTS-to-self */
else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
needrts = 1; /* RTS/CTS */
}
}
2011-02-22 02:50:42 +03:00
if (needrts || needcts) {
struct mbuf *mprot;
int protrate, ackrate;
2011-02-22 02:50:42 +03:00
protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
ackrate = rum_ack_rate(ic, rate);
2011-02-22 02:50:42 +03:00
dur = rum_txtime(pktlen, rate, ic->ic_flags) +
rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
2 * sc->sifs;
if (needrts) {
dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
protrate), ic->ic_flags) + sc->sifs;
mprot = ieee80211_get_rts(ic, wh, dur);
} else {
mprot = ieee80211_get_cts_to_self(ic, dur);
}
if (mprot == NULL) {
aprint_error_dev(sc->sc_dev,
"couldn't allocate protection frame\n");
m_freem(m0);
return ENOBUFS;
}
2011-02-22 02:50:42 +03:00
data = &sc->tx_data[sc->tx_cur];
desc = (struct rum_tx_desc *)data->buf;
2011-02-22 02:50:42 +03:00
/* avoid multiple free() of the same node for each fragment */
data->ni = ieee80211_ref_node(ni);
2011-02-22 02:50:42 +03:00
m_copydata(mprot, 0, mprot->m_pkthdr.len,
data->buf + RT2573_TX_DESC_SIZE);
rum_setup_tx_desc(sc, desc,
(needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
0, mprot->m_pkthdr.len, protrate);
2011-02-22 02:50:42 +03:00
/* no roundup necessary here */
xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
2011-02-22 02:50:42 +03:00
/* XXX may want to pass the protection frame to BPF */
2011-02-22 02:50:42 +03:00
/* mbuf is no longer needed */
m_freem(mprot);
usbd_setup_xfer(data->xfer, data, data->buf,
xferlen, USBD_FORCE_SHORT_XFER,
2011-02-22 02:50:42 +03:00
RUM_TX_TIMEOUT, rum_txeof);
error = usbd_transfer(data->xfer);
if (error != USBD_NORMAL_COMPLETION &&
error != USBD_IN_PROGRESS) {
m_freem(m0);
2011-02-22 02:50:42 +03:00
return error;
}
2011-02-22 02:50:42 +03:00
sc->tx_queued++;
sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
}
2011-02-22 02:50:42 +03:00
data = &sc->tx_data[sc->tx_cur];
desc = (struct rum_tx_desc *)data->buf;
data->ni = ni;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
flags |= RT2573_TX_NEED_ACK;
dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
ic->ic_flags) + sc->sifs;
*(uint16_t *)wh->i_dur = htole16(dur);
2011-02-22 02:50:42 +03:00
/* tell hardware to set timestamp in probe responses */
if ((wh->i_fc[0] &
(IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
(IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
flags |= RT2573_TX_TIMESTAMP;
}
if (sc->sc_drvbpf != NULL) {
struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
tap->wt_antenna = sc->tx_ant;
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
}
m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
/* align end on a 4-bytes boundary */
xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
/*
* No space left in the last URB to store the extra 4 bytes, force
* sending of another URB.
