NetBSD/sys/dev/usb/if_ure.c

1159 lines
31 KiB
C
Raw Normal View History

/* $NetBSD: if_ure.c,v 1.21 2019/08/10 02:17:36 mrg Exp $ */
/* $OpenBSD: if_ure.c,v 1.10 2018/11/02 21:32:30 jcs Exp $ */
/*-
* Copyright (c) 2015-2016 Kevin Lo <kevlo@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* RealTek RTL8152/RTL8153 10/100/Gigabit USB Ethernet device */
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_ure.c,v 1.21 2019/08/10 02:17:36 mrg Exp $");
#ifdef _KERNEL_OPT
#include "opt_usb.h"
#include "opt_inet.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <net/route.h>
#include <dev/usb/usbnet.h>
#include <netinet/in_offload.h> /* XXX for in_undefer_cksum() */
#ifdef INET6
#include <netinet/in.h>
#include <netinet6/in6_offload.h> /* XXX for in6_undefer_cksum() */
#endif
#include <dev/ic/rtl81x9reg.h> /* XXX for RTK_GMEDIASTAT */
#include <dev/usb/if_urereg.h>
#include <dev/usb/if_urevar.h>
#define URE_PRINTF(un, fmt, args...) \
device_printf((un)->un_dev, "%s: " fmt, __func__, ##args);
#define URE_DEBUG
#ifdef URE_DEBUG
#define DPRINTF(x) do { if (uredebug) printf x; } while (0)
#define DPRINTFN(n, x) do { if (uredebug >= (n)) printf x; } while (0)
int uredebug = 1;
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
static const struct usb_devno ure_devs[] = {
{ USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8152 },
{ USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8153 }
};
#define URE_BUFSZ (16 * 1024)
static void ure_reset(struct usbnet *);
static uint32_t ure_txcsum(struct mbuf *);
static int ure_rxcsum(struct ifnet *, struct ure_rxpkt *);
static void ure_rtl8152_init(struct usbnet *);
static void ure_rtl8153_init(struct usbnet *);
static void ure_disable_teredo(struct usbnet *);
static void ure_init_fifo(struct usbnet *);
static void ure_stop_cb(struct ifnet *, int);
static int ure_ioctl_cb(struct ifnet *, u_long, void *);
static usbd_status ure_mii_read_reg(struct usbnet *, int, int, uint16_t *);
static usbd_status ure_mii_write_reg(struct usbnet *, int, int, uint16_t);
static void ure_miibus_statchg(struct ifnet *);
static unsigned ure_tx_prepare(struct usbnet *, struct mbuf *,
struct usbnet_chain *);
static void ure_rxeof_loop(struct usbnet *, struct usbd_xfer *,
struct usbnet_chain *, uint32_t);
static int ure_init(struct ifnet *);
static int ure_match(device_t, cfdata_t, void *);
static void ure_attach(device_t, device_t, void *);
CFATTACH_DECL_NEW(ure, sizeof(struct usbnet), ure_match, ure_attach,
usbnet_detach, usbnet_activate);
static struct usbnet_ops ure_ops = {
.uno_stop = ure_stop_cb,
.uno_ioctl = ure_ioctl_cb,
.uno_read_reg = ure_mii_read_reg,
.uno_write_reg = ure_mii_write_reg,
.uno_statchg = ure_miibus_statchg,
.uno_tx_prepare = ure_tx_prepare,
.uno_rx_loop = ure_rxeof_loop,
.uno_init = ure_init,
};
static int
ure_ctl(struct usbnet *un, uint8_t rw, uint16_t val, uint16_t index,
void *buf, int len)
{
usb_device_request_t req;
usbd_status err;
if (usbnet_isdying(un))
return 0;
if (rw == URE_CTL_WRITE)
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
else
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = UR_SET_ADDRESS;
USETW(req.wValue, val);
USETW(req.wIndex, index);
USETW(req.wLength, len);
DPRINTFN(5, ("ure_ctl: rw %d, val 0x%04hu, index 0x%04hu, len %d\n",
rw, val, index, len));
err = usbd_do_request(un->un_udev, &req, buf);
if (err) {
DPRINTF(("ure_ctl: error %d\n", err));
return -1;
}
return 0;
}
static int
ure_read_mem(struct usbnet *un, uint16_t addr, uint16_t index,
void *buf, int len)
{
return ure_ctl(un, URE_CTL_READ, addr, index, buf, len);
}
static int
