NetBSD/sys/dev/i2c/pca9685.c

601 lines
15 KiB
C
Raw Normal View History

/* $NetBSD: pca9685.c,v 1.3 2019/07/25 04:24:44 thorpej Exp $ */
/*-
* Copyright (c) 2018, 2019 Jason R. Thorpe
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: pca9685.c,v 1.3 2019/07/25 04:24:44 thorpej Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/mutex.h>
#include <dev/i2c/i2cvar.h>
#include <dev/i2c/pca9685reg.h>
#include <dev/pwm/pwmvar.h>
#include <dev/fdt/fdtvar.h>
/*
* Special channel number used to indicate that we want to set the
* pulse mode for all channels on this controller.
*/
#define PCA9685_ALL_CHANNELS PCA9685_NCHANNELS
struct pcapwm_channel {
struct pwm_controller ch_controller;
struct pwm_config ch_conf;
u_int ch_number;
};
struct pcapwm_softc {
device_t sc_dev;
i2c_tag_t sc_i2c;
i2c_addr_t sc_addr;
/*
* Locking order is:
* pcapwm mutex -> i2c bus
*/
kmutex_t sc_lock;
/*
* The PCA9685 only has a single pre-scaler, so the configured
* PWM frequency / period is shared by all channels.
*/
u_int sc_period; /* nanoseconds */
u_int sc_clk_freq;
bool sc_ext_clk;
bool sc_invert; /* "invert" property specified */
bool sc_open_drain; /* "open-drain" property specified */
/*
* +1 because we treat channel "16" as the all-channels
* pseudo-channel.
*/
struct pcapwm_channel sc_channels[PCA9685_NCHANNELS+1];
};
static int pcapwm_pwm_enable(struct pwm_controller *, bool);
static int pcapwm_pwm_get_config(struct pwm_controller *,
struct pwm_config *);
static int pcapwm_pwm_set_config(struct pwm_controller *,
const struct pwm_config *);
static const struct device_compatible_entry compat_data[] = {
{ "nxp,pca9685-pwm", 0 },
{ NULL }
};
static int
pcapwm_read1(struct pcapwm_softc * const sc, uint8_t reg, uint8_t *valp)
{
return iic_exec(sc->sc_i2c, I2C_OP_READ_WITH_STOP,
sc->sc_addr, &reg, sizeof(reg),
valp, sizeof(*valp), 0);
}
static int
pcapwm_write1(struct pcapwm_softc * const sc, uint8_t reg, uint8_t val)
{
return iic_exec(sc->sc_i2c, I2C_OP_WRITE_WITH_STOP,
sc->sc_addr, &reg, sizeof(reg),
&val, sizeof(val), 0);
}
static int
pcapwm_read_LEDn(struct pcapwm_softc * const sc, uint8_t reg, uint8_t *buf,
size_t buflen)
{
/* We rely on register auto-increment being enabled. */
return iic_exec(sc->sc_i2c, I2C_OP_READ_WITH_STOP,
sc->sc_addr, &reg, sizeof(reg),
buf, buflen, 0);
}
static int
pcapwm_write_LEDn(struct pcapwm_softc * const sc, uint8_t reg, uint8_t *buf,
size_t buflen)
{
/* We rely on register auto-increment being enabled. */
return iic_exec(sc->sc_i2c, I2C_OP_WRITE_WITH_STOP,
sc->sc_addr, &reg, sizeof(reg),
buf, buflen, 0);
}
static int
pcapwm_program_channel(struct pcapwm_softc * const sc,
struct pcapwm_channel * const chan,
uint16_t on_tick, uint16_t off_tick)
{
const uint8_t reg = chan->ch_number == PCA9685_ALL_CHANNELS ?
PCA9685_ALL_LED_ON_L : PCA9685_LEDx_ON_L(chan->ch_number);
uint8_t regs[4];
int error;
regs[0] = (uint8_t)(on_tick & 0xff);
regs[1] = (uint8_t)((on_tick >> 8) & 0xff);
regs[2] = (uint8_t)(off_tick & 0xff);
regs[3] = (uint8_t)((off_tick >> 8) & 0xff);
error = iic_acquire_bus(sc->sc_i2c, 0);
if (error) {
device_printf(sc->sc_dev,
"program_channel: failed to acquire I2C bus\n");
return error;
}
error = pcapwm_write_LEDn(sc, reg, regs, sizeof(regs));
iic_release_bus(sc->sc_i2c, 0);
return error;
}
static int
pcapwm_inspect_channel(struct pcapwm_softc * const sc,
struct pcapwm_channel * const chan,
uint16_t *on_tickp, uint16_t *off_tickp)
{
const uint8_t reg = chan->ch_number == PCA9685_ALL_CHANNELS ?