*/
if ((xferlen % 64) == 0)
xferlen += 4;
DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
(size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
rate, xferlen));
/* mbuf is no longer needed */
m_freem(m0);
usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
USBD_FORCE_SHORT_XFER, RUM_TX_TIMEOUT, rum_txeof);
error = usbd_transfer(data->xfer);
if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
return error;
sc->tx_queued++;
2011-02-22 02:50:42 +03:00
sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
return 0;
}
2011-02-22 02:50:42 +03:00
static void
rum_start(struct ifnet *ifp)
{
struct rum_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ether_header *eh;
struct ieee80211_node *ni;
struct mbuf *m0;
2011-02-22 02:50:42 +03:00
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
for (;;) {
IF_POLL(&ic->ic_mgtq, m0);
if (m0 != NULL) {
2011-02-22 02:50:42 +03:00
if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
IF_DEQUEUE(&ic->ic_mgtq, m0);
2016-05-26 08:01:11 +03:00
ni = M_GETCTX(m0, struct ieee80211_node *);
M_CLEARCTX(m0);
bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2011-02-22 02:50:42 +03:00
if (rum_tx_data(sc, m0, ni) != 0)
break;
} else {
if (ic->ic_state != IEEE80211_S_RUN)
break;
IFQ_POLL(&ifp->if_snd, m0);
if (m0 == NULL)
break;
2011-02-22 02:50:42 +03:00
if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
IFQ_DEQUEUE(&ifp->if_snd, m0);
if (m0->m_len < (int)sizeof(struct ether_header) &&
!(m0 = m_pullup(m0, sizeof(struct ether_header))))
continue;
eh = mtod(m0, struct ether_header *);
ni = ieee80211_find_txnode(ic, eh->ether_dhost);
if (ni == NULL) {
m_freem(m0);
continue;
}
bpf_mtap(ifp, m0, BPF_D_OUT);
m0 = ieee80211_encap(ic, m0, ni);
if (m0 == NULL) {
ieee80211_free_node(ni);
continue;
}
bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
if (rum_tx_data(sc, m0, ni) != 0) {
ieee80211_free_node(ni);
2020-01-29 09:35:28 +03:00
if_statinc(ifp, if_oerrors);
break;
}
}
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
}
}
2011-02-22 02:50:42 +03:00
static void
rum_watchdog(struct ifnet *ifp)
{
struct rum_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
ifp->if_timer = 0;
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
printf("%s: device timeout\n", device_xname(sc->sc_dev));
/*rum_init(ifp); XXX needs a process context! */
2020-01-29 09:35:28 +03:00
if_statinc(ifp, if_oerrors);
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(ic);
}
2011-02-22 02:50:42 +03:00
static int
rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
#define IS_RUNNING(ifp) \
(((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
struct rum_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFFLAGS:
*** Summary *** When a link-layer address changes (e.g., ifconfig ex0 link 02:de:ad:be:ef:02 active), send a gratuitous ARP and/or a Neighbor Advertisement to update the network-/link-layer address bindings on our LAN peers. Refuse a change of ethernet address to the address 00:00:00:00:00:00 or to any multicast/broadcast address. (Thanks matt@.) Reorder ifnet ioctl operations so that driver ioctls may inherit the functions of their "class"---ether_ioctl(), fddi_ioctl(), et cetera---and the class ioctls may inherit from the generic ioctl, ifioctl_common(), but both driver- and class-ioctls may override the generic behavior. Make network drivers share more code. Distinguish a "factory" link-layer address from others for the purposes of both protecting that address from deletion and computing EUI64. Return consistent, appropriate error codes from network drivers. Improve readability. KNF. *** Details *** In if_attach(), always initialize the interface ioctl routine, ifnet->if_ioctl, if the driver has not already initialized it. Delete if_ioctl == NULL tests everywhere else, because it cannot happen. In the ioctl routines of network interfaces, inherit common ioctl behaviors by calling either ifioctl_common() or whichever ioctl routine is appropriate for the class of interface---e.g., ether_ioctl() for ethernets. Stop (ab)using SIOCSIFADDR and start to use SIOCINITIFADDR. In the user->kernel interface, SIOCSIFADDR's argument was an ifreq, but on the protocol->ifnet interface, SIOCSIFADDR's argument was an ifaddr. That was confusing, and it would work against me as I make it possible for a network interface to overload most ioctls. On the protocol->ifnet interface, replace SIOCSIFADDR with SIOCINITIFADDR. In ifioctl(), return EPERM if userland tries to invoke SIOCINITIFADDR. In ifioctl(), give the interface the first shot at handling most interface ioctls, and give the protocol the second shot, instead of the other way around. Finally, let compatibility code (COMPAT_OSOCK) take a shot. Pull device initialization out of switch statements under SIOCINITIFADDR. For example, pull ..._init() out of any switch statement that looks like this: switch (...