ure_write_mem(struct usbnet *un, uint16_t addr, uint16_t index,
void *buf, int len)
{
return ure_ctl(un, URE_CTL_WRITE, addr, index, buf, len);
}
static uint8_t
ure_read_1(struct usbnet *un, uint16_t reg, uint16_t index)
{
uint32_t val;
uint8_t temp[4];
uint8_t shift;
shift = (reg & 3) << 3;
reg &= ~3;
ure_read_mem(un, reg, index, &temp, 4);
val = UGETDW(temp);
val >>= shift;
return val & 0xff;
}
static uint16_t
ure_read_2(struct usbnet *un, uint16_t reg, uint16_t index)
{
uint32_t val;
uint8_t temp[4];
uint8_t shift;
shift = (reg & 2) << 3;
reg &= ~3;
ure_read_mem(un, reg, index, &temp, 4);
val = UGETDW(temp);
val >>= shift;
return val & 0xffff;
}
static uint32_t
ure_read_4(struct usbnet *un, uint16_t reg, uint16_t index)
{
uint8_t temp[4];
ure_read_mem(un, reg, index, &temp, 4);
return UGETDW(temp);
}
static int
ure_write_1(struct usbnet *un, uint16_t reg, uint16_t index, uint32_t val)
{
uint16_t byen;
uint8_t temp[4];
uint8_t shift;
byen = URE_BYTE_EN_BYTE;
shift = reg & 3;
val &= 0xff;
if (reg & 3) {
byen <<= shift;
val <<= (shift << 3);
reg &= ~3;
}
USETDW(temp, val);
return ure_write_mem(un, reg, index | byen, &temp, 4);
}
static int
ure_write_2(struct usbnet *un, uint16_t reg, uint16_t index, uint32_t val)
{
uint16_t byen;
uint8_t temp[4];
uint8_t shift;
byen = URE_BYTE_EN_WORD;
shift = reg & 2;
val &= 0xffff;
if (reg & 2) {
byen <<= shift;
val <<= (shift << 3);
reg &= ~3;
}
USETDW(temp, val);
return ure_write_mem(un, reg, index | byen, &temp, 4);
}
static int
ure_write_4(struct usbnet *un, uint16_t reg, uint16_t index, uint32_t val)
{
uint8_t temp[4];
USETDW(temp, val);
return ure_write_mem(un, reg, index | URE_BYTE_EN_DWORD, &temp, 4);
}
static uint16_t
ure_ocp_reg_read(struct usbnet *un, uint16_t addr)
{
uint16_t reg;
ure_write_2(un, URE_PLA_OCP_GPHY_BASE, URE_MCU_TYPE_PLA, addr & 0xf000);
reg = (addr & 0x0fff) | 0xb000;
return ure_read_2(un, reg, URE_MCU_TYPE_PLA);
}
static void
ure_ocp_reg_write(struct usbnet *un, uint16_t addr, uint16_t data)
{
uint16_t reg;
ure_write_2(un, URE_PLA_OCP_GPHY_BASE, URE_MCU_TYPE_PLA, addr & 0xf000);
reg = (addr & 0x0fff) | 0xb000;
ure_write_2(un, reg, URE_MCU_TYPE_PLA, data);
}
static usbd_status
ure_mii_read_reg(struct usbnet *un, int phy, int reg, uint16_t *val)
{
/* Let the rgephy driver read the URE_PLA_PHYSTATUS register. */
if (reg == RTK_GMEDIASTAT) {
*val = ure_read_1(un, URE_PLA_PHYSTATUS, URE_MCU_TYPE_PLA);
return USBD_NORMAL_COMPLETION;
}
*val = ure_ocp_reg_read(un, URE_OCP_BASE_MII + reg * 2);
return USBD_NORMAL_COMPLETION;
}
static usbd_status
ure_mii_write_reg(struct usbnet *un, int phy, int reg, uint16_t val)
{
ure_ocp_reg_write(un, URE_OCP_BASE_MII + reg * 2, val);
return USBD_NORMAL_COMPLETION;
}
static void
ure_miibus_statchg(struct ifnet *ifp)
{
struct usbnet * const un = ifp->if_softc;
struct mii_data * const mii = usbnet_mii(un);
if (usbnet_isdying(un))
return;
usbnet_set_link(un, false);
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
usbnet_set_link(un, true);
break;
case IFM_1000_T:
if ((un->un_flags & URE_FLAG_8152) != 0)
break;
usbnet_set_link(un, true);
break;
default:
break;
}
}
}
static void
ure_setiff_locked(struct usbnet *un)
{
struct ethercom *ec = usbnet_ec(un);
struct ifnet *ifp = usbnet_ifp(un);
struct ether_multi *enm;
struct ether_multistep step;
uint32_t hashes[2] = { 0, 0 };
uint32_t hash;
uint32_t rxmode;
usbnet_isowned(un);
if (usbnet_isdying(un))
return;
rxmode = ure_read_4(un, URE_PLA_RCR, URE_MCU_TYPE_PLA);
rxmode &= ~URE_RCR_ACPT_ALL;
/*
* Always accept frames destined to our station address.
* Always accept broadcast frames.