PCA9685_ALL_LED_ON_L : PCA9685_LEDx_ON_L(chan->ch_number);
uint8_t regs[4];
int error;
error = iic_acquire_bus(sc->sc_i2c, 0);
if (error) {
device_printf(sc->sc_dev,
"inspect_channel: failed to acquire I2C bus\n");
return error;
}
error = pcapwm_read_LEDn(sc, reg, regs, sizeof(regs));
iic_release_bus(sc->sc_i2c, 0);
if (error) {
return error;
}
*on_tickp = regs[0] | (((uint16_t)regs[1]) << 8);
*off_tickp = regs[2] | (((uint16_t)regs[3]) << 8);
return 0;
}
static struct pcapwm_channel *
pcapwm_lookup_channel(struct pcapwm_softc * const sc, u_int index)
{
if (index > PCA9685_ALL_CHANNELS)
return NULL;
return &sc->sc_channels[index];
}
static void
pcapwm_init_channel(struct pcapwm_softc * const sc, u_int index)
{
struct pcapwm_channel * const chan = pcapwm_lookup_channel(sc, index);
KASSERT(chan != NULL);
chan->ch_number = index;
chan->ch_controller.pwm_enable = pcapwm_pwm_enable;
chan->ch_controller.pwm_get_config = pcapwm_pwm_get_config;
chan->ch_controller.pwm_set_config = pcapwm_pwm_set_config;
chan->ch_controller.pwm_dev = sc->sc_dev;
chan->ch_controller.pwm_priv = chan;
}
static pwm_tag_t
pcapwm_get_tag(device_t dev, const void *data, size_t len)
{
struct pcapwm_softc * const sc = device_private(dev);
const u_int *pwm = data;
/* #pwm-cells == 2 in the PCA9685 DT bindings. */
if (len != 12)
return NULL;
/* Channel 16 is the special call-channels channel. */
const u_int index = be32toh(pwm[1]);
struct pcapwm_channel * const chan = pcapwm_lookup_channel(sc, index);
if (chan == NULL)
return NULL;
const u_int period = be32toh(pwm[2]);
mutex_enter(&sc->sc_lock);
/*
* XXX Should we reflect the value of the "invert" property in
* pwm_config::polarity? I'm thinking not, but...
*/
chan->ch_conf.period = period;
chan->ch_conf.polarity = PWM_ACTIVE_HIGH;
mutex_exit(&sc->sc_lock);
return &chan->ch_controller;
}
static struct fdtbus_pwm_controller_func pcapwm_pwm_funcs = {
.get_tag = pcapwm_get_tag,
};
static int
pcapwm_pwm_enable(pwm_tag_t pwm, bool enable)
{
struct pcapwm_softc * const sc = device_private(pwm->pwm_dev);
struct pcapwm_channel * const chan = pwm->pwm_priv;
int error;
if (enable) {
/* Set whatever is programmed for the channel. */
error = pwm_set_config(pwm, &chan->ch_conf);
if (error) {
device_printf(sc->sc_dev,
"enable: unable to set config for channel %u\n",
chan->ch_number);
}
return error;
}
mutex_enter(&sc->sc_lock);
error = pcapwm_program_channel(sc, chan, 0, PCA9685_PWM_TICKS);
if (error) {
device_printf(sc->sc_dev,
"disable: unable to program channel %u\n",
chan->ch_number);
}
mutex_exit(&sc->sc_lock);
return error;
}
static int
pcapwm_pwm_get_config(pwm_tag_t pwm, struct pwm_config *conf)
{
struct pcapwm_softc * const sc = device_private(pwm->pwm_dev);
struct pcapwm_channel * const chan = pwm->pwm_priv;
uint16_t on_tick, off_tick;
u_int duty_cycle;
int error;
mutex_enter(&sc->sc_lock);
error = pcapwm_inspect_channel(sc, chan, &on_tick, &off_tick);
if (error) {
device_printf(sc->sc_dev,
"get_config: unable to inspect channel %u\n",
chan->ch_number);
goto out;
}
if (on_tick & PCA9685_PWM_TICKS) {
duty_cycle = chan->ch_conf.period;
} else if (off_tick & PCA9685_PWM_TICKS) {
duty_cycle = 0;
} else {
/*
* Compute the number of ticks, accounting for a non-zero
* on-tick (which the hardware can do, even if the software
* can't).