->sa_family) { case ...: ..._init(); ... break; ... default: ..._init(); ... break; } Rewrite many if-else clauses that handle all permutations of IFF_UP and IFF_RUNNING to use a switch statement, switch (x & (IFF_UP|IFF_RUNNING)) { case 0: ... break; case IFF_RUNNING: ... break; case IFF_UP: ... break; case IFF_UP|IFF_RUNNING: ... break; } unifdef lots of code containing #ifdef FreeBSD, #ifdef NetBSD, and #ifdef SIOCSIFMTU, especially in fwip(4) and in ndis(4). In ipw(4), remove an if_set_sadl() call that is out of place. In nfe(4), reuse the jumbo MTU logic in ether_ioctl(). Let ethernets register a callback for setting h/w state such as promiscuous mode and the multicast filter in accord with a change in the if_flags: ether_set_ifflags_cb() registers a callback that returns ENETRESET if the caller should reset the ethernet by calling if_init(), 0 on success, != 0 on failure. Pull common code from ex(4), gem(4), nfe(4), sip(4), tlp(4), vge(4) into ether_ioctl(), and register if_flags callbacks for those drivers. Return ENOTTY instead of EINVAL for inappropriate ioctls. In zyd(4), use ENXIO instead of ENOTTY to indicate that the device is not any longer attached. Add to if_set_sadl() a boolean 'factory' argument that indicates whether a link-layer address was assigned by the factory or some other source. In a comment, recommend using the factory address for generating an EUI64, and update in6_get_hw_ifid() to prefer a factory address to any other link-layer address. Add a routing message, RTM_LLINFO_UPD, that tells protocols to update the binding of network-layer addresses to link-layer addresses. Implement this message in IPv4 and IPv6 by sending a gratuitous ARP or a neighbor advertisement, respectively. Generate RTM_LLINFO_UPD messages on a change of an interface's link-layer address. In ether_ioctl(), do not let SIOCALIFADDR set a link-layer address that is broadcast/multicast or equal to 00:00:00:00:00:00. Make ether_ioctl() call ifioctl_common() to handle ioctls that it does not understand. In gif(4), initialize if_softc and use it, instead of assuming that the gif_softc and ifp overlap. Let ifioctl_common() handle SIOCGIFADDR. Sprinkle rtcache_invariants(), which checks on DIAGNOSTIC kernels that certain invariants on a struct route are satisfied. In agr(4), rewrite agr_ioctl_filter() to be a bit more explicit about the ioctls that we do not allow on an agr(4) member interface. bzero -> memset. Delete unnecessary casts to void *. Use sockaddr_in_init() and sockaddr_in6_init(). Compare pointers with NULL instead of "testing truth". Replace some instances of (type *)0 with NULL. Change some K&R prototypes to ANSI C, and join lines.
2008-11-07 03:20:01 +03:00
if ((error = ifioctl_common(ifp, cmd, data)) != 0)
break;
switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
case IFF_UP|IFF_RUNNING:
rum_update_promisc(sc);
break;
case IFF_UP:
rum_init(ifp);
break;
case IFF_RUNNING:
rum_stop(ifp, 1);
break;
case 0:
break;
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
error = 0;
}
break;
default:
error = ieee80211_ioctl(ic, cmd, data);
}
if (error == ENETRESET) {
if (IS_RUNNING(ifp) &&
(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
rum_init(ifp);
error = 0;
}
splx(s);
return error;
#undef IS_RUNNING
}
2011-02-22 02:50:42 +03:00
static void
rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
{
usb_device_request_t req;
usbd_status error;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = RT2573_READ_EEPROM;
USETW(req.wValue, 0);
USETW(req.wIndex, addr);
USETW(req.wLength, len);
error = usbd_do_request(sc->sc_udev, &req, buf);
if (error != 0) {
printf("%s: could not read EEPROM: %s\n",
device_xname(sc->sc_dev), usbd_errstr(error));
}
}
2011-02-22 02:50:42 +03:00
static uint32_t
rum_read(struct rum_softc *sc, uint16_t reg)
{
uint32_t val;
rum_read_multi(sc, reg, &val, sizeof(val));
return le32toh(val);
}
2011-02-22 02:50:42 +03:00
static void
rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
{
usb_device_request_t req;