*/
rxmode |= URE_RCR_APM | URE_RCR_AB;
if (ifp->if_flags & IFF_PROMISC) {
rxmode |= URE_RCR_AAP;
allmulti:
ETHER_LOCK(ec);
ec->ec_flags |= ETHER_F_ALLMULTI;
ETHER_UNLOCK(ec);
rxmode |= URE_RCR_AM;
hashes[0] = hashes[1] = 0xffffffff;
} else {
rxmode |= URE_RCR_AM;
ETHER_LOCK(ec);
ec->ec_flags &= ~ETHER_F_ALLMULTI;
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
ETHER_ADDR_LEN)) {
ETHER_UNLOCK(ec);
goto allmulti;
}
hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN)
>> 26;
if (hash < 32)
hashes[0] |= (1 << hash);
else
hashes[1] |= (1 << (hash - 32));
ETHER_NEXT_MULTI(step, enm);
}
ETHER_UNLOCK(ec);
hash = bswap32(hashes[0]);
hashes[0] = bswap32(hashes[1]);
hashes[1] = hash;
}
ure_write_4(un, URE_PLA_MAR0, URE_MCU_TYPE_PLA, hashes[0]);
ure_write_4(un, URE_PLA_MAR4, URE_MCU_TYPE_PLA, hashes[1]);
ure_write_4(un, URE_PLA_RCR, URE_MCU_TYPE_PLA, rxmode);
}
static void
ure_setiff(struct usbnet *un)
{
usbnet_lock(un);
ure_setiff_locked(un);
usbnet_unlock(un);
}
static void
ure_reset(struct usbnet *un)
{
int i;
usbnet_isowned(un);
ure_write_1(un, URE_PLA_CR, URE_MCU_TYPE_PLA, URE_CR_RST);
for (i = 0; i < URE_TIMEOUT; i++) {
if (!(ure_read_1(un, URE_PLA_CR, URE_MCU_TYPE_PLA) &
URE_CR_RST))
break;
usbd_delay_ms(un->un_udev, 10);
}
if (i == URE_TIMEOUT)
URE_PRINTF(un, "reset never completed\n");
}
static int
ure_init_locked(struct ifnet *ifp)
{
struct usbnet * const un = ifp->if_softc;
uint8_t eaddr[8];
usbnet_isowned(un);
if (usbnet_isdying(un))
return EIO;
/* Cancel pending I/O. */
if (ifp->if_flags & IFF_RUNNING)
usbnet_stop(un, ifp, 1);
/* Set MAC address. */
memset(eaddr, 0, sizeof(eaddr));
memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
ure_write_1(un, URE_PLA_CRWECR, URE_MCU_TYPE_PLA, URE_CRWECR_CONFIG);
ure_write_mem(un, URE_PLA_IDR, URE_MCU_TYPE_PLA | URE_BYTE_EN_SIX_BYTES,
eaddr, 8);
ure_write_1(un, URE_PLA_CRWECR, URE_MCU_TYPE_PLA, URE_CRWECR_NORAML);
/* Reset the packet filter. */
ure_write_2(un, URE_PLA_FMC, URE_MCU_TYPE_PLA,
ure_read_2(un, URE_PLA_FMC, URE_MCU_TYPE_PLA) &
~URE_FMC_FCR_MCU_EN);
ure_write_2(un, URE_PLA_FMC, URE_MCU_TYPE_PLA,
ure_read_2(un, URE_PLA_FMC, URE_MCU_TYPE_PLA) |
URE_FMC_FCR_MCU_EN);
/* Enable transmit and receive. */
ure_write_1(un, URE_PLA_CR, URE_MCU_TYPE_PLA,
ure_read_1(un, URE_PLA_CR, URE_MCU_TYPE_PLA) | URE_CR_RE |
URE_CR_TE);
ure_write_2(un, URE_PLA_MISC_1, URE_MCU_TYPE_PLA,
ure_read_2(un, URE_PLA_MISC_1, URE_MCU_TYPE_PLA) &
~URE_RXDY_GATED_EN);
/* Load the multicast filter. */
ure_setiff_locked(un);
return usbnet_init_rx_tx(un);
}
static int
ure_init(struct ifnet *ifp)
{
struct usbnet * const un = ifp->if_softc;
usbnet_lock(un);
int ret = ure_init_locked(ifp);
usbnet_unlock(un);
return ret;
}
static void
ure_stop_cb(struct ifnet *ifp, int disable __unused)
{
struct usbnet * const un = ifp->if_softc;
ure_reset(un);
}
static void
ure_rtl8152_init(struct usbnet *un)
{
uint32_t pwrctrl;
/* Disable ALDPS. */
ure_ocp_reg_write(un, URE_OCP_ALDPS_CONFIG, URE_ENPDNPS | URE_LINKENA |
URE_DIS_SDSAVE);
usbd_delay_ms(un->un_udev, 20);
if (un->un_flags & URE_FLAG_VER_4C00) {
ure_write_2(un, URE_PLA_LED_FEATURE, URE_MCU_TYPE_PLA,
ure_read_2(un, URE_PLA_LED_FEATURE, URE_MCU_TYPE_PLA) &
~URE_LED_MODE_MASK);
}
ure_write_2(un, URE_USB_UPS_CTRL, URE_MCU_TYPE_USB,
ure_read_2(un, URE_USB_UPS_CTRL, URE_MCU_TYPE_USB) &
~URE_POWER_CUT);