*/
int signed_off_tick = off_tick;
signed_off_tick -= on_tick;
if (signed_off_tick < 0)
signed_off_tick += PCA9685_PWM_TICKS;
const uint64_t nticks = signed_off_tick;
duty_cycle = (u_int)((nticks * chan->ch_conf.period) /
PCA9685_PWM_TICKS);
}
*conf = chan->ch_conf;
conf->duty_cycle = duty_cycle;
out:
mutex_exit(&sc->sc_lock);
return error;
}
static int
pcapwm_pwm_set_config(pwm_tag_t pwm, const struct pwm_config *conf)
{
struct pcapwm_softc * const sc = device_private(pwm->pwm_dev);
struct pcapwm_channel * const chan = pwm->pwm_priv;
int error = 0;
mutex_enter(&sc->sc_lock);
/* Only active-high is supported. */
if (conf->polarity != PWM_ACTIVE_HIGH) {
device_printf(sc->sc_dev,
"set_config: invalid polarity: %d\n", conf->polarity);
error = EINVAL;
goto out;
}
if (sc->sc_period != conf->period) {
/*
* Formula for the prescale is:
*
* ( clk_freq )
* round( ----------------- ) - 1
* ( 4096 * pwm_freq )
*
* pwm_freq == 1000000000 / period.
*
* To do the rounding step, we scale the oscillator_freq
* by 100, check for the rounding condition, and then
* de-scale before the subtraction step.
*/
const u_int pwm_freq = 1000000000 / conf->period;
u_int prescale = (sc->sc_clk_freq * 100) /
(PCA9685_PWM_TICKS * pwm_freq);
if ((prescale % 100) >= 50)
prescale += 100;
prescale = (prescale / 100) - 1;
if (prescale < PCA9685_PRESCALE_MIN ||
prescale > PCA9685_PRESCALE_MAX) {
device_printf(sc->sc_dev,
"set_config: invalid period: %uns\n", conf->period);
error = EINVAL;
goto out;
}
error = iic_acquire_bus(sc->sc_i2c, 0);
if (error) {
device_printf(sc->sc_dev,
"set_config: unable to acquire I2C bus\n");
goto out;
}
uint8_t mode1;
error = pcapwm_read1(sc, PCA9685_MODE1, &mode1);
if (error) {
device_printf(sc->sc_dev,
"set_config: unable to read MODE1\n");
goto out_release_i2c;
}
/* Disable the internal oscillator. */
mode1 |= MODE1_SLEEP;
error = pcapwm_write1(sc, PCA9685_MODE1, mode1);
if (error) {
device_printf(sc->sc_dev,
"set_config: unable to write MODE1\n");
goto out_release_i2c;
}
/* Update the prescale register. */
error = pcapwm_write1(sc, PCA9685_PRE_SCALE,
(uint8_t)(prescale & 0xff));
if (error) {
device_printf(sc->sc_dev,
"set_config: unable to write PRE_SCALE\n");
goto out_release_i2c;
}
/*
* If we're using an external clock source, keep the
* internal oscillator turned off.
*
* XXX The datasheet is a little ambiguous about how this
* XXX is supposed to work -- on the same page it says to
* XXX perform this procedure, and also that PWM control of
* XXX the channels is not possible when the oscillator is
* XXX disabled. I haven't tested this with an external
* XXX oscillator yet, so I don't know for sure.
*/
if (sc->sc_ext_clk) {
mode1 |= MODE1_EXTCLK;
} else {
mode1 &= ~MODE1_SLEEP;
}
/*
* We rely on auto-increment for the PWM register updates.