usbd_status error;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = RT2573_READ_MULTI_MAC;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, len);
error = usbd_do_request(sc->sc_udev, &req, buf);
if (error != 0) {
printf("%s: could not multi read MAC register: %s\n",
device_xname(sc->sc_dev), usbd_errstr(error));
}
}
2011-02-22 02:50:42 +03:00
static void
rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
{
uint32_t tmp = htole32(val);
rum_write_multi(sc, reg, &tmp, sizeof(tmp));
}
2011-02-22 02:50:42 +03:00
static void
rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
{
usb_device_request_t req;
usbd_status error;
int offset;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = RT2573_WRITE_MULTI_MAC;
USETW(req.wValue, 0);
/* write at most 64 bytes at a time */
for (offset = 0; offset < len; offset += 64) {
USETW(req.wIndex, reg + offset);
USETW(req.wLength, MIN(len - offset, 64));
error = usbd_do_request(sc->sc_udev, &req, (char *)buf + offset);
if (error != 0) {
printf("%s: could not multi write MAC register: %s\n",
device_xname(sc->sc_dev), usbd_errstr(error));
}
}
}
2011-02-22 02:50:42 +03:00
static void
rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
{
uint32_t tmp;
int ntries;
for (ntries = 0; ntries < 5; ntries++) {
if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
break;
}
if (ntries == 5) {
printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
return;
}
tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
rum_write(sc, RT2573_PHY_CSR3, tmp);
}
2011-02-22 02:50:42 +03:00
static uint8_t
rum_bbp_read(struct rum_softc *sc, uint8_t reg)
{
uint32_t val;
int ntries;
for (ntries = 0; ntries < 5; ntries++) {
if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
break;
}
if (ntries == 5) {
printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
return 0;
}
val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
rum_write(sc, RT2573_PHY_CSR3, val);
for (ntries = 0; ntries < 100; ntries++) {
val = rum_read(sc, RT2573_PHY_CSR3);
if (!(val & RT2573_BBP_BUSY))
return val & 0xff;
DELAY(1);
}
printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
return 0;
}
2011-02-22 02:50:42 +03:00
static void
rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
{
uint32_t tmp;
int ntries;
for (ntries = 0; ntries < 5; ntries++) {
if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
break;
}
if (ntries == 5) {
printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
return;
}
tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
(reg & 3);
rum_write(sc, RT2573_PHY_CSR4, tmp);
/* remember last written value in sc */
sc->rf_regs[reg] = val;
DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
}
2011-02-22 02:50:42 +03:00
static void
rum_select_antenna(struct rum_softc *sc)
{
uint8_t bbp4, bbp77;
uint32_t tmp;
bbp4 = rum_bbp_read(sc, 4);
bbp77 = rum_bbp_read(sc, 77);
/* TBD */
/* make sure Rx is disabled before switching antenna */
tmp = rum_read(sc, RT2573_TXRX_CSR0);
rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
rum_bbp_write(sc, 4, bbp4);
rum_bbp_write(sc, 77, bbp77);
rum_write(sc, RT2573_TXRX_CSR0, tmp);
}
/*
* Enable multi-rate retries for frames sent at OFDM rates.
* In 802.11b/g mode, allow fallback to CCK rates.
*/
2011-02-22 02:50:42 +03:00
static void
rum_enable_mrr(struct rum_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
tmp = rum_read(sc, RT2573_TXRX_CSR4);
tmp &= ~RT2573_MRR_CCK_FALLBACK;
if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
tmp |= RT2573_MRR_CCK_FALLBACK;
tmp |= RT2573_MRR_ENABLED;
rum_write(sc, RT2573_TXRX_CSR4, tmp);
}
2011-02-22 02:50:42 +03:00
static void
rum_set_txpreamble(struct rum_softc *sc)
{
uint32_t tmp;
tmp = rum_read(sc, RT2573_TXRX_CSR4);
tmp &= ~RT2573_SHORT_PREAMBLE;
if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
tmp |= RT2573_SHORT_PREAMBLE;
rum_write(sc, RT2573_TXRX_CSR4, tmp);
}
2011-02-22 02:50:42 +03:00
static void
rum_set_basicrates(struct rum_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
/* update basic rate set */
if (ic->ic_curmode == IEEE80211_MODE_11B) {
/* 11b basic rates: 1, 2Mbps */
rum_write(sc, RT2573_TXRX_CSR5, 0x3);
} else if (ic->ic_curmode == IEEE80211_MODE_11A) {
/* 11a basic rates: 6, 12, 24Mbps */
rum_write(sc, RT2573_TXRX_CSR5, 0x150);
} else {
/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
rum_write(sc, RT2573_TXRX_CSR5, 0xf);
}
}
/*
* Reprogram MAC/BBP to switch to a new band. Values taken from the reference
* driver.