ure_write_2(un, URE_USB_PM_CTRL_STATUS, URE_MCU_TYPE_USB,
ure_read_2(un, URE_USB_PM_CTRL_STATUS, URE_MCU_TYPE_USB) &
~URE_RESUME_INDICATE);
ure_write_2(un, URE_PLA_PHY_PWR, URE_MCU_TYPE_PLA,
ure_read_2(un, URE_PLA_PHY_PWR, URE_MCU_TYPE_PLA) |
URE_TX_10M_IDLE_EN | URE_PFM_PWM_SWITCH);
pwrctrl = ure_read_4(un, URE_PLA_MAC_PWR_CTRL, URE_MCU_TYPE_PLA);
pwrctrl &= ~URE_MCU_CLK_RATIO_MASK;
pwrctrl |= URE_MCU_CLK_RATIO | URE_D3_CLK_GATED_EN;
ure_write_4(un, URE_PLA_MAC_PWR_CTRL, URE_MCU_TYPE_PLA, pwrctrl);
ure_write_2(un, URE_PLA_GPHY_INTR_IMR, URE_MCU_TYPE_PLA,
URE_GPHY_STS_MSK | URE_SPEED_DOWN_MSK | URE_SPDWN_RXDV_MSK |
URE_SPDWN_LINKCHG_MSK);
/* Enable Rx aggregation. */
ure_write_2(un, URE_USB_USB_CTRL, URE_MCU_TYPE_USB,
ure_read_2(un, URE_USB_USB_CTRL, URE_MCU_TYPE_USB) &
~URE_RX_AGG_DISABLE);
/* Disable ALDPS. */
ure_ocp_reg_write(un, URE_OCP_ALDPS_CONFIG, URE_ENPDNPS | URE_LINKENA |
URE_DIS_SDSAVE);
usbd_delay_ms(un->un_udev, 20);
ure_init_fifo(un);
ure_write_1(un, URE_USB_TX_AGG, URE_MCU_TYPE_USB,
URE_TX_AGG_MAX_THRESHOLD);
ure_write_4(un, URE_USB_RX_BUF_TH, URE_MCU_TYPE_USB, URE_RX_THR_HIGH);
ure_write_4(un, URE_USB_TX_DMA, URE_MCU_TYPE_USB,
URE_TEST_MODE_DISABLE | URE_TX_SIZE_ADJUST1);
}
static void
ure_rtl8153_init(struct usbnet *un)
{
uint16_t val;
uint8_t u1u2[8];
int i;
/* Disable ALDPS. */
ure_ocp_reg_write(un, URE_OCP_POWER_CFG,
ure_ocp_reg_read(un, URE_OCP_POWER_CFG) & ~URE_EN_ALDPS);
usbd_delay_ms(un->un_udev, 20);
memset(u1u2, 0x00, sizeof(u1u2));
ure_write_mem(un, URE_USB_TOLERANCE,
URE_MCU_TYPE_USB | URE_BYTE_EN_SIX_BYTES, u1u2, sizeof(u1u2));
2019-05-23 16:10:50 +03:00
for (i = 0; i < URE_TIMEOUT; i++) {
if (ure_read_2(un, URE_PLA_BOOT_CTRL, URE_MCU_TYPE_PLA) &
URE_AUTOLOAD_DONE)
break;
usbd_delay_ms(un->un_udev, 10);
}
if (i == URE_TIMEOUT)
URE_PRINTF(un, "timeout waiting for chip autoload\n");
for (i = 0; i < URE_TIMEOUT; i++) {
val = ure_ocp_reg_read(un, URE_OCP_PHY_STATUS) &
URE_PHY_STAT_MASK;
if (val == URE_PHY_STAT_LAN_ON || val == URE_PHY_STAT_PWRDN)
break;
usbd_delay_ms(un->un_udev, 10);
}
if (i == URE_TIMEOUT)
URE_PRINTF(un, "timeout waiting for phy to stabilize\n");
ure_write_2(un, URE_USB_U2P3_CTRL, URE_MCU_TYPE_USB,
ure_read_2(un, URE_USB_U2P3_CTRL, URE_MCU_TYPE_USB) &
~URE_U2P3_ENABLE);
if (un->un_flags & URE_FLAG_VER_5C10) {
val = ure_read_2(un, URE_USB_SSPHYLINK2, URE_MCU_TYPE_USB);
val &= ~URE_PWD_DN_SCALE_MASK;
val |= URE_PWD_DN_SCALE(96);
ure_write_2(un, URE_USB_SSPHYLINK2, URE_MCU_TYPE_USB, val);
ure_write_1(un, URE_USB_USB2PHY, URE_MCU_TYPE_USB,
ure_read_1(un, URE_USB_USB2PHY, URE_MCU_TYPE_USB) |
URE_USB2PHY_L1 | URE_USB2PHY_SUSPEND);
} else if (un->un_flags & URE_FLAG_VER_5C20) {
ure_write_1(un, URE_PLA_DMY_REG0, URE_MCU_TYPE_PLA,
ure_read_1(un, URE_PLA_DMY_REG0, URE_MCU_TYPE_PLA) &
~URE_ECM_ALDPS);
}
if (un->un_flags & (URE_FLAG_VER_5C20 | URE_FLAG_VER_5C30)) {
val = ure_read_1(un, URE_USB_CSR_DUMMY1, URE_MCU_TYPE_USB);
if (ure_read_2(un, URE_USB_BURST_SIZE, URE_MCU_TYPE_USB) ==
0)
val &= ~URE_DYNAMIC_BURST;
else
val |= URE_DYNAMIC_BURST;
ure_write_1(un, URE_USB_CSR_DUMMY1, URE_MCU_TYPE_USB, val);
}
ure_write_1(un, URE_USB_CSR_DUMMY2, URE_MCU_TYPE_USB,
ure_read_1(un, URE_USB_CSR_DUMMY2, URE_MCU_TYPE_USB) |
URE_EP4_FULL_FC);
ure_write_2(un, URE_USB_WDT11_CTRL, URE_MCU_TYPE_USB,
ure_read_2(un, URE_USB_WDT11_CTRL, URE_MCU_TYPE_USB) &
~URE_TIMER11_EN);
ure_write_2(un, URE_PLA_LED_FEATURE, URE_MCU_TYPE_PLA,