*/
mode1 |= MODE1_AI;
error = pcapwm_write1(sc, PCA9685_MODE1, mode1);
if (error) {
device_printf(sc->sc_dev,
"set_config: unable to write MODE1\n");
goto out_release_i2c;
}
iic_release_bus(sc->sc_i2c, 0);
if (sc->sc_ext_clk == false) {
/* Wait for 500us for the clock to settle. */
delay(500);
}
sc->sc_period = conf->period;
}
uint16_t on_tick, off_tick;
/*
* The PWM framework doesn't support the phase-shift / start-delay
* feature of this chip, so all duty cycles start at 0 ticks.
*/
/*
* For full-on and full-off, use the magic FULL-{ON,OFF} values
* described in the data sheet.
*/
if (conf->duty_cycle == 0) {
on_tick = 0;
off_tick = PCA9685_PWM_TICKS;
} else if (conf->duty_cycle == sc->sc_period) {
on_tick = PCA9685_PWM_TICKS;
off_tick = 0;
} else {
uint64_t ticks =
PCA9685_PWM_TICKS * (uint64_t)conf->duty_cycle;
/* Scale up so we can check if we need to round. */
ticks = (ticks * 100) / sc->sc_period;
/* Round up. */
if (ticks % 100)
ticks += 100;
ticks /= 100;
if (ticks >= PCA9685_PWM_TICKS) {
ticks = PCA9685_PWM_TICKS - 1;
}
on_tick = 0;
off_tick = (u_int)ticks;
}
error = pcapwm_program_channel(sc, chan, on_tick, off_tick);
if (error) {
device_printf(sc->sc_dev,
"set_config: unable to program channel %u\n",
chan->ch_number);
goto out;
}
chan->ch_conf = *conf;
out:
mutex_exit(&sc->sc_lock);
return error;
out_release_i2c:
iic_release_bus(sc->sc_i2c, 0);
goto out;
}
static int
pcapwm_match(device_t parent, cfdata_t cf, void *aux)
{
struct i2c_attach_args * const ia = aux;
int match_result;
if (iic_use_direct_match(ia, cf, compat_data, &match_result)) {
return match_result;
}
/* This device is direct-config only. */
return 0;
}
static void
pcapwm_attach(device_t parent, device_t self, void *aux)
{
struct pcapwm_softc * const sc = device_private(self);
struct i2c_attach_args * const ia = aux;
struct clk *clk;
const int phandle = (int)ia->ia_cookie;
u_int index;
int error;
sc->sc_dev = self;
sc->sc_i2c = ia->ia_tag;
sc->sc_addr = ia->ia_addr;
aprint_naive("\n");
aprint_normal(": PCA9685 PWM controller\n");
mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
for (index = 0; index <= PCA9685_ALL_CHANNELS; index++) {
pcapwm_init_channel(sc, index);
}
clk = fdtbus_clock_get_index(phandle, 0);
if (clk != NULL) {
sc->sc_ext_clk = true;
sc->sc_clk_freq = clk_get_rate(clk);
} else {
sc->sc_clk_freq = PCA9685_INTERNAL_FREQ;
}
if (of_hasprop(phandle, "invert")) {
sc->sc_invert = true;
}
if (of_hasprop(phandle, "open-drain")) {
sc->sc_open_drain = true;
}
/*
* XXX No DT bindings for the OUTNEx configurations in
* MODE2.
*/
error = iic_acquire_bus(sc->sc_i2c, 0);
if (error) {
aprint_error_dev(sc->sc_dev, "failed to acquire I2C bus\n");
return;
}
/*
* Set up the outputs. We want the channel to update when
* we send the I2C "STOP" condition.
*/
uint8_t mode2;
error = pcapwm_read1(sc, PCA9685_MODE2, &mode2);
if (error == 0) {
mode2 &= ~(MODE2_OUTDRV | MODE2_OCH | MODE2_INVRT);
if (sc->sc_invert) {
mode2 |= MODE2_INVRT;
}
if (sc->sc_open_drain == false) {
mode2 |= MODE2_OUTDRV;
}
error = pcapwm_write1(sc, PCA9685_MODE2, mode2);
}
iic_release_bus(sc->sc_i2c, 0);
if (error) {
aprint_error_dev(sc->sc_dev, "failed to configure MODE2\n");
return;
}
fdtbus_register_pwm_controller(self, phandle,
&pcapwm_pwm_funcs);
}
CFATTACH_DECL_NEW(pcapwm, sizeof(struct pcapwm_softc),
pcapwm_match, pcapwm_attach, NULL, NULL);