*/
2011-02-22 02:50:42 +03:00
static void
rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
{
uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
uint32_t tmp;
/* update all BBP registers that depend on the band */
bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
if (IEEE80211_IS_CHAN_5GHZ(c)) {
bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
}
if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
(IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
}
sc->bbp17 = bbp17;
rum_bbp_write(sc, 17, bbp17);
rum_bbp_write(sc, 96, bbp96);
rum_bbp_write(sc, 104, bbp104);
if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
(IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
rum_bbp_write(sc, 75, 0x80);
rum_bbp_write(sc, 86, 0x80);
rum_bbp_write(sc, 88, 0x80);
}
rum_bbp_write(sc, 35, bbp35);
rum_bbp_write(sc, 97, bbp97);
rum_bbp_write(sc, 98, bbp98);
tmp = rum_read(sc, RT2573_PHY_CSR0);
tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
if (IEEE80211_IS_CHAN_2GHZ(c))
tmp |= RT2573_PA_PE_2GHZ;
else
tmp |= RT2573_PA_PE_5GHZ;
rum_write(sc, RT2573_PHY_CSR0, tmp);
/* 802.11a uses a 16 microseconds short interframe space */
sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
}
2011-02-22 02:50:42 +03:00
static void
rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
{
struct ieee80211com *ic = &sc->sc_ic;
const struct rfprog *rfprog;
uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
int8_t power;
u_int i, chan;
chan = ieee80211_chan2ieee(ic, c);
if (chan == 0 || chan == IEEE80211_CHAN_ANY)
return;
/* select the appropriate RF settings based on what EEPROM says */
rfprog = (sc->rf_rev == RT2573_RF_5225 ||
sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
/* find the settings for this channel (we know it exists) */
for (i = 0; rfprog[i].chan != chan; i++);
power = sc->txpow[i];
if (power < 0) {
bbp94 += power;
power = 0;
} else if (power > 31) {
bbp94 += power - 31;
power = 31;
}
/*
* If we are switching from the 2GHz band to the 5GHz band or
* vice-versa, BBP registers need to be reprogrammed.
*/
if (c->ic_flags != ic->ic_curchan->ic_flags) {
rum_select_band(sc, c);
rum_select_antenna(sc);
}
ic->ic_curchan = c;
rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
DELAY(10);
/* enable smart mode for MIMO-capable RFs */
bbp3 = rum_bbp_read(sc, 3);
bbp3 &= ~RT2573_SMART_MODE;
if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
bbp3 |= RT2573_SMART_MODE;
rum_bbp_write(sc, 3, bbp3);
if (bbp94 != RT2573_BBPR94_DEFAULT)
rum_bbp_write(sc, 94, bbp94);
}
/*
* Enable TSF synchronization and tell h/w to start sending beacons for IBSS
* and HostAP operating modes.
*/
2011-02-22 02:50:42 +03:00
static void
rum_enable_tsf_sync(struct rum_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
if (ic->ic_opmode != IEEE80211_M_STA) {
/*
* Change default 16ms TBTT adjustment to 8ms.
* Must be done before enabling beacon generation.
*/
rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
}
tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
/* set beacon interval (in 1/16ms unit) */
tmp |= ic->ic_bss->ni_intval * 16;
tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
if (ic->ic_opmode == IEEE80211_M_STA)
tmp |= RT2573_TSF_MODE(1);
else
tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
rum_write(sc, RT2573_TXRX_CSR9, tmp);
}
2011-02-22 02:50:42 +03:00
static void
rum_update_slot(struct rum_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint8_t slottime;
uint32_t tmp;
slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
tmp = rum_read(sc, RT2573_MAC_CSR9);
tmp = (tmp & ~0xff) | slottime;
rum_write(sc, RT2573_MAC_CSR9, tmp);
DPRINTF(("setting slot time to %uus\n", slottime));
}
2011-02-22 02:50:42 +03:00
static void
rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
{
uint32_t tmp;
tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
rum_write(sc, RT2573_MAC_CSR4, tmp);
tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
rum_write(sc, RT2573_MAC_CSR5, tmp);
}
2011-02-22 02:50:42 +03:00
static void
rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
{
uint32_t tmp;
tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
rum_write(sc, RT2573_MAC_CSR2, tmp);
tmp = addr[4] | addr[5] << 8 | 0xff << 16;
rum_write(sc, RT2573_MAC_CSR3, tmp);
}
2011-02-22 02:50:42 +03:00
static void
rum_update_promisc(struct rum_softc *sc)
{