ure_read_2(un, URE_PLA_LED_FEATURE, URE_MCU_TYPE_PLA) &
~URE_LED_MODE_MASK);
if ((un->un_flags & URE_FLAG_VER_5C10) &&
un->un_udev->ud_speed != USB_SPEED_SUPER)
val = URE_LPM_TIMER_500MS;
else
val = URE_LPM_TIMER_500US;
ure_write_1(un, URE_USB_LPM_CTRL, URE_MCU_TYPE_USB,
val | URE_FIFO_EMPTY_1FB | URE_ROK_EXIT_LPM);
val = ure_read_2(un, URE_USB_AFE_CTRL2, URE_MCU_TYPE_USB);
val &= ~URE_SEN_VAL_MASK;
val |= URE_SEN_VAL_NORMAL | URE_SEL_RXIDLE;
ure_write_2(un, URE_USB_AFE_CTRL2, URE_MCU_TYPE_USB, val);
ure_write_2(un, URE_USB_CONNECT_TIMER, URE_MCU_TYPE_USB, 0x0001);
ure_write_2(un, URE_USB_POWER_CUT, URE_MCU_TYPE_USB,
ure_read_2(un, URE_USB_POWER_CUT, URE_MCU_TYPE_USB) &
~(URE_PWR_EN | URE_PHASE2_EN));
ure_write_2(un, URE_USB_MISC_0, URE_MCU_TYPE_USB,
ure_read_2(un, URE_USB_MISC_0, URE_MCU_TYPE_USB) &
~URE_PCUT_STATUS);
memset(u1u2, 0xff, sizeof(u1u2));
ure_write_mem(un, URE_USB_TOLERANCE,
URE_MCU_TYPE_USB | URE_BYTE_EN_SIX_BYTES, u1u2, sizeof(u1u2));
ure_write_2(un, URE_PLA_MAC_PWR_CTRL, URE_MCU_TYPE_PLA,
URE_ALDPS_SPDWN_RATIO);
ure_write_2(un, URE_PLA_MAC_PWR_CTRL2, URE_MCU_TYPE_PLA,
URE_EEE_SPDWN_RATIO);
ure_write_2(un, URE_PLA_MAC_PWR_CTRL3, URE_MCU_TYPE_PLA,
URE_PKT_AVAIL_SPDWN_EN | URE_SUSPEND_SPDWN_EN |
URE_U1U2_SPDWN_EN | URE_L1_SPDWN_EN);
ure_write_2(un, URE_PLA_MAC_PWR_CTRL4, URE_MCU_TYPE_PLA,
URE_PWRSAVE_SPDWN_EN | URE_RXDV_SPDWN_EN | URE_TX10MIDLE_EN |
URE_TP100_SPDWN_EN | URE_TP500_SPDWN_EN | URE_TP1000_SPDWN_EN |
URE_EEE_SPDWN_EN);
val = ure_read_2(un, URE_USB_U2P3_CTRL, URE_MCU_TYPE_USB);
if (!(un->un_flags & (URE_FLAG_VER_5C00 | URE_FLAG_VER_5C10)))
val |= URE_U2P3_ENABLE;
else
val &= ~URE_U2P3_ENABLE;
ure_write_2(un, URE_USB_U2P3_CTRL, URE_MCU_TYPE_USB, val);
memset(u1u2, 0x00, sizeof(u1u2));
ure_write_mem(un, URE_USB_TOLERANCE,
URE_MCU_TYPE_USB | URE_BYTE_EN_SIX_BYTES, u1u2, sizeof(u1u2));
/* Disable ALDPS. */
ure_ocp_reg_write(un, URE_OCP_POWER_CFG,
ure_ocp_reg_read(un, URE_OCP_POWER_CFG) & ~URE_EN_ALDPS);
usbd_delay_ms(un->un_udev, 20);
ure_init_fifo(un);
/* Enable Rx aggregation. */
ure_write_2(un, URE_USB_USB_CTRL, URE_MCU_TYPE_USB,
ure_read_2(un, URE_USB_USB_CTRL, URE_MCU_TYPE_USB) &
~URE_RX_AGG_DISABLE);
val = ure_read_2(un, URE_USB_U2P3_CTRL, URE_MCU_TYPE_USB);
if (!(un->un_flags & (URE_FLAG_VER_5C00 | URE_FLAG_VER_5C10)))
val |= URE_U2P3_ENABLE;
else
val &= ~URE_U2P3_ENABLE;
ure_write_2(un, URE_USB_U2P3_CTRL, URE_MCU_TYPE_USB, val);
memset(u1u2, 0xff, sizeof(u1u2));
ure_write_mem(un, URE_USB_TOLERANCE,
URE_MCU_TYPE_USB | URE_BYTE_EN_SIX_BYTES, u1u2, sizeof(u1u2));
}
static void
ure_disable_teredo(struct usbnet *un)
{
ure_write_4(un, URE_PLA_TEREDO_CFG, URE_MCU_TYPE_PLA,
ure_read_4(un, URE_PLA_TEREDO_CFG, URE_MCU_TYPE_PLA) &
~(URE_TEREDO_SEL | URE_TEREDO_RS_EVENT_MASK | URE_OOB_TEREDO_EN));
ure_write_2(un, URE_PLA_WDT6_CTRL, URE_MCU_TYPE_PLA,
URE_WDT6_SET_MODE);
ure_write_2(un, URE_PLA_REALWOW_TIMER, URE_MCU_TYPE_PLA, 0);
ure_write_4(un, URE_PLA_TEREDO_TIMER, URE_MCU_TYPE_PLA, 0);
}
static void
ure_init_fifo(struct usbnet *un)
{
uint32_t rx_fifo1, rx_fifo2;
int i;
ure_write_2(un, URE_PLA_MISC_1, URE_MCU_TYPE_PLA,
ure_read_2(un, URE_PLA_MISC_1, URE_MCU_TYPE_PLA) |
URE_RXDY_GATED_EN);
ure_disable_teredo(un);
ure_write_4(un, URE_PLA_RCR, URE_MCU_TYPE_PLA,
ure_read_4(un, URE_PLA_RCR, URE_MCU_TYPE_PLA) &
~URE_RCR_ACPT_ALL);
if (!(un->un_flags & URE_FLAG_8152)) {