struct ifnet *ifp = sc->sc_ic.ic_ifp;
uint32_t tmp;
tmp = rum_read(sc, RT2573_TXRX_CSR0);
tmp &= ~RT2573_DROP_NOT_TO_ME;
if (!(ifp->if_flags & IFF_PROMISC))
tmp |= RT2573_DROP_NOT_TO_ME;
rum_write(sc, RT2573_TXRX_CSR0, tmp);
DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
"entering" : "leaving"));
}
2011-02-22 02:50:42 +03:00
static const char *
rum_get_rf(int rev)
{
switch (rev) {
case RT2573_RF_2527: return "RT2527 (MIMO XR)";
case RT2573_RF_2528: return "RT2528";
case RT2573_RF_5225: return "RT5225 (MIMO XR)";
case RT2573_RF_5226: return "RT5226";
default: return "unknown";
}
}
2011-02-22 02:50:42 +03:00
static void
rum_read_eeprom(struct rum_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint16_t val;
#ifdef RUM_DEBUG
int i;
#endif
/* read MAC/BBP type */
rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
sc->macbbp_rev = le16toh(val);
/* read MAC address */
rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
val = le16toh(val);
sc->rf_rev = (val >> 11) & 0x1f;
sc->hw_radio = (val >> 10) & 0x1;
sc->rx_ant = (val >> 4) & 0x3;
sc->tx_ant = (val >> 2) & 0x3;
sc->nb_ant = val & 0x3;
DPRINTF(("RF revision=%d\n", sc->rf_rev));
rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
val = le16toh(val);
sc->ext_5ghz_lna = (val >> 6) & 0x1;
sc->ext_2ghz_lna = (val >> 4) & 0x1;
DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
sc->ext_2ghz_lna, sc->ext_5ghz_lna));
rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
val = le16toh(val);
if ((val & 0xff) != 0xff)
sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
val = le16toh(val);
if ((val & 0xff) != 0xff)
sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
val = le16toh(val);
if ((val & 0xff) != 0xff)
sc->rffreq = val & 0xff;
DPRINTF(("RF freq=%d\n", sc->rffreq));
/* read Tx power for all a/b/g channels */
rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
/* XXX default Tx power for 802.11a channels */
memset(sc->txpow + 14, 24, sizeof(sc->txpow) - 14);
#ifdef RUM_DEBUG
for (i = 0; i < 14; i++)
DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]));
#endif
/* read default values for BBP registers */
rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
#ifdef RUM_DEBUG
for (i = 0; i < 14; i++) {
if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
continue;
DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
sc->bbp_prom[i].val));
}
#endif
}
2011-02-22 02:50:42 +03:00
static int
rum_bbp_init(struct rum_softc *sc)
{
unsigned int i, ntries;
uint8_t val;
/* wait for BBP to be ready */
for (ntries = 0; ntries < 100; ntries++) {
val = rum_bbp_read(sc, 0);
if (val != 0 && val != 0xff)
break;
DELAY(1000);
}
if (ntries == 100) {
printf("%s: timeout waiting for BBP\n",
device_xname(sc->sc_dev));
return EIO;
}
/* initialize BBP registers to default values */
for (i = 0; i < __arraycount(rum_def_bbp); i++)
rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
/* write vendor-specific BBP values (from EEPROM) */
for (i = 0; i < 16; i++) {
if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
continue;
rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
}
return 0;
}
2011-02-22 02:50:42 +03:00
static int
rum_init(struct ifnet *ifp)
{
struct rum_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
usbd_status error = 0;
unsigned int i, ntries;
if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
if (rum_attachhook(sc))
goto fail;
}
rum_stop(ifp, 0);
/* initialize MAC registers to default values */
for (i = 0; i < __arraycount(rum_def_mac); i++)
rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
/* set host ready */
rum_write(sc, RT2573_MAC_CSR1, 3);
rum_write(sc, RT2573_MAC_CSR1, 0);
/* wait for BBP/RF to wakeup */
for (ntries = 0; ntries < 1000; ntries++) {
if (rum_read(sc, RT2573_MAC_CSR12) & 8)
break;
rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
DELAY(1000);
}
if (ntries == 1000) {
printf("%s: timeout waiting for BBP/RF to wakeup\n",
device_xname(sc->sc_dev));
goto fail;
}
if ((error = rum_bbp_init(sc)) != 0)
goto fail;
/* select default channel */
rum_select_band(sc, ic->ic_curchan);
rum_select_antenna(sc);
rum_set_chan(sc, ic->ic_curchan);
/* clear STA registers */
rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
rum_set_macaddr(sc, ic->ic_myaddr);
/* initialize ASIC */
rum_write(sc, RT2573_MAC_CSR1, 4);
/*
* Allocate xfer for AMRR statistics requests.
*/
struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0,
&sc->amrr_xfer);
if (error) {
printf("%s: could not allocate AMRR xfer\n",
device_xname(sc->sc_dev));
goto fail;
}
/*
* Open Tx and Rx USB bulk pipes.
*/
error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
&sc->sc_tx_pipeh);
if (error != 0) {
printf("%s: could not open Tx pipe: %s\n",
device_xname(sc->sc_dev), usbd_errstr(error));
goto fail;
}
error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
&sc->sc_rx_pipeh);
if (error != 0) {
printf("%s: could not open Rx pipe: %s\n",
device_xname(sc->sc_dev), usbd_errstr(error));
goto fail;
}
/*
* Allocate Tx and Rx xfer queues.
*/
error = rum_alloc_tx_list(sc);
if (error != 0) {
printf("%s: could not allocate Tx list\n",
device_xname(sc->sc_dev));
goto fail;
}
error = rum_alloc_rx_list(sc);
if (error != 0) {
printf("%s: could not allocate Rx list\n",
device_xname(sc->sc_dev));
goto fail;
}
/*
* Start up the receive pipe.
*/
for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
struct rum_rx_data *data;
data = &sc->rx_data[i];
usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES,
USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
error = usbd_transfer(data->xfer);
if (error != USBD_NORMAL_COMPLETION &&
error != USBD_IN_PROGRESS) {
printf("%s: could not queue Rx transfer\n",
device_xname(sc->sc_dev));
goto fail;
}
}
/* update Rx filter */
tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
RT2573_DROP_ACKCTS;
if (ic->ic_opmode != IEEE80211_M_HOSTAP)
tmp |= RT2573_DROP_TODS;
if (!(ifp->if_flags & IFF_PROMISC))
tmp |= RT2573_DROP_NOT_TO_ME;
}
rum_write(sc, RT2573_TXRX_CSR0, tmp);
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_flags |= IFF_RUNNING;
if (ic->ic_opmode == IEEE80211_M_MONITOR)
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
else
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
return 0;
fail: rum_stop(ifp, 1);
return error;
}
2011-02-22 02:50:42 +03:00
static void
rum_stop(struct ifnet *ifp, int disable)
{
struct rum_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
sc->sc_tx_timer = 0;
ifp->if_timer = 0;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
/* disable Rx */
tmp = rum_read(sc, RT2573_TXRX_CSR0);
rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
/* reset ASIC */
rum_write(sc, RT2573_MAC_CSR1, 3);
rum_write(sc, RT2573_MAC_CSR1, 0);
2011-02-22 02:50:42 +03:00
if (sc->amrr_xfer != NULL) {
usbd_destroy_xfer(sc->amrr_xfer);
2011-02-22 02:50:42 +03:00
sc->amrr_xfer = NULL;
}
if (sc->sc_rx_pipeh != NULL) {
usbd_abort_pipe(sc->sc_rx_pipeh);
}
if (sc->sc_tx_pipeh != NULL) {
usbd_abort_pipe(sc->sc_tx_pipeh);
}
rum_free_rx_list(sc);
rum_free_tx_list(sc);
if (sc->sc_rx_pipeh != NULL) {
usbd_close_pipe(sc->sc_rx_pipeh);
sc->sc_rx_pipeh = NULL;
}
if (sc->sc_tx_pipeh != NULL) {
usbd_close_pipe(sc->sc_tx_pipeh);
sc->sc_tx_pipeh = NULL;
}
}
2011-02-22 02:50:42 +03:00
static int
rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
{
usb_device_request_t req;
uint16_t reg = RT2573_MCU_CODE_BASE;
usbd_status error;
/* copy firmware image into NIC */
for (; size >= 4; reg += 4, ucode += 4, size -= 4)
rum_write(sc, reg, UGETDW(ucode));
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = RT2573_MCU_CNTL;
USETW(req.wValue, RT2573_MCU_RUN);
USETW(req.wIndex, 0);
USETW(req.wLength, 0);
error = usbd_do_request(sc->sc_udev, &req, NULL);
if (error != 0) {
printf("%s: could not run firmware: %s\n",
device_xname(sc->sc_dev), usbd_errstr(error));
}