if (un->un_flags & (URE_FLAG_VER_5C00 | URE_FLAG_VER_5C10 |
URE_FLAG_VER_5C20))
ure_ocp_reg_write(un, URE_OCP_ADC_CFG,
URE_CKADSEL_L | URE_ADC_EN | URE_EN_EMI_L);
if (un->un_flags & URE_FLAG_VER_5C00)
ure_ocp_reg_write(un, URE_OCP_EEE_CFG,
ure_ocp_reg_read(un, URE_OCP_EEE_CFG) &
~URE_CTAP_SHORT_EN);
ure_ocp_reg_write(un, URE_OCP_POWER_CFG,
ure_ocp_reg_read(un, URE_OCP_POWER_CFG) |
URE_EEE_CLKDIV_EN);
ure_ocp_reg_write(un, URE_OCP_DOWN_SPEED,
ure_ocp_reg_read(un, URE_OCP_DOWN_SPEED) |
URE_EN_10M_BGOFF);
ure_ocp_reg_write(un, URE_OCP_POWER_CFG,
ure_ocp_reg_read(un, URE_OCP_POWER_CFG) |
URE_EN_10M_PLLOFF);
ure_ocp_reg_write(un, URE_OCP_SRAM_ADDR, URE_SRAM_IMPEDANCE);
ure_ocp_reg_write(un, URE_OCP_SRAM_DATA, 0x0b13);
ure_write_2(un, URE_PLA_PHY_PWR, URE_MCU_TYPE_PLA,
ure_read_2(un, URE_PLA_PHY_PWR, URE_MCU_TYPE_PLA) |
URE_PFM_PWM_SWITCH);
/* Enable LPF corner auto tune. */
ure_ocp_reg_write(un, URE_OCP_SRAM_ADDR, URE_SRAM_LPF_CFG);
ure_ocp_reg_write(un, URE_OCP_SRAM_DATA, 0xf70f);
/* Adjust 10M amplitude. */
ure_ocp_reg_write(un, URE_OCP_SRAM_ADDR, URE_SRAM_10M_AMP1);
ure_ocp_reg_write(un, URE_OCP_SRAM_DATA, 0x00af);
ure_ocp_reg_write(un, URE_OCP_SRAM_ADDR, URE_SRAM_10M_AMP2);
ure_ocp_reg_write(un, URE_OCP_SRAM_DATA, 0x0208);
}
ure_reset(un);
ure_write_1(un, URE_PLA_CR, URE_MCU_TYPE_PLA, 0);
ure_write_1(un, URE_PLA_OOB_CTRL, URE_MCU_TYPE_PLA,
ure_read_1(un, URE_PLA_OOB_CTRL, URE_MCU_TYPE_PLA) &
~URE_NOW_IS_OOB);
ure_write_2(un, URE_PLA_SFF_STS_7, URE_MCU_TYPE_PLA,
ure_read_2(un, URE_PLA_SFF_STS_7, URE_MCU_TYPE_PLA) &
~URE_MCU_BORW_EN);
for (i = 0; i < URE_TIMEOUT; i++) {
if (ure_read_1(un, URE_PLA_OOB_CTRL, URE_MCU_TYPE_PLA) &
URE_LINK_LIST_READY)
break;
usbd_delay_ms(un->un_udev, 10);
}
if (i == URE_TIMEOUT)
URE_PRINTF(un, "timeout waiting for OOB control\n");
ure_write_2(un, URE_PLA_SFF_STS_7, URE_MCU_TYPE_PLA,
ure_read_2(un, URE_PLA_SFF_STS_7, URE_MCU_TYPE_PLA) |
URE_RE_INIT_LL);
for (i = 0; i < URE_TIMEOUT; i++) {
if (ure_read_1(un, URE_PLA_OOB_CTRL, URE_MCU_TYPE_PLA) &
URE_LINK_LIST_READY)
break;
usbd_delay_ms(un->un_udev, 10);
}
if (i == URE_TIMEOUT)
URE_PRINTF(un, "timeout waiting for OOB control\n");
ure_write_2(un, URE_PLA_CPCR, URE_MCU_TYPE_PLA,
ure_read_2(un, URE_PLA_CPCR, URE_MCU_TYPE_PLA) &
~URE_CPCR_RX_VLAN);
ure_write_2(un, URE_PLA_TCR0, URE_MCU_TYPE_PLA,
ure_read_2(un, URE_PLA_TCR0, URE_MCU_TYPE_PLA) |
URE_TCR0_AUTO_FIFO);
/* Configure Rx FIFO threshold and coalescing. */
ure_write_4(un, URE_PLA_RXFIFO_CTRL0, URE_MCU_TYPE_PLA,
URE_RXFIFO_THR1_NORMAL);
if (un->un_udev->ud_speed == USB_SPEED_FULL) {
rx_fifo1 = URE_RXFIFO_THR2_FULL;
rx_fifo2 = URE_RXFIFO_THR3_FULL;
} else {
rx_fifo1 = URE_RXFIFO_THR2_HIGH;
rx_fifo2 = URE_RXFIFO_THR3_HIGH;
}
ure_write_4(un, URE_PLA_RXFIFO_CTRL1, URE_MCU_TYPE_PLA, rx_fifo1);
ure_write_4(un, URE_PLA_RXFIFO_CTRL2, URE_MCU_TYPE_PLA, rx_fifo2);
/* Configure Tx FIFO threshold. */
ure_write_4(un, URE_PLA_TXFIFO_CTRL, URE_MCU_TYPE_PLA,
URE_TXFIFO_THR_NORMAL);
}
static int
ure_ioctl_cb(struct ifnet *ifp, u_long cmd, void *data)
{
struct usbnet * const un = ifp->if_softc;
switch (cmd) {
case SIOCADDMULTI:
case SIOCDELMULTI:
ure_setiff(un);
break;
default:
break;
}
return 0;
}
static int
ure_match(device_t parent, cfdata_t match, void *aux)
{
struct usb_attach_arg *uaa = aux;
return usb_lookup(ure_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL ?
UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
}
static void
ure_attach(device_t parent, device_t self, void *aux)
{
struct usbnet * const un = device_private(self);
struct usb_attach_arg *uaa = aux;
struct usbd_device *dev = uaa->uaa_device;
usb_interface_descriptor_t *id;
usb_endpoint_descriptor_t *ed;
int error, i;
uint16_t ver;
uint8_t eaddr[8]; /* 2byte padded */
char *devinfop;
/* Switch to usbnet for device_private() */
self->dv_private = un;
aprint_naive("\n");
aprint_normal("\n");
devinfop = usbd_devinfo_alloc(dev, 0);
aprint_normal_dev(self, "%s\n", devinfop);
usbd_devinfo_free(devinfop);
un->un_dev = self;
un->un_udev = dev;
un->un_sc = un;
un->un_ops = &ure_ops;
un->un_rx_xfer_flags = USBD_SHORT_XFER_OK;
un->un_tx_xfer_flags = USBD_FORCE_SHORT_XFER;
un->un_rx_list_cnt = URE_RX_LIST_CNT;
un->un_tx_list_cnt = URE_TX_LIST_CNT;
un->un_rx_bufsz = URE_BUFSZ;
un->un_tx_bufsz = URE_BUFSZ;
#define URE_CONFIG_NO 1 /* XXX */
error = usbd_set_config_no(dev, URE_CONFIG_NO, 1);
if (error) {
aprint_error_dev(self, "failed to set configuration: %s\n",
usbd_errstr(error));
return; /* XXX */
}
if (uaa->uaa_product == USB_PRODUCT_REALTEK_RTL8152)
un->un_flags |= URE_FLAG_8152;
#define URE_IFACE_IDX 0 /* XXX */
error = usbd_device2interface_handle(dev, URE_IFACE_IDX, &un->un_iface);
if (error) {
aprint_error_dev(self, "failed to get interface handle: %s\n",
usbd_errstr(error));
return; /* XXX */
}
id = usbd_get_interface_descriptor(un->un_iface);
for (i = 0; i < id->bNumEndpoints; i++) {
ed = usbd_interface2endpoint_descriptor(un->un_iface, i);
if (ed == NULL) {
aprint_error_dev(self, "couldn't get ep %d\n", i);
return; /* XXX */
}
if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
un->un_ed[USBNET_ENDPT_RX] = ed->bEndpointAddress;
} else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
un->un_ed[USBNET_ENDPT_TX] = ed->bEndpointAddress;
}
}
/* Set these up now for ure_ctl(). */
usbnet_attach(un, "uredet");
un->un_phyno = 0;
ver = ure_read_2(un, URE_PLA_TCR1, URE_MCU_TYPE_PLA) & URE_VERSION_MASK;
switch (ver) {
case 0x4c00:
un->un_flags |= URE_FLAG_VER_4C00;
break;
case 0x4c10:
un->un_flags |= URE_FLAG_VER_4C10;
break;
case 0x5c00:
un->un_flags |= URE_FLAG_VER_5C00;
break;
case 0x5c10:
un->un_flags |= URE_FLAG_VER_5C10;
break;
case 0x5c20:
un->un_flags |= URE_FLAG_VER_5C20;
break;
case 0x5c30:
un->un_flags |= URE_FLAG_VER_5C30;
break;
default:
/* fake addr? or just fail? */
break;
}
2019-02-09 10:50:47 +03:00
aprint_normal_dev(self, "RTL%d %sver %04x\n",
(un->un_flags & URE_FLAG_8152) ? 8152 : 8153,
(un->un_flags != 0) ? "" : "unknown ",
2019-02-09 10:50:47 +03:00
ver);
usbnet_lock(un);
if (un->un_flags & URE_FLAG_8152)
ure_rtl8152_init(un);
else
ure_rtl8153_init(un);
if (un->un_flags & URE_FLAG_VER_4C00)
ure_read_mem(un, URE_PLA_IDR, URE_MCU_TYPE_PLA, eaddr,
sizeof(eaddr));
else
ure_read_mem(un, URE_PLA_BACKUP, URE_MCU_TYPE_PLA, eaddr,
sizeof(eaddr));
usbnet_unlock(un);
memcpy(un->un_eaddr, eaddr, sizeof un->un_eaddr);
struct ifnet *ifp = usbnet_ifp(un);
/*
* We don't support TSOv4 and v6 for now, that are required to
* be handled in software for some cases.