return error;
}
2011-02-22 02:50:42 +03:00
static int
rum_prepare_beacon(struct rum_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct rum_tx_desc desc;
struct mbuf *m0;
int rate;
m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
if (m0 == NULL) {
aprint_error_dev(sc->sc_dev,
"could not allocate beacon frame\n");
return ENOBUFS;
}
/* send beacons at the lowest available rate */
rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
m0->m_pkthdr.len, rate);
/* copy the first 24 bytes of Tx descriptor into NIC memory */
rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
/* copy beacon header and payload into NIC memory */
rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
m0->m_pkthdr.len);
m_freem(m0);
return 0;
}
2011-02-22 02:50:42 +03:00
static void
rum_newassoc(struct ieee80211_node *ni, int isnew)
{
/* start with lowest Tx rate */
ni->ni_txrate = 0;
}
2011-02-22 02:50:42 +03:00
static void
rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
{
int i;
/* clear statistic registers (STA_CSR0 to STA_CSR5) */
rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
/* set rate to some reasonable initial value */
for (i = ni->ni_rates.rs_nrates - 1;
i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
i--);
ni->ni_txrate = i;
callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
}
2011-02-22 02:50:42 +03:00
static void
rum_amrr_timeout(void *arg)
{
struct rum_softc *sc = arg;
usb_device_request_t req;
/*
* Asynchronously read statistic registers (cleared by read).
*/
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = RT2573_READ_MULTI_MAC;
USETW(req.wValue, 0);
USETW(req.wIndex, RT2573_STA_CSR0);
USETW(req.wLength, sizeof(sc->sta));
usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0,
rum_amrr_update);
(void)usbd_transfer(sc->amrr_xfer);
}
2011-02-22 02:50:42 +03:00
static void
rum_amrr_update(struct usbd_xfer *xfer, void *priv,
usbd_status status)
{
struct rum_softc *sc = (struct rum_softc *)priv;
struct ifnet *ifp = sc->sc_ic.ic_ifp;
if (status != USBD_NORMAL_COMPLETION) {
printf("%s: could not retrieve Tx statistics - cancelling "
"automatic rate control\n", device_xname(sc->sc_dev));
return;
}
/* count TX retry-fail as Tx errors */
2020-01-29 09:35:28 +03:00
if_statadd(ifp, if_oerrors, le32toh(sc->sta[5]) >> 16);
sc->amn.amn_retrycnt =
(le32toh(sc->sta[4]) >> 16) + /* TX one-retry ok count */
(le32toh(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */
(le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */
sc->amn.amn_txcnt =
sc->amn.amn_retrycnt +
(le32toh(sc->sta[4]) & 0xffff); /* TX no-retry ok count */
ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
}
2011-02-22 02:50:42 +03:00
static int
rum_activate(device_t self, enum devact act)
{
switch (act) {
case DVACT_DEACTIVATE:
/*if_deactivate(&sc->sc_ic.ic_if);*/
return 0;
default:
2011-02-22 02:50:42 +03:00
return 0;
}
}
2011-08-23 16:53:29 +04:00
MODULE(MODULE_CLASS_DRIVER, if_rum, NULL);
2011-08-23 16:53:29 +04:00
#ifdef _MODULE
#include "ioconf.c"
#endif
static int
if_rum_modcmd(modcmd_t cmd, void *aux)
{
int error = 0;
switch (cmd) {
case MODULE_CMD_INIT:
#ifdef _MODULE
error = config_init_component(cfdriver_ioconf_rum,
cfattach_ioconf_rum, cfdata_ioconf_rum);
2011-08-23 16:53:29 +04:00
#endif
return error;
case MODULE_CMD_FINI:
#ifdef _MODULE
error = config_fini_component(cfdriver_ioconf_rum,
cfattach_ioconf_rum, cfdata_ioconf_rum);
2011-08-23 16:53:29 +04:00
#endif
return error;
default:
return ENOTTY;
}
}