*/
ifp->if_capabilities = IFCAP_CSUM_IPv4_Tx |
IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx;
#ifdef INET6
ifp->if_capabilities |= IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx;
#endif
if (un->un_flags & ~URE_FLAG_VER_4C00) {
ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx |
IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
}
struct ethercom *ec = usbnet_ec(un);
ec->ec_capabilities = ETHERCAP_VLAN_MTU;
#ifdef notyet
ec->ec_capabilities |= ETHERCAP_JUMBO_MTU;
#endif
usbnet_attach_ifp(un, true, IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST,
0, 0);
}
static void
ure_rxeof_loop(struct usbnet *un, struct usbd_xfer *xfer,
struct usbnet_chain *c, uint32_t total_len)
{
struct ifnet *ifp = usbnet_ifp(un);
uint8_t *buf = c->unc_buf;
uint16_t pkt_len = 0;
uint16_t pkt_count = 0;
struct ure_rxpkt rxhdr;
usbnet_isowned_rx(un);
do {
if (total_len < sizeof(rxhdr)) {
DPRINTF(("too few bytes left for a packet header\n"));
ifp->if_ierrors++;
return;
}
buf += roundup(pkt_len, 8);
memcpy(&rxhdr, buf, sizeof(rxhdr));
total_len -= sizeof(rxhdr);
pkt_len = le32toh(rxhdr.ure_pktlen) & URE_RXPKT_LEN_MASK;
DPRINTFN(4, ("next packet is %d bytes\n", pkt_len));
if (pkt_len > total_len) {
DPRINTF(("not enough bytes left for next packet\n"));
ifp->if_ierrors++;
return;
}
total_len -= roundup(pkt_len, 8);
buf += sizeof(rxhdr);
usbnet_enqueue(un, buf, pkt_len - ETHER_CRC_LEN,
ure_rxcsum(ifp, &rxhdr), 0, 0);
pkt_count++;
} while (total_len > 0);
if (pkt_count)
rnd_add_uint32(usbnet_rndsrc(un), pkt_count);
}
static int
ure_rxcsum(struct ifnet *ifp, struct ure_rxpkt *rp)
{
int enabled = ifp->if_csum_flags_rx, flags = 0;
uint32_t csum, misc;
if (enabled == 0)
return 0;
csum = le32toh(rp->ure_csum);
misc = le32toh(rp->ure_misc);
if (csum & URE_RXPKT_IPV4_CS) {
flags |= M_CSUM_IPv4;
if (csum & URE_RXPKT_TCP_CS)
flags |= M_CSUM_TCPv4;
if (csum & URE_RXPKT_UDP_CS)
flags |= M_CSUM_UDPv4;
2019-05-23 16:10:50 +03:00
} else if (csum & URE_RXPKT_IPV6_CS) {
flags = 0;
if (csum & URE_RXPKT_TCP_CS)
flags |= M_CSUM_TCPv6;
if (csum & URE_RXPKT_UDP_CS)
flags |= M_CSUM_UDPv6;
2019-05-23 16:10:50 +03:00
}
flags &= enabled;
if (__predict_false((flags & M_CSUM_IPv4) &&
(misc & URE_RXPKT_IP_F)))
flags |= M_CSUM_IPv4_BAD;
if (__predict_false(
((flags & (M_CSUM_TCPv4 | M_CSUM_TCPv6)) && (misc & URE_RXPKT_TCP_F))
|| ((flags & (M_CSUM_UDPv4 | M_CSUM_UDPv6)) && (misc & URE_RXPKT_UDP_F))
))
flags |= M_CSUM_TCP_UDP_BAD;
return flags;
}
static unsigned
ure_tx_prepare(struct usbnet *un, struct mbuf *m, struct usbnet_chain *c)
{
struct ure_txpkt txhdr;
uint32_t frm_len = 0;
uint8_t *buf = c->unc_buf;
usbnet_isowned_tx(un);
/* header */
txhdr.ure_pktlen = htole32(m->m_pkthdr.len | URE_TXPKT_TX_FS |
URE_TXPKT_TX_LS);
txhdr.ure_csum = htole32(ure_txcsum(m));
memcpy(buf, &txhdr, sizeof(txhdr));
buf += sizeof(txhdr);
frm_len = sizeof(txhdr);
/* packet */
m_copydata(m, 0, m->m_pkthdr.len, buf);
frm_len += m->m_pkthdr.len;
if (__predict_false(c->unc_xfer == NULL))
return EIO; /* XXX plugged out or down */
DPRINTFN(2, ("tx %d bytes\n", frm_len));
return frm_len;
}
/*
* We need to calculate L4 checksum in software, if the offset of
* L4 header is larger than 0x7ff = 2047.
*/
static uint32_t
ure_txcsum(struct mbuf *m)
{
struct ether_header *eh;
int flags = m->m_pkthdr.csum_flags;
uint32_t data = m->m_pkthdr.csum_data;
uint32_t reg = 0;
int l3off, l4off;
uint16_t type;
if (flags == 0)
return 0;
if (__predict_true(m->m_len >= (int)sizeof(*eh))) {
eh = mtod(m, struct ether_header *);
type = eh->ether_type;
} else
m_copydata(m, offsetof(struct ether_header, ether_type),
sizeof(type), &type);
switch (type = htons(type)) {
case ETHERTYPE_IP:
case ETHERTYPE_IPV6:
l3off = ETHER_HDR_LEN;
break;
case ETHERTYPE_VLAN:
l3off = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
break;
default:
return 0;
}
if (flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
l4off = l3off + M_CSUM_DATA_IPv4_IPHL(data);
if (__predict_false(l4off > URE_L4_OFFSET_MAX)) {
in_undefer_cksum(m, l3off, flags);
return 0;
}
reg |= URE_TXPKT_IPV4_CS;
if (flags & M_CSUM_TCPv4)
reg |= URE_TXPKT_TCP_CS;
else
reg |= URE_TXPKT_UDP_CS;
reg |= l4off << URE_L4_OFFSET_SHIFT;
}
#ifdef INET6
else if (flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
l4off = l3off + M_CSUM_DATA_IPv6_IPHL(data);
if (__predict_false(l4off > URE_L4_OFFSET_MAX)) {
in6_undefer_cksum(m, l3off, flags);
return 0;
}
reg |= URE_TXPKT_IPV6_CS;
if (flags & M_CSUM_TCPv6)
reg |= URE_TXPKT_TCP_CS;
else
reg |= URE_TXPKT_UDP_CS;
reg |= l4off << URE_L4_OFFSET_SHIFT;
}
#endif
else if (flags & M_CSUM_IPv4)
reg |= URE_TXPKT_IPV4_CS;
return reg;
}
/* XXX module is built but no MODULE() or modcmd */